An automatic detection method is employed to identify and track eddies in the Gulf of Mexico. The physical parameters of the eddies, such as lifespan, radius, and distribution position are first examined and used to d...An automatic detection method is employed to identify and track eddies in the Gulf of Mexico. The physical parameters of the eddies, such as lifespan, radius, and distribution position are first examined and used to determine the spatio–temporal evolution of a strong warm eddy separated from the Mexico current. Then, the influence of this strong warm eddy on sound propagation during its lifespan are comprehensively analyzed with the parabolic equation and explained by using the normal mode and ray theories. Additionally, the influence of mesoscale eddies on the redistribution of total depth-integrated energy among the normal modes in the deep water is also discussed. The variation of arrival angle is investigated to explain the spreading acoustic energy caused by eddies. Overall, the results show that warm eddies can change the propagation paths and cause the convergence zone to broaden and approach the sound source. Moreover,the warm eddy can disperse sound energy and cause the total depth-integrated energy to incline to a lower normal mode.Throughout the whole of these three periods(eddy generating, eddy maturing, and eddy terminating), the fluctuation in the transmission loss is up to 30 dB(depending on the relative location of eddy center to the source).展开更多
In recent years,it has been proposed to use satellite-mounted radio-frequency(RF)accelerators to produce high-current relativistic electron beams to complete debris removal tasks.However,when simulating the long-range...In recent years,it has been proposed to use satellite-mounted radio-frequency(RF)accelerators to produce high-current relativistic electron beams to complete debris removal tasks.However,when simulating the long-range propagation(km-range)process of the electron beam,it is difficult to directly use the particle-in-cell method to simultaneously consider the space charge effect of beam and the influence of the geomagnetic field.Owing to these limitations,in this paper,we proposed a simplified method.The ps-range electronic micropulses emitted by the RF accelerator were transmitted and fused to form a ns-range electron beam;then,combined with the improved moving window technology,the model was constructed to simulate the long-range propagation process of the relativistic electron beam in near-Earth environment.Finally,by setting the direction of movement of the beam to be parallel,perpendicular and at an inclination of 3°to the magnetic field,we analyzed and compared the effects of the applied magnetic fields in different directions on the quality of the beam during long-range propagation.The simulation results showed that the parallel state of the beam motion and magnetic fields should be achieved as much as possible to ensure the feasibility of the space debris removal.展开更多
A propagation experiment was conducted in the South China Sea in 2014 with a flat bottom and seamounts respectively by using explosive sources. The effects of seamounts on sound propagation are analyzed by using the b...A propagation experiment was conducted in the South China Sea in 2014 with a flat bottom and seamounts respectively by using explosive sources. The effects of seamounts on sound propagation are analyzed by using the broadband signals. It is observed that the transmission loss (TL) decreases up to 7 dB for the signals in the first shadow zone due to the seamount reflection. Moreover, the TL might increase more than 30 dB in the converge zone due to the shadowing by seamounts. Abnormal TLs and pulse arrival structures at different ranges are explained by using the ray and wave theory. The experimental TLs and arrival pulses are compared with the numerical results and found to be in good agreement.展开更多
This experiment aims to study the effects and modifications that occurred on acoustic signal harmonics when travelling through wood. The experiment measured the output amplitudes and frequencies of the travelling sign...This experiment aims to study the effects and modifications that occurred on acoustic signal harmonics when travelling through wood. The experiment measured the output amplitudes and frequencies of the travelling signals and compared them with the original input signal. The factors under investigation in this experiment included: wood type, wood moisture content (MC), input signal frequencies, signal travelling distance and wood condition (wood with/without cracks). The experiment findings demonstrated that higher input signal frequencies results in higher attenuation of acoustic emissions (AE) travelling through the wood. The results also indicate that: wood type, MC, the signal’s travelling distance, and the orientation of the travelling signal, compared to the wood’s grain direction, affected the signal propagation.展开更多
