期刊文献+
共找到1,105篇文章
< 1 2 56 >
每页显示 20 50 100
CNN Channel Attention Intrusion Detection SystemUsing NSL-KDD Dataset
1
作者 Fatma S.Alrayes Mohammed Zakariah +2 位作者 Syed Umar Amin Zafar Iqbal Khan Jehad Saad Alqurni 《Computers, Materials & Continua》 SCIE EI 2024年第6期4319-4347,共29页
Intrusion detection systems(IDS)are essential in the field of cybersecurity because they protect networks from a wide range of online threats.The goal of this research is to meet the urgent need for small-footprint,hi... Intrusion detection systems(IDS)are essential in the field of cybersecurity because they protect networks from a wide range of online threats.The goal of this research is to meet the urgent need for small-footprint,highly-adaptable Network Intrusion Detection Systems(NIDS)that can identify anomalies.The NSL-KDD dataset is used in the study;it is a sizable collection comprising 43 variables with the label’s“attack”and“level.”It proposes a novel approach to intrusion detection based on the combination of channel attention and convolutional neural networks(CNN).Furthermore,this dataset makes it easier to conduct a thorough assessment of the suggested intrusion detection strategy.Furthermore,maintaining operating efficiency while improving detection accuracy is the primary goal of this work.Moreover,typical NIDS examines both risky and typical behavior using a variety of techniques.On the NSL-KDD dataset,our CNN-based approach achieves an astounding 99.728%accuracy rate when paired with channel attention.Compared to previous approaches such as ensemble learning,CNN,RBM(Boltzmann machine),ANN,hybrid auto-encoders with CNN,MCNN,and ANN,and adaptive algorithms,our solution significantly improves intrusion detection performance.Moreover,the results highlight the effectiveness of our suggested method in improving intrusion detection precision,signifying a noteworthy advancement in this field.Subsequent efforts will focus on strengthening and expanding our approach in order to counteract growing cyberthreats and adjust to changing network circumstances. 展开更多
关键词 Intrusion detection system(IDS) NSL-KDD dataset deep-learning MACHINE-LEARNING CNN channel attention network security
下载PDF
New Fusion Approach of Spatial and Channel Attention for Semantic Segmentation of Very High Spatial Resolution Remote Sensing Images
2
作者 Armand Kodjo Atiampo Gokou Hervé Fabrice Diédié 《Open Journal of Applied Sciences》 2024年第2期288-319,共32页
The semantic segmentation of very high spatial resolution remote sensing images is difficult due to the complexity of interpreting the interactions between the objects in the scene. Indeed, effective segmentation requ... The semantic segmentation of very high spatial resolution remote sensing images is difficult due to the complexity of interpreting the interactions between the objects in the scene. Indeed, effective segmentation requires considering spatial local context and long-term dependencies. To address this problem, the proposed approach is inspired by the MAC-UNet network which is an extension of U-Net, densely connected combined with channel attention. The advantages of this solution are as follows: 4) The new model introduces a new attention called propagate attention to build an attention-based encoder. 2) The fusion of multi-scale information is achieved by a weighted linear combination of the attentions whose coefficients are learned during the training phase. 3) Introducing in the decoder, the Spatial-Channel-Global-Local block which is an attention layer that uniquely combines channel attention and spatial attention locally and globally. The performances of the model are evaluated on 2 datasets WHDLD and DLRSD and show results of mean intersection over union (mIoU) index in progress between 1.54% and 10.47% for DLRSD and between 1.04% and 4.37% for WHDLD compared with the most efficient algorithms with attention mechanisms like MAU-Net and transformers like TMNet. 展开更多
关键词 Spatial-channel attention Super-Token Segmentation Self-attention Vision Transformer
下载PDF
MCBAN: A Small Object Detection Multi-Convolutional Block Attention Network
3
