Utilizing the 45 a European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis wave da- ta (ERA-40), the long-term trend of the sea surface wind speed and (wind wave, swell, mixed wave) wave height in ...Utilizing the 45 a European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis wave da- ta (ERA-40), the long-term trend of the sea surface wind speed and (wind wave, swell, mixed wave) wave height in the global ocean at grid point 1.5°× 1.5° during the last 44 a is analyzed. It is discovered that a ma- jority of global ocean swell wave height exhibits a significant linear increasing trend (2-8 cm/decade), the distribution of annual linear trend of the significant wave height (SWH) has good consistency with that of the swell wave height. The sea surface wind speed shows an annually linear increasing trend mainly con- centrated in the most waters of Southern Hemisphere westerlies, high latitude of the North Pacific, Indian Ocean north of 30°S, the waters near the western equatorial Pacific and low latitudes of the Atlantic waters, and the annually linear decreasing mainly in central and eastern equator of the Pacific, Juan. Fernandez Archipelago, the waters near South Georgia Island in the Atlantic waters. The linear variational distribution characteristic of the wind wave height is similar to that of the sea surface wind speed. Another find is that the swell is dominant in the mixed wave, the swell index in the central ocean is generally greater than that in the offshore, and the swell index in the eastern ocean coast is greater than that in the western ocean inshore, and in year-round hemisphere westerlies the swell index is relatively low.展开更多
Previously, most ocean circulation models have overlooked the role of the surface waves. As a result, these models have produced insufficient vertical mixing, with an under - prediction of the ,nixing layer (ML) dep...Previously, most ocean circulation models have overlooked the role of the surface waves. As a result, these models have produced insufficient vertical mixing, with an under - prediction of the ,nixing layer (ML) depth and an over - prediction of the sea surface temperature (SST), particularly during the summer season. As the ocean surface layer determines the lower boundary conditions of the atmosphere, this deficiency has severely limited the performance of the coupled ocean - atmospheric models and hence the climate studies. To overcome this shortcoming, a new parameterization for the wave effects in the ML model that will correct this systematic error of insufficient mixing. The new scheme has enabled the mixing layer to deepen, the surface excessive heating to be corrected, and an excellent agreement with observed global climatologic data. The study indicates that the surface waves are essential for ML formation, and that they are the primer drivers of the upper ocean dynamics; therefore, they are critical for climate studies.展开更多
A one-dimensional mixed-layer model, including a Mellor- Yamada level 2.5 turbulence closure scheme, was implemented to investi- gate the dynamical and thermal structures of the ocean surface mixed layer in the northe...A one-dimensional mixed-layer model, including a Mellor- Yamada level 2.5 turbulence closure scheme, was implemented to investi- gate the dynamical and thermal structures of the ocean surface mixed layer in the northern South China Sea. The turbulent kinetic ener- gy released through wave breaking was incorporated into the model as a source of energy at the ocean surface, and the influence of the breaking waves on the mixed layer was studied. The numerical simulations show that the simulated SST is overestimated in summer without the breaking waves. However, the cooler SST is simulated when the effect of the breaking waves is considered, the corre- sponding discrepancy with the observed data decreases up to 20% and the MLD calculated averagely deepens 3.8 m. Owing to the wave-enhanced turbulence mixing in the summertime, the stratification at the bottom of the mixed layer was modified and the tempera- ture gradient spread throughout the whole thermocline compared with the concentrated distribution without wave breaking.展开更多
The mixed covolume method for the regularized long wave equation is devel- oped and studied. By introducing a transfer operator γh, which maps the trial function space into the test function space, and combining the ...The mixed covolume method for the regularized long wave equation is devel- oped and studied. By introducing a transfer operator γh, which maps the trial function space into the test function space, and combining the mixed finite element with the finite volume method, the nonlinear and linear Euler fully discrete mixed covolume schemes are constructed, and the existence and uniqueness of the solutions are proved. The optimal error estimates for these schemes are obtained. Finally, a numerical example is provided to examine the efficiency of the proposed schemes.展开更多
As an important physical process at the air-sea interface, wave movement and breaking have a significant effect on the ocean surface mixed layer (OSML). When breaking waves occur at the ocean surface, turbulent kineti...As an important physical process at the air-sea interface, wave movement and breaking have a significant effect on the ocean surface mixed layer (OSML). When breaking waves occur at the ocean surface, turbulent kinetic energy (TKE) is input downwards, and a sublayer is formed near the surface and turbulence vertical mixing is intensively enhanced. A one-dimensional ocean model including the Mellor-Yamada level 2.5 turbulence closure equations was employed in our research on variations in turbulent energy budget within OSML. The influence of wave breaking could be introduced into the model by modifying an existing surface boundary condition of the TKE equation and specifying its input. The vertical diffusion and dissipation of TKE were effectively enhanced in the sublayer when wave breaking was considered. Turbulent energy dissipated in the sublayer was about 92.0% of the total depth-integrated dissipated TKE, which is twice higher than that of non-wave breaking. The shear production of TKE decreased by 3.5% because the mean flow fields tended to be uniform due to wave-enhanced turbulent mixing. As a result, a new local equilibrium between diffusion and dissipation of TKE was reached in the wave-enhanced layer. Below the sublayer, the local equilibrium between shear production and dissipation of TKE agreed with the conclusion drawn from the classical law-of-the-wall (Craig and Banner, 1994).展开更多