Sound wave propagation in rarefied monatomic gases is simulated using a newly developed unified gaskinetic scheme (UGKS). The numerical calculations are carfled out for a wide range of wave oscillating frequencies. ...Sound wave propagation in rarefied monatomic gases is simulated using a newly developed unified gaskinetic scheme (UGKS). The numerical calculations are carfled out for a wide range of wave oscillating frequencies. The corresponding rarefaction parameter is defined as the ratio of sound wave frequency to the intermolecular particle collision frequency. The simulation covers the flow regime from the continuum to free molecule one. The treatment of the os- cillating wall boundary condition and the methods for eval- uating the absorption coefficient and sound wave speed are presented in detail. The simulation results from the UGKS are compared to the Navier-Stokes solutions, the direct sim- ulation Monte Carlo (DSMC) simulation, and experimental measurements. Good agreement with the experimental data has been obtained in the whole flow regimes for the corresponding Knudsen number from 0.08 to 32. The cur- rent study clearly demonstrates the capability of the UGKS method in capturing the sound wave propagation and its usefulness for the rarefied flow study.展开更多
This paper presents a back-propagation neural network model for sound quality prediction (BPNN-SQP) of multiple working conditions’ vehicle interior noise. According to the standards and regulations, four kinds of ve...This paper presents a back-propagation neural network model for sound quality prediction (BPNN-SQP) of multiple working conditions’ vehicle interior noise. According to the standards and regulations, four kinds of vehicle interior noises under operating conditions, including idle, constant speed, accelerating and braking, are acquired. The objective psychoacoustic parameters and subjective annoyance results are respectively used as the input and output of the BPNN-SQP model. With correlation analysis and significance test, some psychoacoustic parameters, such as loudness, A-weighted sound pressure level, roughness, articulation index and sharpness, are selected for modeling. The annoyance values of unknown noise samples estimated by the BPNN-SQP model are highly correlated with the subjective annoyances. Conclusion can be drawn that the proposed BPNN-SQP model has good generalization ability and can be applied in sound quality prediction of vehicle interior noise under multiple working conditions.展开更多
It is known that ion channel can effectively limit the radial expansion of an artificial electron beam during its longrange propagation in the space plasma environment.Most prior studies discussed the focusing charact...It is known that ion channel can effectively limit the radial expansion of an artificial electron beam during its longrange propagation in the space plasma environment.Most prior studies discussed the focusing characteristics of the beam in the ion channel,but the establishment process and transient properties of the ion channel itself,which also plays a crucial role during the propagation of the relativistic electron beam in the plasma environment,were commonly neglected.In this study,a series of two-dimensional(2D)particle-in-cell simulations is performed and an analytical model of ion channel oscillation is constructed according to the single-particle motion.The results showed that when the beam density is higher than the density of plasma environment,ion channel can be established and always continues to oscillate periodically over the entire propagation.Multiple factors,including the beam electron density,initial beam radius,and the plasma density can affect the oscillation properties of ion channel.Axial velocity of the beam oscillates synchronously with the ion channel and this phenomenon will finally develop into a two-stream instability which can seriously affect the effective transport for relativistic electron beam.Choosing appropriate beam parameters based on various plasma environments may contribute to the improvement of the stability of ion channel.Additionally,radial expansion of the beam can be limited by ion channel and a stable long-range propagation in terrestrial atmosphere may be achieved.展开更多
This paper presents the numerical study on the nonlinear sound propagation for the parametric array using the compressible form of Navier-Stokes equations combined with the mass and energy conservation equations and t...This paper presents the numerical study on the nonlinear sound propagation for the parametric array using the compressible form of Navier-Stokes equations combined with the mass and energy conservation equations and the state equation. These governing equations are solved by finite difference time domain (FDTD) based method. The numerical result is shown for the parametric sound propagation in the near field of the sound source in cylindrical coordinate. The result indicates the generation of low-frequency unsteady beat by the interaction of two frequency sound waves in the near field, which grows to a difference frequency sound in the far field.展开更多