作者 Hina Bhanbhro Yew Kwang Hooi +2 位作者 Mohammad Nordin Bin Zakaria Worapan Kusakunniran Zaira Hassan Amur 《Computers, Materials & Continua》 SCIE EI 2024年第11期2243-2259,共17页
Object detection has made a significant leap forward in recent years.However,the detection of small objects continues to be a great difficulty for various reasons,such as they have a very small size and they are susce... Object detection has made a significant leap forward in recent years.However,the detection of small objects continues to be a great difficulty for various reasons,such as they have a very small size and they are susceptible to missed detection due to background noise.Additionally,small object information is affected due to the downsampling operations.Deep learning-based detection methods have been utilized to address the challenge posed by small objects.In this work,we propose a novel method,the Multi-Convolutional Block Attention Network(MCBAN),to increase the detection accuracy of minute objects aiming to overcome the challenge of information loss during the downsampling process.The multi-convolutional attention block(MCAB);channel attention and spatial attention module(SAM)that make up MCAB,have been crafted to accomplish small object detection with higher precision.We have carried out the experiments on the Karlsruhe Institute of Technology and Toyota Technological Institute(KITTI)and Pattern Analysis,Statical Modeling and Computational Learning(PASCAL)Visual Object Classes(VOC)datasets and have followed a step-wise process to analyze the results.These experiment results demonstrate that significant gains in performance are achieved,such as 97.75%for KITTI and 88.97%for PASCAL VOC.The findings of this study assert quite unequivocally the fact that MCBAN is much more efficient in the small object detection domain as compared to other existing approaches. 展开更多
关键词 Multi-convolutional channel attention spatial attention YOLO
下载PDF
Deep neural network based on multi-level wavelet and attention for structured illumination microscopy
4
作者 Yanwei Zhang Song Lang +2 位作者 Xuan Cao Hanqing Zheng Yan Gong 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第2期12-23,共12页
Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior know... Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior knowledge of illumination patterns and signal-to-noise ratio(SNR)of raw images.To obtain high-quality SR images,several raw images need to be captured under high fluorescence level,which further restricts SIM’s temporal resolution and its applications.Deep learning(DL)is a data-driven technology that has been used to expand the limits of optical microscopy.In this study,we propose a deep neural network based on multi-level wavelet and attention mechanism(MWAM)for SIM.Our results show that the MWAM network can extract high-frequency information contained in SIM raw images and accurately integrate it into the output image,resulting in superior SR images compared to those generated using wide-field images as input data.We also demonstrate that the number of SIM raw images can be reduced to three,with one image in each illumination orientation,to achieve the optimal tradeoff between temporal and spatial resolution.Furthermore,our MWAM network exhibits superior reconstruction ability on low-SNR images compared to conventional SIM algorithms.We have also analyzed the adaptability of this network on other biological samples and successfully applied the pretrained model to other SIM systems. 展开更多
关键词 Super-resolution reconstruction multi-level wavelet packet transform residual channel attention selective kernel attention
下载PDF
Facial Expression Recognition Based on Multi-Channel Attention Residual Network 被引量:3
5
作者 Tongping Shen Huanqing Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第4期539-560,共22页