Surface waves have a considerable effect on vertical mixing in the upper ocean.In the past two decades,the vertical mixing induced through nonbreaking surface waves has been used in ocean and climate models to improve...Surface waves have a considerable effect on vertical mixing in the upper ocean.In the past two decades,the vertical mixing induced through nonbreaking surface waves has been used in ocean and climate models to improve the simulation of the upper ocean.Thus far,several nonbreaking wave-induced mixing parameterization schemes have been proposed;however,no quantitative comparison has been performed among them.In this paper,a one-dimensional ocean model was used to compare the performances of five schemes,including those of Qiao et al.(Q),Hu and Wang(HW),Huang and Qiao(HQ),Pleskachevsky et al.(P),and Ghantous and Babanin(GB).Similar to previous studies,all of these schemes can decrease the simulated sea surface temperature(SST),increase the subsurface temperature,and deepen the mixed layer,thereby alleviating the common thermal deviation problem of the ocean model for upper ocean simulation.Among these schemes,the HQ scheme exhibited the weakest wave-induced mixing effect,and the HW scheme exhibited the strongest effect;the other three schemes exhibited roughly the same effect.In particular,the Q and P schemes exhibited nearly the same effect.In the simulation based on observations from the Ocean Weather Station Papa,the HQ scheme exhibited the best performance,followed by the Q scheme.In the experiment with the HQ scheme,the root-mean-square deviation of the simulated SST from the observations was 0.43℃,and the mixed layer depth(MLD)was 2.0 m.As a contrast,the deviations of the SST and MLD reached 1.25℃ and 8.4 m,respectively,in the experiment without wave-induced mixing.展开更多
There are so many Isolated Islands (inhabited islands) in the world, including Japan. However, at present islanders, there have been faced with the decline of industries, serious concerns of rapid aging and very low b...There are so many Isolated Islands (inhabited islands) in the world, including Japan. However, at present islanders, there have been faced with the decline of industries, serious concerns of rapid aging and very low birthrate without children and water scarcity issues etc. It can be said that these situations are under the environment which shows a microcosm of Japanese and/or world survival society in the near future. In this paper, the experimental data on the reduction of the mixed water (seawater & rainwater) salinity by the sound wave when changing the volume ratio were first shown, taking into the characteristics of the Isolated Islands. Next, the main analysis result on the water qualities of mixed water with which sound wave was irradiated was shown and the consideration mainly based on the WHO drinking water quality standards was carried out. Finally, through a simple water quality improvement apparatus using small hydroelectric power, a consideration regarding a possibility of the purification of the water (to be a drinking water) based on the solar circulation energy (regenerative type’s natural energy) such as small hydropower utilization, natural sunlight utilization, natural gravity utilization, natural oscillation utilization has been described in the paper.展开更多
In this study we have for the first time proposed a novel transformed linear simulation method for the estimation of wave crest amplitudes distribution and freak wave occurrence in a short crested mixed sea with a bim...In this study we have for the first time proposed a novel transformed linear simulation method for the estimation of wave crest amplitudes distribution and freak wave occurrence in a short crested mixed sea with a bimodal 3D spectrum. For implementing the proposed transformed linear simulation method, a Hermite transformation model expressed in a monotonic cubic polynomial has been constructed so that the first four moments of the original true process match the corresponding moments of the transformed model. The proposed novel simulation method has been applied to forecast the freak wave occurrence in two short crested mixed sea states, one with a directional wave spectrum based on the measured surface elevation data at the coast of Yura, and the other one with a typical directional bimodal Torsethaugen wave spectrum. It is shown in the two cases that the proposed novel simulation method can offer more accurate forecasting results than those obtained from the traditional linear simulation method or by using Rayleigh distribution model. It is also demonstrated in this article that the proposed novel simulation method is more efficient than the nonlinear simulation method.展开更多
An H1-Galerkin expanded mixed finite element method is discussed for a class of second order semi-linear hyperbolic wave equations. By using the mixed formulation, we can get the optimal approximation for three variab...An H1-Galerkin expanded mixed finite element method is discussed for a class of second order semi-linear hyperbolic wave equations. By using the mixed formulation, we can get the optimal approximation for three variables: the scalar unknown, its gradient and its flux(coefficient times the gradient), simultaneously. We also prove the existence and uniqueness of semi-discrete solution. Finally, we obtain some numerical results to illustrate the efficiency of the method.展开更多
Based on the Ocean Reanalysis System version 5(ORAS5)and the fifth-generation reanalysis datasets derived from European Centre for Medium-Range Weather Forecasts(ERA5),we investigate the different impacts of the centr...Based on the Ocean Reanalysis System version 5(ORAS5)and the fifth-generation reanalysis datasets derived from European Centre for Medium-Range Weather Forecasts(ERA5),we investigate the different impacts of the central Pacific(CP)El Niño and the eastern Pacific(EP)El Niño on the Southern Ocean(SO)mixed layer depth(MLD)during austral winter.The MLD response to the EP El Niño shows a dipole pattern in the South Pacific,namely the MLD dipole,which is the leading El Niño-induced MLD variability in the SO.The tropical Pacific warm sea surface temperature anomaly(SSTA)signal associated with the EP El Niño excites a Rossby wave train propagating southeastward and then enhances the Amundsen Sea low(ASL).This results in an anomalous cyclone over the Amundsen Sea.As a result,the anomalous southerly wind to the west of this anomalous cyclone advects colder and drier air into the southeast of New Zealand,leading to surface cooling through less total surface heat flux,especially surface sensible heat(SH)flux and latent heat(LH)flux,and thus contributing to the mix layer(ML)deepening.The east of the anomalous cyclone brings warmer and wetter air to the southwest of Chile,but the total heat flux anomaly shows no significant change.The warm air promotes the sea ice melting and maintains fresh water,which strengthens stratification.This results in a shallower MLD.During the CP El Niño,the response of MLD shows a separate negative MLD anomaly center in the central South Pacific.The Rossby wave train triggered by the warm SSTA in the central Pacific Ocean spreads to the Amundsen Sea,which weakens the ASL.Therefore,the anomalous anticyclone dominates the Amundsen Sea.Consequently,the anomalous northerly wind to the west of anomalous anticyclone advects warmer and wetter air into the central and southern Pacific,causing surface warming through increased SH,LH,and longwave radiation flux,and thus contributing to the ML shoaling.However,to the east of the anomalous anticyclone,there is no statistically significant impact on the MLD.展开更多