Variation of ocean environmental parameters is important to sound ray propagation. This article studies the problem of sound ray propagation in seawater by BELLHOP ray model. The sensitivities of sound ray propagation...Variation of ocean environmental parameters is important to sound ray propagation. This article studies the problem of sound ray propagation in seawater by BELLHOP ray model. The sensitivities of sound ray propagation to the variations of seabed topography and depth of sound source by simulation. The results show that the depth variation of sound source is the main cause for emerging and disappearing of surface sound channel, accumulation area and deep sound channel. The deviation of sound ray propagation is in accordance with seabed topography change.展开更多
Large-scale topography, such as a seamount, substantially impacts low-frequency sound propagation in an ocean waveguide, limiting the application of low-frequency acoustic detecting techniques. A three-dimensional(3D)...Large-scale topography, such as a seamount, substantially impacts low-frequency sound propagation in an ocean waveguide, limiting the application of low-frequency acoustic detecting techniques. A three-dimensional(3D) coupledmode model is developed to calculate the acoustic field in an ocean waveguide with seamount topography and analyze the3D effect. In this model, a correction is introduced in the bottom boundary, theoretically making the acoustic field satisfy the energy conservation. Furthermore, a large azimuth angle calculation range is obtained by using the operator theory and higher-order Pade approximation. Additionally, the model has advantages related to the coupling mode and parabolic equation theory. The couplings corresponding to the effects of range-dependent environment are fully considered, and the numerical implementation is kept feasible. After verifying the accuracy and reliability of the model, low-frequency sound propagation characteristics in the seamount environment are analyzed. The results indicate lateral variability in bathymetry can lead to out-of-plane effects such as the horizontal refraction phenomenon, while the coupling effect tends to restore the abnormal sound field and produces acoustic field diffraction behind the seamount. This model effectively considers the effects of the horizontal refraction and coupling, which are proportional to the scale of the seamount.展开更多
Noise generated by civil transport aircraft during take-off and approach-to-land phases of operation is an environmental problem. The aircraft noise problem is firstly reviewed in this article. The review is followed ...Noise generated by civil transport aircraft during take-off and approach-to-land phases of operation is an environmental problem. The aircraft noise problem is firstly reviewed in this article. The review is followed by a description and assessment of a number of sound propagation methods suitable for applications with a background mean flow field pertinent to aircraft noise. Of the three main areas of the noise problem, i.e. generation, propagation, and ra- diation, propagation provides a vital link between near-field noise generation and far-field radiation. Its accurate assessment ensures the overall validity of a prediction model. Of the various classes of propagation equations, linearised Euler equations are often casted in either time domain or frequency domain. The equations are often solved numerically by computational aeroacoustics techniques, bur are subject to the onset of Kelvin-Helmholtz (K-H) instability modes which may ruin the solutions. Other forms of linearised equations, e.g. acoustic perturbation equations have been proposed, with differing degrees of success.展开更多
A three-dimensional(3D) parabolic equation(PE) model for sound propagation in a seismo-acoustic waveguide is developed in Cartesian coordinates, with x, y, and z representing the marching direction, the longitudin...A three-dimensional(3D) parabolic equation(PE) model for sound propagation in a seismo-acoustic waveguide is developed in Cartesian coordinates, with x, y, and z representing the marching direction, the longitudinal direction, and the depth direction, respectively. Two sets of 3D PEs for horizontally homogenous media are derived by rewriting the 3D elastic motion equations and simultaneously choosing proper dependent variables. The numerical scheme is for now restricted to the y-independent bathymetry. Accuracy of the numerical scheme is validated, and its azimuthal limitation is analyzed. In addition, effects of horizontal refraction in a wedge-shaped waveguide and another waveguide with a polyline bottom are illustrated. Great efforts should be made in future to provide this model with the ability to handle arbitrarily irregular fluid-elastic interfaces.展开更多