For the problems of complex model structure and too many training parameters in facial expression recognition algorithms,we proposed a residual network structure with a multi-headed channel attention(MCA)module.The mi... For the problems of complex model structure and too many training parameters in facial expression recognition algorithms,we proposed a residual network structure with a multi-headed channel attention(MCA)module.The migration learning algorithm is used to pre-train the convolutional layer parameters and mitigate the overfitting caused by the insufficient number of training samples.The designed MCA module is integrated into the ResNet18 backbone network.The attention mechanism highlights important information and suppresses irrelevant information by assigning different coefficients or weights,and the multi-head structure focuses more on the local features of the pictures,which improves the efficiency of facial expression recognition.Experimental results demonstrate that the model proposed in this paper achieves excellent recognition results in Fer2013,CK+and Jaffe datasets,with accuracy rates of 72.7%,98.8%and 93.33%,respectively. 展开更多
关键词 Facial expression recognition channel attention ResNet18 DATASET
下载PDF
Attention Mechanism-Based Method for Intrusion Target Recognition in Railway
6
作者 SHI Jiang BAI Dingyuan +2 位作者 GUO Baoqing WANG Yao RUAN Tao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期541-554,共14页
The detection of foreign object intrusion is crucial for ensuring the safety of railway operations.To address challenges such as low efficiency,suboptimal detection accuracy,and slow detection speed inherent in conven... The detection of foreign object intrusion is crucial for ensuring the safety of railway operations.To address challenges such as low efficiency,suboptimal detection accuracy,and slow detection speed inherent in conventional comprehensive video monitoring systems for railways,a railway foreign object intrusion recognition and detection system is conceived and implemented using edge computing and deep learning technologies.In a bid to raise detection accuracy,the convolutional block attention module(CBAM),including spatial and channel attention modules,is seamlessly integrated into the YOLOv5 model,giving rise to the CBAM-YOLOv5 model.Furthermore,the distance intersection-over-union_non-maximum suppression(DIo U_NMS)algorithm is employed in lieu of the weighted nonmaximum suppression algorithm,resulting in improved detection performance for intrusive targets.To accelerate detection speed,the model undergoes pruning based on the batch normalization(BN)layer,and Tensor RT inference acceleration techniques are employed,culminating in the successful deployment of the algorithm on edge devices.The CBAM-YOLOv5 model exhibits a notable 2.1%enhancement in detection accuracy when evaluated on a selfconstructed railway dataset,achieving 95.0%for mean average precision(m AP).Furthermore,the inference speed on edge devices attains a commendable 15 frame/s. 展开更多
关键词 foreign object detection railway protection edge computing spatial attention module channel attention module
下载PDF
An Assisted Diagnosis of Alzheimer’s Disease Incorporating Attention Mechanisms Med-3D Transfer Modeling
7
作者 Yanmei Li Jinghong Tang +3 位作者 Weiwu Ding Jian Luo Naveed Ahmad Rajesh Kumar 《Computers, Materials & Continua》 SCIE EI 2024年第1期713-733,共21页
Alzheimer’s disease(AD)is a complex,progressive neurodegenerative disorder.The subtle and insidious onset of its pathogenesis makes early detection of a formidable challenge in both contemporary neuroscience and clin... Alzheimer’s disease(AD)is a complex,progressive neurodegenerative disorder.The subtle and insidious onset of its pathogenesis makes early detection of a formidable challenge in both contemporary neuroscience and clinical practice.In this study,we introduce an advanced diagnostic methodology rooted in theMed-3D transfermodel and enhanced with an attention mechanism.We aim to improve the precision of AD diagnosis and facilitate its early identification.Initially,we employ a spatial normalization technique to address challenges like clarity degradation and unsaturation,which are commonly observed in imaging datasets.Subsequently,an attention mechanism is incorporated to selectively focus on the salient features within the imaging data.Building upon this foundation,we present the novelMed-3D transfermodel,designed to further elucidate and amplify the intricate features associated withADpathogenesis.Our proposedmodel has demonstrated promising results,achieving a classification accuracy of 92%.To emphasize the robustness and practicality of our approach,we introduce an adaptive‘hot-updating’auxiliary diagnostic system.This system not only enables continuous model training and optimization but also provides a dynamic platform to meet the real-time diagnostic and therapeutic demands of AD. 展开更多