H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and unique...H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and uniqueness of semidiscrete solutions are derived for problems in one space dimension.And the methods don't require the LBB condition.展开更多
We propose a nonlinear ultrasonic technique by using the mixed-frequency signals excited Lamb waves to conduct micro-crack detection in thin plate structures.Simulation models of three-dimensional(3D)aluminum plates a...We propose a nonlinear ultrasonic technique by using the mixed-frequency signals excited Lamb waves to conduct micro-crack detection in thin plate structures.Simulation models of three-dimensional(3D)aluminum plates and composite laminates are established by ABAQUS software,where the aluminum plate contains buried crack and composite laminates comprises cohesive element whose thickness is zero to simulate delamination damage.The interactions between the S0 mode Lamb wave and the buried micro-cracks of various dimensions are simulated by using the finite element method.Fourier frequency spectrum analysis is applied to the received time domain signal and fundamental frequency amplitudes,and sum and difference frequencies are extracted and simulated.Simulation results indicate that nonlinear Lamb waves have different sensitivities to various crack sizes.There is a positive correlation among crack length,height,and sum and difference frequency amplitudes for an aluminum plate,with both amplitudes decreasing as crack thickness increased,i.e.,nonlinear effect weakens as the micro-crack becomes thicker.The amplitudes of sum and difference frequency are positively correlated with the length and width of the zero-thickness cohesive element in the composite laminates.Furthermore,amplitude ratio change is investigated and it can be used as an effective tool to detect inner defects in thin 3D plates.展开更多
In this article, we study the impacts of nonlinearity and dispersion on signals likely to propagate in the context of the dynamics of four-wave mixing. Thus, we use an indirect resolution technique based on the use of...In this article, we study the impacts of nonlinearity and dispersion on signals likely to propagate in the context of the dynamics of four-wave mixing. Thus, we use an indirect resolution technique based on the use of the iB-function to first decouple the nonlinear partial differential equations that govern the propagation dynamics in this case, and subsequently solve them to propose some prototype solutions. These analytical solutions have been obtained;we check the impact of nonlinearity and dispersion. The interest of this work lies not only in the resolution of the partial differential equations that govern the dynamics of wave propagation in this case since these equations not at all easy to integrate analytically and their analytical solutions are very rare, in other words, we propose analytically the solutions of the nonlinear coupled partial differential equations which govern the dynamics of four-wave mixing in optical fibers. Beyond the physical interest of this work, there is also an appreciable mathematical interest.展开更多
A new dinuclear Y(3+) coordination polymer{[Y2(H2O)2(C(14)H8O4)3(C(12)H8N2)2]·3 H2O}n (1, C(14)H8 O4 = 2,2'-biphenyldicarboxylate, phen = 1,10-phenanthroline), has been obtained by means of a mi...A new dinuclear Y(3+) coordination polymer{[Y2(H2O)2(C(14)H8O4)3(C(12)H8N2)2]·3 H2O}n (1, C(14)H8 O4 = 2,2'-biphenyldicarboxylate, phen = 1,10-phenanthroline), has been obtained by means of a mixed-solvothermal method using ethylene glycol and water as solvent. The compound was characterized by elemental analysis, energy-dispersive X-ray spectroscopy(EDS), IR spectrum and single-crystal X-ray diffraction. The results reveal that 1 belongs to monoclinic system, space group C2/c with a = 24.249(3), b = 12.069(48), c = 22.7304(08) A, β = 113.480(7)°, Z = 4, V = 6102(2) A3, Dc = 1.462 g·cm^-3, F(000) = 2728, μ = 1.968 mm(-1), the final R = 0.0673, w R = 0.1508 and S = 1.085. Its structure can be regarded as a 1-D coordination polymer constructed by Y^3+ cations, 2,2A-biphenyldicarboxylate, 1,10-phenanthroline and water molecules. The compound not only contains two kinds of organic ligands, but also exhibits interesting wave-like infinite chains and 18-MR windows with the diameter of 4.070(7)A × 5.326(9)A. The structure is further stabilized by means of O–H…O hydrogen bonds and π-π stacking interactions. Furthermore, the luminescent properties(including emission spectrum, CIE chromaticity coordinate and decay curve) of 1 were also investigated in the solid-state at room temperature.展开更多
The wave period probability densities in non-Gaussian mixed sea states are calculated by utilizing a transformed Gaussian process method. The transformation relating the non-Gaussian process and the original Gaussian ...The wave period probability densities in non-Gaussian mixed sea states are calculated by utilizing a transformed Gaussian process method. The transformation relating the non-Gaussian process and the original Gaussian process is obtained based on the equivalence of the level up-crossing rates of the two processes. A saddle point approximation procedure is applied for calculating the level up-crossing rates in this study. The accuracy and efficiency of the transformed Gaussian process method are validated by comparing the results predicted by using the method with those predicted by the Monte Carlo simulation method.展开更多