The suppressing design of the engine nacelle in an aircraft can benefit from the development of the prediction system for the sound fields in engine ducts which includes the prediction of the source generation and tha...The suppressing design of the engine nacelle in an aircraft can benefit from the development of the prediction system for the sound fields in engine ducts which includes the prediction of the source generation and that of sound propagation in ducts. First, the acoustic match mode principle between the source modes of rotor stator interaction noise and the propagation modes is presented in this paper. Second, by utilizing this principle, the theoretical prediction method for rotor stator interaction noise generation and its propagation and attenuation in an annular duct with multi treatments is developed. That means that the prediction of sound propagation and attenuation in the segmented ducts might no longer completely depend on the in duct mode measurements, and the investigation on the sound propagation and attenuation in ducts can be accomplished not only by acoustic mode measurement, but also by making use of the source prediction to determine the source modes excited by rotor stator interaction. The effects of fan speed, blade/vane numbers, axial spacing between rotor and stator on the in duct sound attenuation and generated sound power level before and after ducts (also including the sound power level of blade passing frequency and its harmonics at the inlet of ducts) have been numerically calculated by using this prediction method. The reliability of this prediction method is verified by reasonable agreement between the predicted results with measured results in references. By analyzing the results of calculating cases, some reference criteria are provided for the engineering design of the suppressing engine nacelle.展开更多
In order to analyze the effect of the background flow on the sound prediction of fine-scale turbulence noise,the sound spectra from static and flow environments are compared.It turns out that,the two methods can obtai...In order to analyze the effect of the background flow on the sound prediction of fine-scale turbulence noise,the sound spectra from static and flow environments are compared.It turns out that,the two methods can obtain similar predictions not only at 90 deg to the jet axis but also at mid-and high frequencies in other directions.The discrepancies of predictions from the two environments show that the effect of the jet flow on the sound propagation is related to low frequencies in the downstream and upstream directions.It is noted that there is an obvious advantage of computational efficiency for calculating in static environment,compared with that in flow environment.A good agreement is also observed to some extent between the predictions in static environment and measurements of subsonic to supersonic.It is believed that the predictions in static environment could be an effective method to study the propagation of the sound in jet flow and to predict the fine scale turbulence noise accurately in a way as well.展开更多
Due to the large amount of unused and unexplored spectrum resources, the so-called subTerahertz(sub-THz) frequency bands from 100 to 300 GHz are seen as promising bands for the next generation of wireless communicatio...Due to the large amount of unused and unexplored spectrum resources, the so-called subTerahertz(sub-THz) frequency bands from 100 to 300 GHz are seen as promising bands for the next generation of wireless communication systems. Channel modeling at sub-THz bands is essential for the design and deployment of future wireless communication systems. Channel measurement is a widely adopted method to obtain channel characteristics and establish mathematical channel models. Channel measurements depend on the design and construction of channel sounders. Thus, reliable channel sounding techniques and accurate channel measurements are required. In this paper, the requirements of an ideal channel sounder are discussed and the main channel sounding techniques are described for the subTHz frequency bands. The state-of-the-art sub-THz channel sounders reported in the literature and respective channel measurements are presented. Moreover, a vector network analyzer(VNA) based channel sounder, which supports frequency bands from 220 to330 GHz is presented and its performance capability and limitation are evaluated. This paper also discussed the challenge and future outlook of the sub-THz channel sounders and measurements.展开更多
With the increasing demand for high bandwidth wireless communication systems,and with a congested spectrum in the sub-6 GHz frequency bands,researchers have been looking into exploration of millimeter wave(mmWave)and ...With the increasing demand for high bandwidth wireless communication systems,and with a congested spectrum in the sub-6 GHz frequency bands,researchers have been looking into exploration of millimeter wave(mmWave)and sub-terahertz(subTHz)frequency bands.Channel modeling is essential for system design and performance evaluation of new wireless communication systems.Accurate channel modeling relies on reliable measured channel data,which is collected by high-fidelity channel sounders.Furthermore,it is of importance to understand to which extent channel parameters are frequency dependent in typical deployment scenario(including both indoor short-range and outdoor long-range scenarios).To achieve this purpose,this paper presents a stateof-art long-range 28 GHz and 300 GHz VNA-based channel sounder using optical cable solutions,which can support a measurement range up to 300 m and 600 m in principle,respectively.The design,development and validation of the long-range channel sounders at mmWave and sub-THz bands are reported,with a focus on their system principle,link budget,and backto-back measurements.Furthermore,a measurement campaign in an indoor corridor is performed using the developed 300 GHz system and 28 GHz channel sounding systems.Both measured channels at the 28 GHz and 300 GHz channels are shown to be highly sparse and specular.A higher number of Multi Path Components(MPC)are observed for the 28 GHz system,while the same main MPC are observed for both systems.