The problems of long-range interaction and associated questions on entangled states are reconsidered in terms of a recently developed revised quantum electrodynamic theory by the author, as being applied to subatomic ...The problems of long-range interaction and associated questions on entangled states are reconsidered in terms of a recently developed revised quantum electrodynamic theory by the author, as being applied to subatomic systems. There are indications that the theories of relativity and quantum mechanics do not necessarily have to be in conflict. But more investigations are required for a full understanding to be obtained on these problems.展开更多
Recent advances in the study of magnetic atomic structures on noble metal surfaces are reviewed. These include one- dimensional strings, two-dimensional hexagonal superlattices, and novel structures stabilized by quan...Recent advances in the study of magnetic atomic structures on noble metal surfaces are reviewed. These include one- dimensional strings, two-dimensional hexagonal superlattices, and novel structures stabilized by quantum guiding. The combined techniques of low-temperature scanning tunneling microscopy, kinetic Monte Carlo simulations, and ab initio calculations reveal that surface-state-mediated adatom-step and adatom-adatom interactions are the driving forces for self- assembly of these structures. The formation conditions are further discussed by comparing various experimental systems and the kinetic Monte Carlo simulations. Using scanning tunneling spectroscopy and tight-binding calculations together, we reveal that the spectra of these well-ordered structures have characteristic peaks induced by electronic scattering processes of the atoms within the local environment. Moreover, it is demonstrated that quantum confinement by means of nano-size corrals has significant influence on adatom diffusion and self-assembly, leading to a quantum-guided self-assembly.展开更多
For our proposed composite parity-conserved matrix product state(MPS), if only a spin block length is larger than 1, any two such spin blocks have correlation including classical correlation and quantum correlation. B...For our proposed composite parity-conserved matrix product state(MPS), if only a spin block length is larger than 1, any two such spin blocks have correlation including classical correlation and quantum correlation. Both the total correlation and the classical correlation become larger than that in any subcomponent; while the quantum correlations of the two nearest-neighbor spin blocks and the two next-nearest-neighbor spin blocks become smaller and for other conditions the quantum correlation becomes larger, i.e., the increase or the production of the long-range quantum correlation is at the cost of reducing the short-range quantum correlation, which deserves to be investigated in the future; and the ration of the quantum correlation to the total correlation monotonically decreases to a steady value as the spacing spin length increasing.展开更多
It is shown that in the quantum structural approach to high-Tc superconductivity, the wave function in terms of the alternate molecular bonding geminals possesses off-diagonal long-range order (ODLRO).
In a circuit quantum electrodynamics(circuit QED) architecture, the microwave resonator could be used to couple and probe qubits. The long-range coupling and information transfer between nonlocal qubits can be perform...In a circuit quantum electrodynamics(circuit QED) architecture, the microwave resonator could be used to couple and probe qubits. The long-range coupling and information transfer between nonlocal qubits can be performed via photons trapped in a microwave resonator, promising an effective approach for scaling up solid-state qubits. A series of important advances in the hybrid system composed of a microwave resonator and semiconductor qubits have been achieved in recent years. For instance,with applications of high-impedance microwave resonators, the strong coupling regime between charge/spin qubits and a microwave resonator has been reached. Simultaneously, resonator-based dispersive readout and single-shot readout to probe the qubit state have been further improved due to the increase of the coupling strength. Here, we briefly introduce this hybrid system related to the progress and fruits in achieving the strong coupling between charge/spin qubits in double quantum dots(DQDs)and the resonator, the long-range coupling between qubits, and also the applications of the resonator for qubit state readout.展开更多
For the matrix product system of a one-dimensional spin-1/2 chain, we present a new model of quantum2 phase transitions and find that in the thermodynamic limit, both sides of the critical point are respectively descr...For the matrix product system of a one-dimensional spin-1/2 chain, we present a new model of quantum2 phase transitions and find that in the thermodynamic limit, both sides of the critical point are respectively described by phases |Ψa 〉=|1··· 1 representing all particles spin up and |Ψb 〉=|0··· 0 representing all particles spin down, while the phase transition point is an isolated intermediate-coupling point where√ the two phases coexist equally, which is2 described by the so-called N-qubit maximally entangled GHZ state |Ψpt =√2/2(|1··· 1 +|0··· 0). At the critical point,2the physical quantities including the entanglement are not discontinuous and the matrix product system has longrange correlation and N-qubit maximal entanglement. We believe that our work is helpful for having a comprehensive understanding of quantum phase transitions in matrix product states of one-dimensional spin chains and of potential directive significance to the preparation and control of one-dimensional spin lattice models with stable coherence and N-qubit maximal entanglement.展开更多
We present a new model of quantum phase transitions in matrix product systems of one-dimensional spin-1 chains and study the phases coexistence phenomenon. We find that in the thermodynamic limit the proposed system h...We present a new model of quantum phase transitions in matrix product systems of one-dimensional spin-1 chains and study the phases coexistence phenomenon. We find that in the thermodynamic limit the proposed system has three different quantum phases and by adjusting the control parameters we are able to realize any phase, any two phases equal coexistence and the three phases equM coexistence. At every critical point the physical quantities including the entanglement are not discontinuous and the matrix product system has long-range correlation and N-spin maximal entanglement. We believe that our work is helpful for having a comprehensive understanding of quantum phase transitions in matrix product states of one-dimensional spin chains and of certain directive significance to the preparation and control of one-dimensional spin lattice models with stable coherence and N-spin maximal entanglement.展开更多
文摘The problems of long-range interaction and associated questions on entangled states are reconsidered in terms of a recently developed revised quantum electrodynamic theory by the author, as being applied to subatomic systems. There are indications that the theories of relativity and quantum mechanics do not necessarily have to be in conflict. But more investigations are required for a full understanding to be obtained on these problems.