关键词 Alzheimer’s disease channel attention Med-3D hot update
下载PDF
基于CSI与Attention-BiLSTM的动作识别算法
8
作者 沈诚遥 殳国华 郁高亚 《电气自动化》 2024年第5期108-110,共3页
与传统动作识别技术相比,基于信道状态信息的动作识别具有成本低、安全便利等特点,应用前景广阔。利用乐鑫ESP32采集信道子载波幅值信息,结合预处理算法,并基于结合注意力机制的双向长短期记忆网络的动作识别算法,实现对走路、拖地、捡... 与传统动作识别技术相比,基于信道状态信息的动作识别具有成本低、安全便利等特点,应用前景广阔。利用乐鑫ESP32采集信道子载波幅值信息,结合预处理算法,并基于结合注意力机制的双向长短期记忆网络的动作识别算法,实现对走路、拖地、捡起、坐下、蹲下和站起六种动作的特征提取与分类识别。测试结果表明:算法在测试集上的平均识别准确率高达95.8%,相较于常规的长短期记忆算法,识别准确率更高、收敛速度更快;与传统基于统计特征与机器学习的分类算法相比,算法直接利用神经网络自动提取时序特征,特征提取更精确,准确率提升超过10%。试验结果验证了该算法在基于信道状态信息的动作识别上的有效性,说明该算法具有较高的实用价值。 展开更多
关键词 注意力机制 双向长短期记忆网络 动作识别 信道状态信息 分类算法
下载PDF
A hybrid attention deep learning network for refined segmentation of cracks from shield tunnel lining images 被引量:3
9
作者 Shuai Zhao Guokai Zhang +2 位作者 Dongming Zhang Daoyuan Tan Hongwei Huang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第12期3105-3117,共13页
This research developed a hybrid position-channel network (named PCNet) through incorporating newly designed channel and position attention modules into U-Net to alleviate the crack discontinuity problem in channel an... This research developed a hybrid position-channel network (named PCNet) through incorporating newly designed channel and position attention modules into U-Net to alleviate the crack discontinuity problem in channel and spatial dimensions. In PCNet, the U-Net is used as a baseline to extract informative spatial and channel-wise features from shield tunnel lining crack images. A channel and a position attention module are designed and embedded after each convolution layer of U-Net to model the feature interdependencies in channel and spatial dimensions. These attention modules can make the U-Net adaptively integrate local crack features with their global dependencies. Experiments were conducted utilizing the dataset based on the images from Shanghai metro shield tunnels. The results validate the effectiveness of the designed channel and position attention modules, since they can individually increase balanced accuracy (BA) by 11.25% and 12.95%, intersection over union (IoU) by 10.79% and 11.83%, and F1 score by 9.96% and 10.63%, respectively. In comparison with the state-of-the-art models (i.e. LinkNet, PSPNet, U-Net, PANet, and Mask R–CNN) on the testing dataset, the proposed PCNet outperforms others with an improvement of BA, IoU, and F1 score owing to the implementation of the channel and position attention modules. These evaluation metrics indicate that the proposed PCNet presents refined crack segmentation with improved performance and is a practicable approach to segment shield tunnel lining cracks in field practice. 展开更多
关键词 Crack segmentation Crack disjoint problem U-net channel attention Position attention
下载PDF
Attention-based neural network for end-to-end music separation
10
作者 Jing Wang Hanyue Liu +3 位作者 Haorong Ying Chuhan Qiu Jingxin Li Muhammad Shahid Anwar 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第2期355-363,共9页
The end-to-end separation algorithm with superior performance in the field of speech separation has not been effectively used in music separation.Moreover,since music signals are often dual channel data with a high sa... The end-to-end separation algorithm with superior performance in the field of speech separation has not been effectively used in music separation.Moreover,since music signals are often dual channel data with a high sampling rate,how to model longsequence data and make rational use of the relevant information between channels is also an urgent problem to be solved.In order to solve the above problems,the performance of the end-to-end music separation algorithm is enhanced by improving the network structure.Our main contributions include the following:(1)A more reasonable densely connected U-Net is designed to capture the long-term characteristics of music,such as main melody,tone and so on.