Using the extended Blonder-Tinkham-Klapwijk (BTK) theory, this paper calculates the tunnelling conductance in quantum wire/insulator/dx2-y2 + idly mixed wave superconductor (q/I/dx2-y2 + idly) junctions. That is...Using the extended Blonder-Tinkham-Klapwijk (BTK) theory, this paper calculates the tunnelling conductance in quantum wire/insulator/dx2-y2 + idly mixed wave superconductor (q/I/dx2-y2 + idly) junctions. That is different from the case in d- and p-wave superconductor junctions. When the angle α between a-axis of the dx2-y2 wave superconductor and the interface normal is π/4, there follows a rather distinctive tunnelling conductance. The zero-bias conductance peak (ZBCP) may or may not appear in the tunnelling conductance. Both the interface potential z and the quasi-particle lifetime factor F are smaller, there is no ZBCP. Otherwise, the ZBCP will appear. The position of bias conductance peak (BCP) depends strongly on the amplitude ratio of two components for dx2-y2 + idxy mixed wave. The low and narrow ZBCP may coexist with the BCP in the tunnelling conductance. Using those features in the tunnelling conductance of q/I/dx2-y2 + idxy junctions, it can distinguish dx2-y2 + idxy mixed wave superconductor from d- and p-wave one.展开更多
The significant underestimation of sea surface temperature (SST) and the temperature in the upper ocean is one of common problems in present climate models. The influence of the wave-induced mixing on SST and the te...The significant underestimation of sea surface temperature (SST) and the temperature in the upper ocean is one of common problems in present climate models. The influence of the wave-induced mixing on SST and the temperature in the upper ocean was examined based on a global climate model. The results from the model coupled with wave-induced mixing showed a significant improvement in the simulation of SST and the temperature in the upper ocean compared with those of the original model without wave effects. Although there has still a cold bias, the new simulation is much closer to the climatology, especially in the northern ocean and tropical ocean. This study indicates that some important physical processes in the accurate simulation of the ocean may be ignored in present climate models, and the wave-induced mixing is one of those factors. Thus, the wave-induced mixing ( or the effect of surface waves) should be incorporated properly into climate models in order to simulate or forecast the ocean, then climate system, more accurately.展开更多
Based on the theoretical spectral model of inertial internal wave breaking (fine structure) proposed previ- ously, in which the effects of the horizontal Coriolis frequency component f-tilde on a potential isopycnal...Based on the theoretical spectral model of inertial internal wave breaking (fine structure) proposed previ- ously, in which the effects of the horizontal Coriolis frequency component f-tilde on a potential isopycnal are taken into account, a parameterization scheme of vertical mixing in the stably stratified interior be- low the surface mixed layer in the ocean general circulation model (OGCM) is put forward preliminarily in this paper. Besides turbulence, the impact of sub-mesoscale oceanic processes (including inertial internal wave breaking product) on oceanic interior mixing is emphasized. We suggest that adding the inertial inter- hal wave breaking mixing scheme (F-scheme for short) put forward in this paper to the turbulence mixing scheme of Canuto et al. (T-scheme for short) in the OGCM, except the region from 15°S to 15°N. The numeri- cal results ofF-scheme by usingWOA09 data and an OGCM (LICOM, LASG/IAP climate system ocean model) over the global ocean are given. A notable improvement in the simulation of salinity and temperature over the global ocean is attained by using T-scheme adding F-scheme, especially in the mid- and high-latitude regions in the simulation of the intermediate water and deep water. We conjecture that the inertial internal wave breaking mixing and inertial forcing of wind might be one of important mechanisms maintaining the ventilation process. The modeling strength of the Atlantic meridional overturning circulation (AMOC) by using T-scheme adding F-scheme may be more reasonable than that by using T-scheme alone, though the physical processes need to be further studied, and the overflow parameterization needs to be incorporated. A shortcoming in F-scheme is that in this paper the error of simulated salinity and temperature by using T-scheme adding F-scheme is larger than that by using T-scheme alone in the subsurface layer.展开更多
2nd-order upwind TVD scheme was used to solve the laminar, fully Navier-Stokes equations. The numerical simulations were done on the propagation of a shock wave with Ma(s) = 2 and 4 into a hydrogen and air mixture in ...2nd-order upwind TVD scheme was used to solve the laminar, fully Navier-Stokes equations. The numerical simulations were done on the propagation of a shock wave with Ma(s) = 2 and 4 into a hydrogen and air mixture in a duct and a duct with a rearward step. The results indicate that a swirling vortex: may be generated in the lopsided interface behind the moving shock. Meanwhile, the complex shock system is also formed in this shear flow region. A large swirling vortex is produced and the fuel mixing can be enhanced by a shock wave at low Mach number. But in a duct with a rearward step, the shock almost disappears in hydrogen for Mns = 2. The shack in hydrogen will become strong if Ma(s) is large. Similar to the condition of a shock moving in a duct full of hydrogen and air, a large vortex cart be formed in the shear flow region. The large swirling vortex even gets through the reflected shock and impacts on the lower wall. Then, the distribution of hydrogen behind the rearward step is divided into two regions. The transition from regular reflection to Mach reflection was observed aswell in case Ma(s) = 4.展开更多
Harmonic nonlinear ultrasound can offer high sensitivity for residual stress measurements;however,it cannot be used for local stress measurements at a point in space and exhibits nonlinear distortions in the experimen...Harmonic nonlinear ultrasound can offer high sensitivity for residual stress measurements;however,it cannot be used for local stress measurements at a point in space and exhibits nonlinear distortions in the experimental system.This paper presents a feasibility study on the measurement of residual stress in a metal plate using a nonlinear Lamb wave-mixing technique.The resonant conditions for two Lamb waves to generate a mixing frequency wave are obtained via theoretical analysis.Finite element simulations are performed to investigate the nonlinear interactions between the two Lamb waves.Results show that two incident A0 waves interact in regions of material nonlinearity and generate a rightward S0 wave at the sum frequency.Residual stress measurement experiments are conducted on steel plate specimens using the collinear Lamb wave-mixing technique.By setting different delays for two transmitters,the generated sum-frequency component at different spatial locations is measured.Experimental results show that the spatial distribution of the amplitude of the sum-frequency component agrees well with the spatial distribution of the residual stress measured using X-rays.The proposed collinear Lamb wave-mixing method is effective for measuring the distribution of residual stress in metal plates.展开更多