基金Project supported by the National Basic Research Program of China(Grant No.2010CB923401)the National Natural Science Foundation of China(Grant Nos.10974087,11374145,11304150,and 11023002)
文摘Recent advances in the study of magnetic atomic structures on noble metal surfaces are reviewed. These include one- dimensional strings, two-dimensional hexagonal superlattices, and novel structures stabilized by quantum guiding. The combined techniques of low-temperature scanning tunneling microscopy, kinetic Monte Carlo simulations, and ab initio calculations reveal that surface-state-mediated adatom-step and adatom-adatom interactions are the driving forces for self- assembly of these structures. The formation conditions are further discussed by comparing various experimental systems and the kinetic Monte Carlo simulations. Using scanning tunneling spectroscopy and tight-binding calculations together, we reveal that the spectra of these well-ordered structures have characteristic peaks induced by electronic scattering processes of the atoms within the local environment. Moreover, it is demonstrated that quantum confinement by means of nano-size corrals has significant influence on adatom diffusion and self-assembly, leading to a quantum-guided self-assembly.
基金Supported by the National Natural Science Foundation of China under Grant No.10974137the Major Natural Science Foundation of the Educational Department of Sichuan Province under Grant No.14ZA0167
文摘For our proposed composite parity-conserved matrix product state(MPS), if only a spin block length is larger than 1, any two such spin blocks have correlation including classical correlation and quantum correlation. Both the total correlation and the classical correlation become larger than that in any subcomponent; while the quantum correlations of the two nearest-neighbor spin blocks and the two next-nearest-neighbor spin blocks become smaller and for other conditions the quantum correlation becomes larger, i.e., the increase or the production of the long-range quantum correlation is at the cost of reducing the short-range quantum correlation, which deserves to be investigated in the future; and the ration of the quantum correlation to the total correlation monotonically decreases to a steady value as the spacing spin length increasing.
基金Project (No. 29892168) supported by the National Natural Science Foundation of China.
文摘It is shown that in the quantum structural approach to high-Tc superconductivity, the wave function in terms of the alternate molecular bonding geminals possesses off-diagonal long-range order (ODLRO).
基金supported by the National Key Research and Development Program of China(Grant No.2016YFA0301700)the National Natural Science Foundation of China(Grant Nos.61922074,12074368,and12034018)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302300)。
文摘In a circuit quantum electrodynamics(circuit QED) architecture, the microwave resonator could be used to couple and probe qubits. The long-range coupling and information transfer between nonlocal qubits can be performed via photons trapped in a microwave resonator, promising an effective approach for scaling up solid-state qubits. A series of important advances in the hybrid system composed of a microwave resonator and semiconductor qubits have been achieved in recent years. For instance,with applications of high-impedance microwave resonators, the strong coupling regime between charge/spin qubits and a microwave resonator has been reached. Simultaneously, resonator-based dispersive readout and single-shot readout to probe the qubit state have been further improved due to the increase of the coupling strength. Here, we briefly introduce this hybrid system related to the progress and fruits in achieving the strong coupling between charge/spin qubits in double quantum dots(DQDs)and the resonator, the long-range coupling between qubits, and also the applications of the resonator for qubit state readout.
基金Supported by National Natural Science Foundation of China(10974137)by Educational Commission of Sichuan Province of China(14ZA0167)
文摘For the matrix product system of a one-dimensional spin-1/2 chain, we present a new model of quantum2 phase transitions and find that in the thermodynamic limit, both sides of the critical point are respectively described by phases |Ψa 〉=|1··· 1 representing all particles spin up and |Ψb 〉=|0··· 0 representing all particles spin down, while the phase transition point is an isolated intermediate-coupling point where√ the two phases coexist equally, which is2 described by the so-called N-qubit maximally entangled GHZ state |Ψpt =√2/2(|1··· 1 +|0··· 0). At the critical point,2the physical quantities including the entanglement are not discontinuous and the matrix product system has longrange correlation and N-qubit maximal entanglement. We believe that our work is helpful for having a comprehensive understanding of quantum phase transitions in matrix product states of one-dimensional spin chains and of potential directive significance to the preparation and control of one-dimensional spin lattice models with stable coherence and N-qubit maximal entanglement.
基金Supported by National Natural Science Foundation of China(10974137)Major Natural Science Foundation of Educational Department of Sichuan Province(14ZA0167)
文摘We present a new model of quantum phase transitions in matrix product systems of one-dimensional spin-1 chains and study the phases coexistence phenomenon. We find that in the thermodynamic limit the proposed system has three different quantum phases and by adjusting the control parameters we are able to realize any phase, any two phases equal coexistence and the three phases equM coexistence. At every critical point the physical quantities including the entanglement are not discontinuous and the matrix product system has long-range correlation and N-spin maximal entanglement. We believe that our work is helpful for having a comprehensive understanding of quantum phase transitions in matrix product states of one-dimensional spin chains and of certain directive significance to the preparation and control of one-dimensional spin lattice models with stable coherence and N-spin maximal entanglement.