(2)On this basis,the multi-head attention and dualpath transformer are introduced in the separation module.Channel attention units are applied recursively on the feature map of each layer of the network,enabling the network to perform long-sequence separation.Experimental results show that after the introduction of the channel attention,the performance of the proposed algorithm has a stable improvement compared with the baseline system.On the MUSDB18 dataset,the average score of the separated audio exceeds that of the current best-performing music separation algorithm based on the time-frequency domain(T-F domain). 展开更多
关键词 channel attention densely connected network end-to-end music separation
下载PDF
Improved Blending Attention Mechanism in Visual Question Answering
11
作者 Siyu Lu Yueming Ding +4 位作者 Zhengtong Yin Mingzhe Liu Xuan Liu Wenfeng Zheng Lirong Yin 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期1149-1161,共13页
Visual question answering(VQA)has attracted more and more attention in computer vision and natural language processing.Scholars are committed to studying how to better integrate image features and text features to ach... Visual question answering(VQA)has attracted more and more attention in computer vision and natural language processing.Scholars are committed to studying how to better integrate image features and text features to achieve better results in VQA tasks.Analysis of all features may cause information redundancy and heavy computational burden.Attention mechanism is a wise way to solve this problem.However,using single attention mechanism may cause incomplete concern of features.This paper improves the attention mechanism method and proposes a hybrid attention mechanism that combines the spatial attention mechanism method and the channel attention mechanism method.In the case that the attention mechanism will cause the loss of the original features,a small portion of image features were added as compensation.For the attention mechanism of text features,a selfattention mechanism was introduced,and the internal structural features of sentences were strengthened to improve the overall model.The results show that attention mechanism and feature compensation add 6.1%accuracy to multimodal low-rank bilinear pooling network. 展开更多
关键词 Visual question answering spatial attention mechanism channel attention mechanism image feature processing text feature extraction
下载PDF
A Multi-View Gait Recognition Method Using Deep Convolutional Neural Network and Channel Attention Mechanism 被引量:2
12
作者 Jiabin Wang Kai Peng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第10期345-363,共19页
In many existing multi-view gait recognition methods based on images or video sequences,gait sequences are usually used to superimpose and synthesize images and construct energy-like template.However,information may b... In many existing multi-view gait recognition methods based on images or video sequences,gait sequences are usually used to superimpose and synthesize images and construct energy-like template.However,information may be lost during the process of compositing image and capture EMG signals.Errors and the recognition accuracy may be introduced and affected respectively by some factors such as period detection.To better solve the problems,a multi-view gait recognition method using deep convolutional neural network and channel attention mechanism is proposed.Firstly,the sliding time window method is used to capture EMG signals.Then,the back-propagation learning algorithm is used to train each layer of convolution,which improves the learning ability of the convolutional neural network.Finally,the channel attention mechanism is integrated into the neural network,which will improve the ability of expressing gait features.And a classifier is used to classify gait.As can be shown from experimental results on two public datasets,OULP and CASIA-B,the recognition rate of the proposed method can be achieved at 88.44%and 97.25%respectively.As can be shown from the comparative experimental results,the proposed method has better recognition effect than several other newer convolutional neural network methods.Therefore,the combination of convolutional neural network and channel attention mechanism is of great value for gait recognition. 展开更多