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11434012 and 41561144006)
文摘An automatic detection method is employed to identify and track eddies in the Gulf of Mexico. The physical parameters of the eddies, such as lifespan, radius, and distribution position are first examined and used to determine the spatio–temporal evolution of a strong warm eddy separated from the Mexico current. Then, the influence of this strong warm eddy on sound propagation during its lifespan are comprehensively analyzed with the parabolic equation and explained by using the normal mode and ray theories. Additionally, the influence of mesoscale eddies on the redistribution of total depth-integrated energy among the normal modes in the deep water is also discussed. The variation of arrival angle is investigated to explain the spreading acoustic energy caused by eddies. Overall, the results show that warm eddies can change the propagation paths and cause the convergence zone to broaden and approach the sound source. Moreover,the warm eddy can disperse sound energy and cause the total depth-integrated energy to incline to a lower normal mode.Throughout the whole of these three periods(eddy generating, eddy maturing, and eddy terminating), the fluctuation in the transmission loss is up to 30 dB(depending on the relative location of eddy center to the source).
基金supported by National Natural Science Foundation of China (Nos. 61372050, U1730247)
文摘In recent years,it has been proposed to use satellite-mounted radio-frequency(RF)accelerators to produce high-current relativistic electron beams to complete debris removal tasks.However,when simulating the long-range propagation(km-range)process of the electron beam,it is difficult to directly use the particle-in-cell method to simultaneously consider the space charge effect of beam and the influence of the geomagnetic field.Owing to these limitations,in this paper,we proposed a simplified method.The ps-range electronic micropulses emitted by the RF accelerator were transmitted and fused to form a ns-range electron beam;then,combined with the improved moving window technology,the model was constructed to simulate the long-range propagation process of the relativistic electron beam in near-Earth environment.Finally,by setting the direction of movement of the beam to be parallel,perpendicular and at an inclination of 3°to the magnetic field,we analyzed and compared the effects of the applied magnetic fields in different directions on the quality of the beam during long-range propagation.The simulation results showed that the parallel state of the beam motion and magnetic fields should be achieved as much as possible to ensure the feasibility of the space debris removal.
基金Supported by the National Nature Science Foundation of China under Grant Nos 11434012 and 11174312
文摘A propagation experiment was conducted in the South China Sea in 2014 with a flat bottom and seamounts respectively by using explosive sources. The effects of seamounts on sound propagation are analyzed by using the broadband signals. It is observed that the transmission loss (TL) decreases up to 7 dB for the signals in the first shadow zone due to the seamount reflection. Moreover, the TL might increase more than 30 dB in the converge zone due to the shadowing by seamounts. Abnormal TLs and pulse arrival structures at different ranges are explained by using the ray and wave theory. The experimental TLs and arrival pulses are compared with the numerical results and found to be in good agreement.
文摘This experiment aims to study the effects and modifications that occurred on acoustic signal harmonics when travelling through wood. The experiment measured the output amplitudes and frequencies of the travelling signals and compared them with the original input signal. The factors under investigation in this experiment included: wood type, wood moisture content (MC), input signal frequencies, signal travelling distance and wood condition (wood with/without cracks). The experiment findings demonstrated that higher input signal frequencies results in higher attenuation of acoustic emissions (AE) travelling through the wood. The results also indicate that: wood type, MC, the signal’s travelling distance, and the orientation of the travelling signal, compared to the wood’s grain direction, affected the signal propagation.