基金The National Basic Research Program of China under contract No.2012CB957803
文摘Utilizing the 45 a European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis wave da- ta (ERA-40), the long-term trend of the sea surface wind speed and (wind wave, swell, mixed wave) wave height in the global ocean at grid point 1.5°× 1.5° during the last 44 a is analyzed. It is discovered that a ma- jority of global ocean swell wave height exhibits a significant linear increasing trend (2-8 cm/decade), the distribution of annual linear trend of the significant wave height (SWH) has good consistency with that of the swell wave height. The sea surface wind speed shows an annually linear increasing trend mainly con- centrated in the most waters of Southern Hemisphere westerlies, high latitude of the North Pacific, Indian Ocean north of 30°S, the waters near the western equatorial Pacific and low latitudes of the Atlantic waters, and the annually linear decreasing mainly in central and eastern equator of the Pacific, Juan. Fernandez Archipelago, the waters near South Georgia Island in the Atlantic waters. The linear variational distribution characteristic of the wind wave height is similar to that of the sea surface wind speed. Another find is that the swell is dominant in the mixed wave, the swell index in the central ocean is generally greater than that in the offshore, and the swell index in the eastern ocean coast is greater than that in the western ocean inshore, and in year-round hemisphere westerlies the swell index is relatively low.
基金The National Natural Science Foundation of China No.40730842the"973"project of China under contract No.2006CB403605
文摘Previously, most ocean circulation models have overlooked the role of the surface waves. As a result, these models have produced insufficient vertical mixing, with an under - prediction of the ,nixing layer (ML) depth and an over - prediction of the sea surface temperature (SST), particularly during the summer season. As the ocean surface layer determines the lower boundary conditions of the atmosphere, this deficiency has severely limited the performance of the coupled ocean - atmospheric models and hence the climate studies. To overcome this shortcoming, a new parameterization for the wave effects in the ML model that will correct this systematic error of insufficient mixing. The new scheme has enabled the mixing layer to deepen, the surface excessive heating to be corrected, and an excellent agreement with observed global climatologic data. The study indicates that the surface waves are essential for ML formation, and that they are the primer drivers of the upper ocean dynamics; therefore, they are critical for climate studies.
基金supported by the cooperative project of the Chinese Academy of Sciencesthe China National Offshore Oil Corporation+1 种基金the National Natural Science Foundation of China under contract Nos 40376008 and 40476008Open Projects of the Key Laboratory of Physical Oceanography of Ministry of Education of China under contract No.200310.
文摘A one-dimensional mixed-layer model, including a Mellor- Yamada level 2.5 turbulence closure scheme, was implemented to investi- gate the dynamical and thermal structures of the ocean surface mixed layer in the northern South China Sea. The turbulent kinetic ener- gy released through wave breaking was incorporated into the model as a source of energy at the ocean surface, and the influence of the breaking waves on the mixed layer was studied. The numerical simulations show that the simulated SST is overestimated in summer without the breaking waves. However, the cooler SST is simulated when the effect of the breaking waves is considered, the corre- sponding discrepancy with the observed data decreases up to 20% and the MLD calculated averagely deepens 3.8 m. Owing to the wave-enhanced turbulence mixing in the summertime, the stratification at the bottom of the mixed layer was modified and the tempera- ture gradient spread throughout the whole thermocline compared with the concentrated distribution without wave breaking.
基金supported by the National Natural Science Fundation of China (No. 11061021)the Science Research of Inner Mongolia Advanced Education (Nos. NJ10006, NJ10016, and NJZZ12011)the National Science Foundation of Inner Mongolia (Nos. 2011BS0102 and 2012MS0106)
文摘The mixed covolume method for the regularized long wave equation is devel- oped and studied. By introducing a transfer operator γh, which maps the trial function space into the test function space, and combining the mixed finite element with the finite volume method, the nonlinear and linear Euler fully discrete mixed covolume schemes are constructed, and the existence and uniqueness of the solutions are proved. The optimal error estimates for these schemes are obtained. Finally, a numerical example is provided to examine the efficiency of the proposed schemes.
基金Supported by the NSFC (No. 40476008)Knowledge Innovation Programs of the Chinese Academy of Sciences (No. KZCX3-SW-222)the NSFDYS (No. 40425015)
文摘As an important physical process at the air-sea interface, wave movement and breaking have a significant effect on the ocean surface mixed layer (OSML). When breaking waves occur at the ocean surface, turbulent kinetic energy (TKE) is input downwards, and a sublayer is formed near the surface and turbulence vertical mixing is intensively enhanced. A one-dimensional ocean model including the Mellor-Yamada level 2.5 turbulence closure equations was employed in our research on variations in turbulent energy budget within OSML. The influence of wave breaking could be introduced into the model by modifying an existing surface boundary condition of the TKE equation and specifying its input. The vertical diffusion and dissipation of TKE were effectively enhanced in the sublayer when wave breaking was considered. Turbulent energy dissipated in the sublayer was about 92.0% of the total depth-integrated dissipated TKE, which is twice higher than that of non-wave breaking. The shear production of TKE decreased by 3.5% because the mean flow fields tended to be uniform due to wave-enhanced turbulent mixing. As a result, a new local equilibrium between diffusion and dissipation of TKE was reached in the wave-enhanced layer. Below the sublayer, the local equilibrium between shear production and dissipation of TKE agreed with the conclusion drawn from the classical law-of-the-wall (Craig and Banner, 1994).