关键词 EMG signal capture channel attention mechanism convolutional neural network MULTI-VIEW gait recognition gait characteristics BACK-PROPAGATION
下载PDF
Improved YOLOv7 Algorithm for Floating Waste Detection Based on GFPN and Long-Range Attention Mechanism
13
作者 PENG Cheng HE Bing +1 位作者 XI Wenqiang LIN Guancheng 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2024年第4期338-348,共11页
Floating wastes in rivers have specific characteristics such as small scale,low pixel density and complex backgrounds.These characteristics make it prone to false and missed detection during image analysis,thus result... Floating wastes in rivers have specific characteristics such as small scale,low pixel density and complex backgrounds.These characteristics make it prone to false and missed detection during image analysis,thus resulting in a degradation of detection performance.In order to tackle these challenges,a floating waste detection algorithm based on YOLOv7 is proposed,which combines the improved GFPN(Generalized Feature Pyramid Network)and a long-range attention mechanism.Firstly,we import the improved GFPN to replace the Neck of YOLOv7,thus providing more effective information transmission that can scale into deeper networks.Secondly,the convolution-based and hardware-friendly long-range attention mechanism is introduced,allowing the algorithm to rapidly generate an attention map with a global receptive field.Finally,the algorithm adopts the WiseIoU optimization loss function to achieve adaptive gradient gain allocation and alleviate the negative impact of low-quality samples on the gradient.The simulation results reveal that the proposed algorithm has achieved a favorable average accuracy of 86.3%in real-time scene detection tasks.This marks a significant enhancement of approximately 6.3%compared with the baseline,indicating the algorithm's good performance in floating waste detection. 展开更多
关键词 floating waste detection YOLOv7 GFPN(Generalized Feature Pyramid Network) long-range attention
原文传递
Channel attention based wavelet cascaded network for image super-resolution
14
作者 CHEN Jian HUANG Detian HUANG Weiqin 《High Technology Letters》 EI CAS 2022年第2期197-207,共11页
Convolutional neural networks(CNNs) have shown great potential for image super-resolution(SR).However,most existing CNNs only reconstruct images in the spatial domain,resulting in insufficient high-frequency details o... Convolutional neural networks(CNNs) have shown great potential for image super-resolution(SR).However,most existing CNNs only reconstruct images in the spatial domain,resulting in insufficient high-frequency details of reconstructed images.To address this issue,a channel attention based wavelet cascaded network for image super-resolution(CWSR) is proposed.Specifically,a second-order channel attention(SOCA) mechanism is incorporated into the network,and the covariance matrix normalization is utilized to explore interdependencies between channel-wise features.Then,to boost the quality of residual features,the non-local module is adopted to further improve the global information integration ability of the network.Finally,taking the image loss in the spatial and wavelet domains into account,a dual-constrained loss function is proposed to optimize the network.Experimental results illustrate that CWSR outperforms several state-of-the-art methods in terms of both visual quality and quantitative metrics. 展开更多
关键词 image super-resolution(SR) wavelet transform convolutional neural network(CNN) second-order channel attention(SOCA) non-local self-similarity
下载PDF
Attention-YOLO:引入注意力机制的YOLO检测算法 被引量:69
15
作者 徐诚极 王晓峰 杨亚东 《计算机工程与应用》 CSCD 北大核心 2019年第6期13-23,125,共12页