基金supported by Hong Kong Research Grant Council(621709,621011)HKUST grants SRFI11SC05 and RPC10SC11the Nanoscience and Nanotechnology Program at HKUST
文摘Sound wave propagation in rarefied monatomic gases is simulated using a newly developed unified gaskinetic scheme (UGKS). The numerical calculations are carfled out for a wide range of wave oscillating frequencies. The corresponding rarefaction parameter is defined as the ratio of sound wave frequency to the intermolecular particle collision frequency. The simulation covers the flow regime from the continuum to free molecule one. The treatment of the os- cillating wall boundary condition and the methods for eval- uating the absorption coefficient and sound wave speed are presented in detail. The simulation results from the UGKS are compared to the Navier-Stokes solutions, the direct sim- ulation Monte Carlo (DSMC) simulation, and experimental measurements. Good agreement with the experimental data has been obtained in the whole flow regimes for the corresponding Knudsen number from 0.08 to 32. The cur- rent study clearly demonstrates the capability of the UGKS method in capturing the sound wave propagation and its usefulness for the rarefied flow study.
文摘This paper presents a back-propagation neural network model for sound quality prediction (BPNN-SQP) of multiple working conditions’ vehicle interior noise. According to the standards and regulations, four kinds of vehicle interior noises under operating conditions, including idle, constant speed, accelerating and braking, are acquired. The objective psychoacoustic parameters and subjective annoyance results are respectively used as the input and output of the BPNN-SQP model. With correlation analysis and significance test, some psychoacoustic parameters, such as loudness, A-weighted sound pressure level, roughness, articulation index and sharpness, are selected for modeling. The annoyance values of unknown noise samples estimated by the BPNN-SQP model are highly correlated with the subjective annoyances. Conclusion can be drawn that the proposed BPNN-SQP model has good generalization ability and can be applied in sound quality prediction of vehicle interior noise under multiple working conditions.
基金supported by the Joint Funds of the National Natural Science Foundation of China(Grant Nos.61372050 and U1730247).
文摘It is known that ion channel can effectively limit the radial expansion of an artificial electron beam during its longrange propagation in the space plasma environment.Most prior studies discussed the focusing characteristics of the beam in the ion channel,but the establishment process and transient properties of the ion channel itself,which also plays a crucial role during the propagation of the relativistic electron beam in the plasma environment,were commonly neglected.In this study,a series of two-dimensional(2D)particle-in-cell simulations is performed and an analytical model of ion channel oscillation is constructed according to the single-particle motion.The results showed that when the beam density is higher than the density of plasma environment,ion channel can be established and always continues to oscillate periodically over the entire propagation.Multiple factors,including the beam electron density,initial beam radius,and the plasma density can affect the oscillation properties of ion channel.Axial velocity of the beam oscillates synchronously with the ion channel and this phenomenon will finally develop into a two-stream instability which can seriously affect the effective transport for relativistic electron beam.Choosing appropriate beam parameters based on various plasma environments may contribute to the improvement of the stability of ion channel.Additionally,radial expansion of the beam can be limited by ion channel and a stable long-range propagation in terrestrial atmosphere may be achieved.
文摘This paper presents the numerical study on the nonlinear sound propagation for the parametric array using the compressible form of Navier-Stokes equations combined with the mass and energy conservation equations and the state equation. These governing equations are solved by finite difference time domain (FDTD) based method. The numerical result is shown for the parametric sound propagation in the near field of the sound source in cylindrical coordinate. The result indicates the generation of low-frequency unsteady beat by the interaction of two frequency sound waves in the near field, which grows to a difference frequency sound in the far field.