基金supported by the Laoshan Laboratory(No.LSKJ202201600)the National Key Research and Development Program of China(No.2022YFC2808304).
文摘Surface waves have a considerable effect on vertical mixing in the upper ocean.In the past two decades,the vertical mixing induced through nonbreaking surface waves has been used in ocean and climate models to improve the simulation of the upper ocean.Thus far,several nonbreaking wave-induced mixing parameterization schemes have been proposed;however,no quantitative comparison has been performed among them.In this paper,a one-dimensional ocean model was used to compare the performances of five schemes,including those of Qiao et al.(Q),Hu and Wang(HW),Huang and Qiao(HQ),Pleskachevsky et al.(P),and Ghantous and Babanin(GB).Similar to previous studies,all of these schemes can decrease the simulated sea surface temperature(SST),increase the subsurface temperature,and deepen the mixed layer,thereby alleviating the common thermal deviation problem of the ocean model for upper ocean simulation.Among these schemes,the HQ scheme exhibited the weakest wave-induced mixing effect,and the HW scheme exhibited the strongest effect;the other three schemes exhibited roughly the same effect.In particular,the Q and P schemes exhibited nearly the same effect.In the simulation based on observations from the Ocean Weather Station Papa,the HQ scheme exhibited the best performance,followed by the Q scheme.In the experiment with the HQ scheme,the root-mean-square deviation of the simulated SST from the observations was 0.43℃,and the mixed layer depth(MLD)was 2.0 m.As a contrast,the deviations of the SST and MLD reached 1.25℃ and 8.4 m,respectively,in the experiment without wave-induced mixing.
文摘There are so many Isolated Islands (inhabited islands) in the world, including Japan. However, at present islanders, there have been faced with the decline of industries, serious concerns of rapid aging and very low birthrate without children and water scarcity issues etc. It can be said that these situations are under the environment which shows a microcosm of Japanese and/or world survival society in the near future. In this paper, the experimental data on the reduction of the mixed water (seawater & rainwater) salinity by the sound wave when changing the volume ratio were first shown, taking into the characteristics of the Isolated Islands. Next, the main analysis result on the water qualities of mixed water with which sound wave was irradiated was shown and the consideration mainly based on the WHO drinking water quality standards was carried out. Finally, through a simple water quality improvement apparatus using small hydroelectric power, a consideration regarding a possibility of the purification of the water (to be a drinking water) based on the solar circulation energy (regenerative type’s natural energy) such as small hydropower utilization, natural sunlight utilization, natural gravity utilization, natural oscillation utilization has been described in the paper.
基金financially supported by the funding of an independent research project from the Chinese State Key Laboratory of Ocean Engineering(Grant No.GKZD010068/084)
文摘In this study we have for the first time proposed a novel transformed linear simulation method for the estimation of wave crest amplitudes distribution and freak wave occurrence in a short crested mixed sea with a bimodal 3D spectrum. For implementing the proposed transformed linear simulation method, a Hermite transformation model expressed in a monotonic cubic polynomial has been constructed so that the first four moments of the original true process match the corresponding moments of the transformed model. The proposed novel simulation method has been applied to forecast the freak wave occurrence in two short crested mixed sea states, one with a directional wave spectrum based on the measured surface elevation data at the coast of Yura, and the other one with a typical directional bimodal Torsethaugen wave spectrum. It is shown in the two cases that the proposed novel simulation method can offer more accurate forecasting results than those obtained from the traditional linear simulation method or by using Rayleigh distribution model. It is also demonstrated in this article that the proposed novel simulation method is more efficient than the nonlinear simulation method.
基金Supported by the National Natural Science Fund(11061021)Supported by the Scientific Research Projection of Higher Schools of Inner Mongolia(NJZZ12011, NJ10006)+1 种基金Supported by the Program of Higher-level talents of Inner Mongolia University(125119)Supported by the Scientific Research Projection of Inner Mongolia University of Finance and Economics(KY1101)
文摘An H1-Galerkin expanded mixed finite element method is discussed for a class of second order semi-linear hyperbolic wave equations. By using the mixed formulation, we can get the optimal approximation for three variables: the scalar unknown, its gradient and its flux(coefficient times the gradient), simultaneously. We also prove the existence and uniqueness of semi-discrete solution. Finally, we obtain some numerical results to illustrate the efficiency of the method.
基金The Oceanic Interdisciplinary Program of Shanghai Jiao Tong University under contract No.SL2021ZD204the Sino-German Mobility Program under contract No.M0333the grant of Shanghai Frontiers Science Center of Polar Science(SCOPS).