实时目标检测算法YOLOv3的检测速度较快且精度良好,但存在边界框定位不够精确、难以区分重叠物体等不足。提出了Attention-YOLO算法,该算法借鉴了基于项的注意力机制,将通道注意力及空间注意力机制加入特征提取网络之中,使用经过筛选加... 实时目标检测算法YOLOv3的检测速度较快且精度良好,但存在边界框定位不够精确、难以区分重叠物体等不足。提出了Attention-YOLO算法,该算法借鉴了基于项的注意力机制,将通道注意力及空间注意力机制加入特征提取网络之中,使用经过筛选加权的特征向量来替换原有的特征向量进行残差融合,同时添加二阶项来减少融合过程中的信息损失并加速模型收敛。通过在COCO和PASCAL VOC数据集上的实验表明,该算法有效降低了边界框的定位误差并提升了检测精度。相比YOLOv3算法在COCO测试集上的mAP_(@IoU[0.5:0.95])提升了最高2.5 mAP,在PASCAL VOC 2007测试集上达到了最高81.9 mAP。 展开更多
关键词 目标检测 YOLOv3算法 attention-YOLO算法 通道注意力机制 空间注意力机制
下载PDF
An attention-based prototypical network for forest fire smoke few-shot detection 被引量:2
16
作者 Tingting Li Haowei Zhu +1 位作者 Chunhe Hu Junguo Zhang 《Journal of Forestry Research》 SCIE CAS CSCD 2022年第5期1493-1504,共12页
Existing almost deep learning methods rely on a large amount of annotated data, so they are inappropriate for forest fire smoke detection with limited data. In this paper, a novel hybrid attention-based few-shot learn... Existing almost deep learning methods rely on a large amount of annotated data, so they are inappropriate for forest fire smoke detection with limited data. In this paper, a novel hybrid attention-based few-shot learning method, named Attention-Based Prototypical Network, is proposed for forest fire smoke detection. Specifically, feature extraction network, which consists of convolutional block attention module, could extract high-level and discriminative features and further decrease the false alarm rate resulting from suspected smoke areas. Moreover, we design a metalearning module to alleviate the overfitting issue caused by limited smoke images, and the meta-learning network enables achieving effective detection via comparing the distance between the class prototype of support images and the features of query images. A series of experiments on forest fire smoke datasets and miniImageNet dataset testify that the proposed method is superior to state-of-the-art few-shot learning approaches. 展开更多
关键词 Forest fire smoke detection Few-shot learning channel attention module Spatial attention module Prototypical network
下载PDF
Physical properties of relativistic electron beam during long-range propagation in space plasma environment
17
作者 Bi-Xi Xue Jian-Hong Hao +3 位作者 Qiang Zhao Fang Zhang Jie-Qing Fan Zhi-Wei Dong 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第10期283-291,共9页
It is known that ion channel can effectively limit the radial expansion of an artificial electron beam during its longrange propagation in the space plasma environment.Most prior studies discussed the focusing charact... It is known that ion channel can effectively limit the radial expansion of an artificial electron beam during its longrange propagation in the space plasma environment.Most prior studies discussed the focusing characteristics of the beam in the ion channel,but the establishment process and transient properties of the ion channel itself,which also plays a crucial role during the propagation of the relativistic electron beam in the plasma environment,were commonly neglected.In this study,a series of two-dimensional(2D)particle-in-cell simulations is performed and an analytical model of ion channel oscillation is constructed according to the single-particle motion.The results showed that when the beam density is higher than the density of plasma environment,ion channel can be established and always continues to oscillate periodically over the entire propagation.Multiple factors,including the beam electron density,initial beam radius,and the plasma density can affect the oscillation properties of ion channel.Axial velocity of the beam oscillates synchronously with the ion channel and this phenomenon will finally develop into a two-stream instability which can seriously affect the effective transport for relativistic electron beam.Choosing appropriate beam parameters based on various plasma environments may contribute to the improvement of the stability of ion channel.Additionally,radial expansion of the beam can be limited by ion channel and a stable long-range propagation in terrestrial atmosphere may be achieved. 展开更多
关键词 ion channel space plasma environment long-range propagation particle-in-cell(PIC)simulation
下载PDF