文摘Variation of ocean environmental parameters is important to sound ray propagation. This article studies the problem of sound ray propagation in seawater by BELLHOP ray model. The sensitivities of sound ray propagation to the variations of seabed topography and depth of sound source by simulation. The results show that the depth variation of sound source is the main cause for emerging and disappearing of surface sound channel, accumulation area and deep sound channel. The deviation of sound ray propagation is in accordance with seabed topography change.
基金Project supported by the National Natural Science Foundation of China(Grant No.11804360)the IACAS Frontier Exploration Project(Grant No.QYTS202103)the Key Laboratory Foundation of Acoustic Science and Technology(Grant No.2021-JCJQ-LB-066-08)。
文摘Large-scale topography, such as a seamount, substantially impacts low-frequency sound propagation in an ocean waveguide, limiting the application of low-frequency acoustic detecting techniques. A three-dimensional(3D) coupledmode model is developed to calculate the acoustic field in an ocean waveguide with seamount topography and analyze the3D effect. In this model, a correction is introduced in the bottom boundary, theoretically making the acoustic field satisfy the energy conservation. Furthermore, a large azimuth angle calculation range is obtained by using the operator theory and higher-order Pade approximation. Additionally, the model has advantages related to the coupling mode and parabolic equation theory. The couplings corresponding to the effects of range-dependent environment are fully considered, and the numerical implementation is kept feasible. After verifying the accuracy and reliability of the model, low-frequency sound propagation characteristics in the seamount environment are analyzed. The results indicate lateral variability in bathymetry can lead to out-of-plane effects such as the horizontal refraction phenomenon, while the coupling effect tends to restore the abnormal sound field and produces acoustic field diffraction behind the seamount. This model effectively considers the effects of the horizontal refraction and coupling, which are proportional to the scale of the seamount.
文摘Noise generated by civil transport aircraft during take-off and approach-to-land phases of operation is an environmental problem. The aircraft noise problem is firstly reviewed in this article. The review is followed by a description and assessment of a number of sound propagation methods suitable for applications with a background mean flow field pertinent to aircraft noise. Of the three main areas of the noise problem, i.e. generation, propagation, and ra- diation, propagation provides a vital link between near-field noise generation and far-field radiation. Its accurate assessment ensures the overall validity of a prediction model. Of the various classes of propagation equations, linearised Euler equations are often casted in either time domain or frequency domain. The equations are often solved numerically by computational aeroacoustics techniques, bur are subject to the onset of Kelvin-Helmholtz (K-H) instability modes which may ruin the solutions. Other forms of linearised equations, e.g. acoustic perturbation equations have been proposed, with differing degrees of success.
基金Project supported by the National Nature Science Foundation of China(Grant Nos.11234002 and 11704337)the National Key Research Program of China(Grant No.2016YFC1400100)
文摘A three-dimensional(3D) parabolic equation(PE) model for sound propagation in a seismo-acoustic waveguide is developed in Cartesian coordinates, with x, y, and z representing the marching direction, the longitudinal direction, and the depth direction, respectively. Two sets of 3D PEs for horizontally homogenous media are derived by rewriting the 3D elastic motion equations and simultaneously choosing proper dependent variables. The numerical scheme is for now restricted to the y-independent bathymetry. Accuracy of the numerical scheme is validated, and its azimuthal limitation is analyzed. In addition, effects of horizontal refraction in a wedge-shaped waveguide and another waveguide with a polyline bottom are illustrated. Great efforts should be made in future to provide this model with the ability to handle arbitrarily irregular fluid-elastic interfaces.