文摘Based on the Ocean Reanalysis System version 5(ORAS5)and the fifth-generation reanalysis datasets derived from European Centre for Medium-Range Weather Forecasts(ERA5),we investigate the different impacts of the central Pacific(CP)El Niño and the eastern Pacific(EP)El Niño on the Southern Ocean(SO)mixed layer depth(MLD)during austral winter.The MLD response to the EP El Niño shows a dipole pattern in the South Pacific,namely the MLD dipole,which is the leading El Niño-induced MLD variability in the SO.The tropical Pacific warm sea surface temperature anomaly(SSTA)signal associated with the EP El Niño excites a Rossby wave train propagating southeastward and then enhances the Amundsen Sea low(ASL).This results in an anomalous cyclone over the Amundsen Sea.As a result,the anomalous southerly wind to the west of this anomalous cyclone advects colder and drier air into the southeast of New Zealand,leading to surface cooling through less total surface heat flux,especially surface sensible heat(SH)flux and latent heat(LH)flux,and thus contributing to the mix layer(ML)deepening.The east of the anomalous cyclone brings warmer and wetter air to the southwest of Chile,but the total heat flux anomaly shows no significant change.The warm air promotes the sea ice melting and maintains fresh water,which strengthens stratification.This results in a shallower MLD.During the CP El Niño,the response of MLD shows a separate negative MLD anomaly center in the central South Pacific.The Rossby wave train triggered by the warm SSTA in the central Pacific Ocean spreads to the Amundsen Sea,which weakens the ASL.Therefore,the anomalous anticyclone dominates the Amundsen Sea.Consequently,the anomalous northerly wind to the west of anomalous anticyclone advects warmer and wetter air into the central and southern Pacific,causing surface warming through increased SH,LH,and longwave radiation flux,and thus contributing to the ML shoaling.However,to the east of the anomalous anticyclone,there is no statistically significant impact on the MLD.
基金Supported by NNSF(10601022,11061021)Supported by NSF of Inner Mongolia Au-tonomous Region(200607010106)Supported by SRP of Higher Schools of Inner Mongolia(NJ10006)
文摘H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and uniqueness of semidiscrete solutions are derived for problems in one space dimension.And the methods don't require the LBB condition.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61571222,61602235,and 11474160)the Six Talent Peaks Project of Jiangsu Province,China
文摘We propose a nonlinear ultrasonic technique by using the mixed-frequency signals excited Lamb waves to conduct micro-crack detection in thin plate structures.Simulation models of three-dimensional(3D)aluminum plates and composite laminates are established by ABAQUS software,where the aluminum plate contains buried crack and composite laminates comprises cohesive element whose thickness is zero to simulate delamination damage.The interactions between the S0 mode Lamb wave and the buried micro-cracks of various dimensions are simulated by using the finite element method.Fourier frequency spectrum analysis is applied to the received time domain signal and fundamental frequency amplitudes,and sum and difference frequencies are extracted and simulated.Simulation results indicate that nonlinear Lamb waves have different sensitivities to various crack sizes.There is a positive correlation among crack length,height,and sum and difference frequency amplitudes for an aluminum plate,with both amplitudes decreasing as crack thickness increased,i.e.,nonlinear effect weakens as the micro-crack becomes thicker.The amplitudes of sum and difference frequency are positively correlated with the length and width of the zero-thickness cohesive element in the composite laminates.Furthermore,amplitude ratio change is investigated and it can be used as an effective tool to detect inner defects in thin 3D plates.
文摘In this article, we study the impacts of nonlinearity and dispersion on signals likely to propagate in the context of the dynamics of four-wave mixing. Thus, we use an indirect resolution technique based on the use of the iB-function to first decouple the nonlinear partial differential equations that govern the propagation dynamics in this case, and subsequently solve them to propose some prototype solutions. These analytical solutions have been obtained;we check the impact of nonlinearity and dispersion. The interest of this work lies not only in the resolution of the partial differential equations that govern the dynamics of wave propagation in this case since these equations not at all easy to integrate analytically and their analytical solutions are very rare, in other words, we propose analytically the solutions of the nonlinear coupled partial differential equations which govern the dynamics of four-wave mixing in optical fibers. Beyond the physical interest of this work, there is also an appreciable mathematical interest.
基金supported by the National Natural Science Foundation of China(No.21601095)the Youth Project of Nanyang Normal University(No.QN2017065)the Opening Laboratory Project of Nanyang Normal University(No.SYKF2016075)
文摘A new dinuclear Y(3+) coordination polymer{[Y2(H2O)2(C(14)H8O4)3(C(12)H8N2)2]·3 H2O}n (1, C(14)H8 O4 = 2,2'-biphenyldicarboxylate, phen = 1,10-phenanthroline), has been obtained by means of a mixed-solvothermal method using ethylene glycol and water as solvent. The compound was characterized by elemental analysis, energy-dispersive X-ray spectroscopy(EDS), IR spectrum and single-crystal X-ray diffraction. The results reveal that 1 belongs to monoclinic system, space group C2/c with a = 24.249(3), b = 12.069(48), c = 22.7304(08) A, β = 113.480(7)°, Z = 4, V = 6102(2) A3, Dc = 1.462 g·cm^-3, F(000) = 2728, μ = 1.968 mm(-1), the final R = 0.0673, w R = 0.1508 and S = 1.085. Its structure can be regarded as a 1-D coordination polymer constructed by Y^3+ cations, 2,2A-biphenyldicarboxylate, 1,10-phenanthroline and water molecules. The compound not only contains two kinds of organic ligands, but also exhibits interesting wave-like infinite chains and 18-MR windows with the diameter of 4.070(7)A × 5.326(9)A. The structure is further stabilized by means of O–H…O hydrogen bonds and π-π stacking interactions. Furthermore, the luminescent properties(including emission spectrum, CIE chromaticity coordinate and decay curve) of 1 were also investigated in the solid-state at room temperature.
文摘The wave period probability densities in non-Gaussian mixed sea states are calculated by utilizing a transformed Gaussian process method. The transformation relating the non-Gaussian process and the original Gaussian process is obtained based on the equivalence of the level up-crossing rates of the two processes. A saddle point approximation procedure is applied for calculating the level up-crossing rates in this study. The accuracy and efficiency of the transformed Gaussian process method are validated by comparing the results predicted by using the method with those predicted by the Monte Carlo simulation method.