Mixed Attention Densely Residual Network for Single Image Super-Resolution
18
作者 Jingjun Zhou Jing Liu +5 位作者 Jingbing Li Mengxing Huang Jieren Cheng Yen-Wei Chen Yingying Xu Saqib Ali Nawaz 《Computer Systems Science & Engineering》 SCIE EI 2021年第10期133-146,共14页
Recent applications of convolutional neural networks(CNNs)in single image super-resolution(SISR)have achieved unprecedented performance.However,existing CNN-based SISR network structure design consider mostly only cha... Recent applications of convolutional neural networks(CNNs)in single image super-resolution(SISR)have achieved unprecedented performance.However,existing CNN-based SISR network structure design consider mostly only channel or spatial information,and cannot make full use of both channel and spatial information to improve SISR performance further.The present work addresses this problem by proposing a mixed attention densely residual network architecture that can make full and simultaneous use of both channel and spatial information.Specifically,we propose a residual in dense network structure composed of dense connections between multiple dense residual groups to form a very deep network.This structure allows each dense residual group to apply a local residual skip connection and enables the cascading of multiple residual blocks to reuse previous features.A mixed attention module is inserted into each dense residual group,to enable the algorithm to fuse channel attention with laplacian spatial attention effectively,and thereby more adaptively focus on valuable feature learning.The qualitative and quantitative results of extensive experiments have demonstrate that the proposed method has a comparable performance with other stateof-the-art methods. 展开更多
关键词 channel attention Laplacian spatial attention residual in dense mixed attention
下载PDF
Image Inpainting Detection Based on High-Pass Filter Attention Network
19
作者 Can Xiao Feng Li +3 位作者 Dengyong Zhang Pu Huang Xiangling Ding Victor S.Sheng 《Computer Systems Science & Engineering》 SCIE EI 2022年第12期1145-1154,共10页
Image inpainting based on deep learning has been greatly improved.The original purpose of image inpainting was to repair some broken photos, suchas inpainting artifacts. However, it may also be used for malicious oper... Image inpainting based on deep learning has been greatly improved.The original purpose of image inpainting was to repair some broken photos, suchas inpainting artifacts. However, it may also be used for malicious operations,such as destroying evidence. Therefore, detection and localization of imageinpainting operations are essential. Recent research shows that high-pass filteringfull convolutional network (HPFCN) is applied to image inpainting detection andachieves good results. However, those methods did not consider the spatial location and channel information of the feature map. To solve these shortcomings, weintroduce the squeezed excitation blocks (SE) and propose a high-pass filter attention full convolutional network (HPACN). In feature extraction, we apply concurrent spatial and channel attention (scSE) to enhance feature extraction and obtainmore information. Channel attention (cSE) is introduced in upsampling toenhance detection and localization. The experimental results show that the proposed method can achieve improvement on ImageNet. 展开更多
关键词 Image inpainting detection spatial attention channel attention full convolutional network high-pass filter
下载PDF
复杂战场环境下改进YOLOv5军事目标识别算法研究 被引量:2
20
作者 宋晓茹 刘康 +2 位作者 高嵩 陈超波 阎坤 《兵工学报》 EI CAS CSCD 北大核心 2024年第3期934-947,共14页
复杂战场环境下军事目标识别技术是提升战场情报获取能力的基础和关键。针对当前军事目标识别技术在复杂战场环境下漏检误检率高、实时性差等问题,提出一种基于改进YOLOv5模型的PB-YOLO军事目标识别算法。将改进的目标识别算法对于陆战... 复杂战场环境下军事目标识别技术是提升战场情报获取能力的基础和关键。针对当前军事目标识别技术在复杂战场环境下漏检误检率高、实时性差等问题,提出一种基于改进YOLOv5模型的PB-YOLO军事目标识别算法。将改进的目标识别算法对于陆战场军事单元的识别锚框进行重新聚类,以提升模型对于目标大小适应度,加速模型收敛;采用通道-空间并行注意力机制,增加模型对复杂战场环境下目标特征信息与位置信息关注度;在特征融合网络部分使用BiFPN以提升模型对于特征的融合能力与速度;采用Alpha_IoU损失函数加速模型收敛,解决当真实框与预测框重合时IoU计算退化问题。实验结果表明,在自建军事目标数据集下,改进算法与主流目标识别算法相比,在保证模型空间复杂度的同时,mAP值达到了90.17%。消融实验对比结果表明,改进后网络较原模型精度提升11.57%,具有较好的识别性能,能够为战场情报获取提供有效的技术支撑。 展开更多
关键词 军事目标识别 通道-空间并行注意力机制 特征融合 损失函数
下载PDF
上一页 1 2 56 下一页 到第
使用帮助 返回顶部