文摘The suppressing design of the engine nacelle in an aircraft can benefit from the development of the prediction system for the sound fields in engine ducts which includes the prediction of the source generation and that of sound propagation in ducts. First, the acoustic match mode principle between the source modes of rotor stator interaction noise and the propagation modes is presented in this paper. Second, by utilizing this principle, the theoretical prediction method for rotor stator interaction noise generation and its propagation and attenuation in an annular duct with multi treatments is developed. That means that the prediction of sound propagation and attenuation in the segmented ducts might no longer completely depend on the in duct mode measurements, and the investigation on the sound propagation and attenuation in ducts can be accomplished not only by acoustic mode measurement, but also by making use of the source prediction to determine the source modes excited by rotor stator interaction. The effects of fan speed, blade/vane numbers, axial spacing between rotor and stator on the in duct sound attenuation and generated sound power level before and after ducts (also including the sound power level of blade passing frequency and its harmonics at the inlet of ducts) have been numerically calculated by using this prediction method. The reliability of this prediction method is verified by reasonable agreement between the predicted results with measured results in references. By analyzing the results of calculating cases, some reference criteria are provided for the engineering design of the suppressing engine nacelle.
文摘In order to analyze the effect of the background flow on the sound prediction of fine-scale turbulence noise,the sound spectra from static and flow environments are compared.It turns out that,the two methods can obtain similar predictions not only at 90 deg to the jet axis but also at mid-and high frequencies in other directions.The discrepancies of predictions from the two environments show that the effect of the jet flow on the sound propagation is related to low frequencies in the downstream and upstream directions.It is noted that there is an obvious advantage of computational efficiency for calculating in static environment,compared with that in flow environment.A good agreement is also observed to some extent between the predictions in static environment and measurements of subsonic to supersonic.It is believed that the predictions in static environment could be an effective method to study the propagation of the sound in jet flow and to predict the fine scale turbulence noise accurately in a way as well.
基金supported by the EURAMET European Partnership on Metrology(EPM),under the 21NRM03 Metrology for Emerging Wireless Standards(MEWS)projectThe project(21NRM03 MEWS)has received funding from the EPM,co-financed from the European Union’s Horizon Europe Research and Innovation Programme,and by the Participating States。
文摘Due to the large amount of unused and unexplored spectrum resources, the so-called subTerahertz(sub-THz) frequency bands from 100 to 300 GHz are seen as promising bands for the next generation of wireless communication systems. Channel modeling at sub-THz bands is essential for the design and deployment of future wireless communication systems. Channel measurement is a widely adopted method to obtain channel characteristics and establish mathematical channel models. Channel measurements depend on the design and construction of channel sounders. Thus, reliable channel sounding techniques and accurate channel measurements are required. In this paper, the requirements of an ideal channel sounder are discussed and the main channel sounding techniques are described for the subTHz frequency bands. The state-of-the-art sub-THz channel sounders reported in the literature and respective channel measurements are presented. Moreover, a vector network analyzer(VNA) based channel sounder, which supports frequency bands from 220 to330 GHz is presented and its performance capability and limitation are evaluated. This paper also discussed the challenge and future outlook of the sub-THz channel sounders and measurements.
基金supported by EURAMET European Partnership on Metrology Programme (MEWS) and under the framework of European COST INTERACT action(CA20120)
文摘With the increasing demand for high bandwidth wireless communication systems,and with a congested spectrum in the sub-6 GHz frequency bands,researchers have been looking into exploration of millimeter wave(mmWave)and sub-terahertz(subTHz)frequency bands.Channel modeling is essential for system design and performance evaluation of new wireless communication systems.Accurate channel modeling relies on reliable measured channel data,which is collected by high-fidelity channel sounders.Furthermore,it is of importance to understand to which extent channel parameters are frequency dependent in typical deployment scenario(including both indoor short-range and outdoor long-range scenarios).To achieve this purpose,this paper presents a stateof-art long-range 28 GHz and 300 GHz VNA-based channel sounder using optical cable solutions,which can support a measurement range up to 300 m and 600 m in principle,respectively.The design,development and validation of the long-range channel sounders at mmWave and sub-THz bands are reported,with a focus on their system principle,link budget,and backto-back measurements.Furthermore,a measurement campaign in an indoor corridor is performed using the developed 300 GHz system and 28 GHz channel sounding systems.Both measured channels at the 28 GHz and 300 GHz channels are shown to be highly sparse and specular.A higher number of Multi Path Components(MPC)are observed for the 28 GHz system,while the same main MPC are observed for both systems.