文摘Using the extended Blonder-Tinkham-Klapwijk (BTK) theory, this paper calculates the tunnelling conductance in quantum wire/insulator/dx2-y2 + idly mixed wave superconductor (q/I/dx2-y2 + idly) junctions. That is different from the case in d- and p-wave superconductor junctions. When the angle α between a-axis of the dx2-y2 wave superconductor and the interface normal is π/4, there follows a rather distinctive tunnelling conductance. The zero-bias conductance peak (ZBCP) may or may not appear in the tunnelling conductance. Both the interface potential z and the quasi-particle lifetime factor F are smaller, there is no ZBCP. Otherwise, the ZBCP will appear. The position of bias conductance peak (BCP) depends strongly on the amplitude ratio of two components for dx2-y2 + idxy mixed wave. The low and narrow ZBCP may coexist with the BCP in the tunnelling conductance. Using those features in the tunnelling conductance of q/I/dx2-y2 + idxy junctions, it can distinguish dx2-y2 + idxy mixed wave superconductor from d- and p-wave one.
基金The Key Project of the National Natural Science Foundation of China under contract No.40730842the National Key Basic Research Program of China under contract No.2006CB403605
文摘The significant underestimation of sea surface temperature (SST) and the temperature in the upper ocean is one of common problems in present climate models. The influence of the wave-induced mixing on SST and the temperature in the upper ocean was examined based on a global climate model. The results from the model coupled with wave-induced mixing showed a significant improvement in the simulation of SST and the temperature in the upper ocean compared with those of the original model without wave effects. Although there has still a cold bias, the new simulation is much closer to the climatology, especially in the northern ocean and tropical ocean. This study indicates that some important physical processes in the accurate simulation of the ocean may be ignored in present climate models, and the wave-induced mixing is one of those factors. Thus, the wave-induced mixing ( or the effect of surface waves) should be incorporated properly into climate models in order to simulate or forecast the ocean, then climate system, more accurately.
基金The National Natural Science Foundation of China under contract No.41275084the Key Program of National Natural Science Foundation of China under contract No.41030855
文摘Based on the theoretical spectral model of inertial internal wave breaking (fine structure) proposed previ- ously, in which the effects of the horizontal Coriolis frequency component f-tilde on a potential isopycnal are taken into account, a parameterization scheme of vertical mixing in the stably stratified interior be- low the surface mixed layer in the ocean general circulation model (OGCM) is put forward preliminarily in this paper. Besides turbulence, the impact of sub-mesoscale oceanic processes (including inertial internal wave breaking product) on oceanic interior mixing is emphasized. We suggest that adding the inertial inter- hal wave breaking mixing scheme (F-scheme for short) put forward in this paper to the turbulence mixing scheme of Canuto et al. (T-scheme for short) in the OGCM, except the region from 15°S to 15°N. The numeri- cal results ofF-scheme by usingWOA09 data and an OGCM (LICOM, LASG/IAP climate system ocean model) over the global ocean are given. A notable improvement in the simulation of salinity and temperature over the global ocean is attained by using T-scheme adding F-scheme, especially in the mid- and high-latitude regions in the simulation of the intermediate water and deep water. We conjecture that the inertial internal wave breaking mixing and inertial forcing of wind might be one of important mechanisms maintaining the ventilation process. The modeling strength of the Atlantic meridional overturning circulation (AMOC) by using T-scheme adding F-scheme may be more reasonable than that by using T-scheme alone, though the physical processes need to be further studied, and the overflow parameterization needs to be incorporated. A shortcoming in F-scheme is that in this paper the error of simulated salinity and temperature by using T-scheme adding F-scheme is larger than that by using T-scheme alone in the subsurface layer.
基金theNationalNaturalScienceFoundationofChina(1 9882 0 0 5 ) China 863High_TecProject (863_2 .99.9)
文摘2nd-order upwind TVD scheme was used to solve the laminar, fully Navier-Stokes equations. The numerical simulations were done on the propagation of a shock wave with Ma(s) = 2 and 4 into a hydrogen and air mixture in a duct and a duct with a rearward step. The results indicate that a swirling vortex: may be generated in the lopsided interface behind the moving shock. Meanwhile, the complex shock system is also formed in this shear flow region. A large swirling vortex is produced and the fuel mixing can be enhanced by a shock wave at low Mach number. But in a duct with a rearward step, the shock almost disappears in hydrogen for Mns = 2. The shack in hydrogen will become strong if Ma(s) is large. Similar to the condition of a shock moving in a duct full of hydrogen and air, a large vortex cart be formed in the shear flow region. The large swirling vortex even gets through the reflected shock and impacts on the lower wall. Then, the distribution of hydrogen behind the rearward step is divided into two regions. The transition from regular reflection to Mach reflection was observed aswell in case Ma(s) = 4.
基金National Natural Science Foundation of China(Grant Nos.11972053,12274012)。
文摘Harmonic nonlinear ultrasound can offer high sensitivity for residual stress measurements;however,it cannot be used for local stress measurements at a point in space and exhibits nonlinear distortions in the experimental system.This paper presents a feasibility study on the measurement of residual stress in a metal plate using a nonlinear Lamb wave-mixing technique.The resonant conditions for two Lamb waves to generate a mixing frequency wave are obtained via theoretical analysis.Finite element simulations are performed to investigate the nonlinear interactions between the two Lamb waves.Results show that two incident A0 waves interact in regions of material nonlinearity and generate a rightward S0 wave at the sum frequency.Residual stress measurement experiments are conducted on steel plate specimens using the collinear Lamb wave-mixing technique.By setting different delays for two transmitters,the generated sum-frequency component at different spatial locations is measured.Experimental results show that the spatial distribution of the amplitude of the sum-frequency component agrees well with the spatial distribution of the residual stress measured using X-rays.The proposed collinear Lamb wave-mixing method is effective for measuring the distribution of residual stress in metal plates.