Severe haze pollution that occurred in January 2014 in Wuhan was investigated. The factors leading to Wuhan’s PM2.5 pollution and the characteristics and formation mechanism were found to be significantly different f...Severe haze pollution that occurred in January 2014 in Wuhan was investigated. The factors leading to Wuhan’s PM2.5 pollution and the characteristics and formation mechanism were found to be significantly different from other megacities, like Beijing. Both the growth rates and decline rates of PM2.5 concentrations in Wuhan were lower than those in Beijing, but the monthly PM2.5 value was approximately twice that in Beijing. Furthermore, the sharp increases of PM2.5 concentrations were often accompanied by strong winds. A high-precision modeling system with an online source-tagged method was established to explore the formation mechanism of five haze episodes. The long-range transport of the polluted air masses from the North China Plain (NCP) was the main factor leading to the sharp increases of PM2.5 concentrations in Wuhan, which contributed 53.4% of the monthly PM2.5 concentrations and 38.5% of polluted days. Furthermore, the change in meteorological conditions such as weakened winds and stable weather conditions led to the accumulation of air pollutants in Wuhan after the long-range transport. The contribution from Wuhan and surrounding cities to the PM2.5 concentrations was determined to be 67.4% during this period. Under the complex regional transport of pollutants from surrounding cities, the NCP, East China, and South China, the five episodes resulted in 30 haze days in Wuhan. The findings reveal important roles played by transregional and intercity transport in haze formation in Wuhan.展开更多
The attainment of suitable ambient air quality standards is a matter of great concern for successfully hosting the ⅩⅩⅣ Olympic Winter Games(OWG). Transport patterns and potential sources of pollutants in Zhangjiako...The attainment of suitable ambient air quality standards is a matter of great concern for successfully hosting the ⅩⅩⅣ Olympic Winter Games(OWG). Transport patterns and potential sources of pollutants in Zhangjiakou(ZJK) were investigated using pollutant monitoring datasets and a dispersion model. The PM_(2.5) concentration during February in ZJK has increased slightly(28%) from 2018 to 2021, mostly owing to the shift of main potential source regions of west-central Inner Mongolia and Mongolian areas(2015–18) to the North China Plain and northern Shanxi Province(NCPS) after 2018.Using CO as an indicator, the relative contributions of the different regions to the receptor site(ZJK) were evaluated based on the source-receptor-relationship method(SRR) and an emission inventory. We found that the relative contribution of pollutants from NCPS increased from 33% to 68% during 2019–21. Central Inner Mongolia(CIM) also has an important impact on ZJK under unfavorable weather conditions. This study demonstrated that the effect of pollution control measures in the NCPS and CIM should be strengthened to ensure that the air quality meets the standard during the ⅩⅩⅣ OWG.展开更多
Based on data of PM2.5 hourly concentration and HYSPLIT model backward trajectory in coastal cities of Fujian Province during January 25 -26, 2014, a typical regional pollution process affecting Fujian from the north ...Based on data of PM2.5 hourly concentration and HYSPLIT model backward trajectory in coastal cities of Fujian Province during January 25 -26, 2014, a typical regional pollution process affecting Fujian from the north to the south and the east to the west on January 26 was investiga- ted. Taking Fuzhou as an example, based on weather situation on the ground and at high altitudes as well as corresponding meteorological data such as wind direction, wind velocity, and visibility, the changes of meteorological elements before, during and after the pollution were compared. Based on the V-3θ atmospheric vertical structure diagrams, the weather reasons for the generation, maintaining and dissipation of the pollution were discussed. The results indicated that the regional pollution was transported from the northeast to the southwest. The northeasterly air flow in front of the cold ridge strengthened and moved toward the east, so that the pollutant from the north affected Fujian form the north to the south and from the east to the west. As a result, there was a dramatic increase of pollutant concentration, rapid drop of visibility, and deterioration of air quality in the affected areas. The heavy pollution process featured high-speed transport and short-time generation. The air quality changed from good state to heavy pollution in just 3 -4 hours. The maximum of IAQIpM2.5 reached 280. The whole pollution process lasted for 14 hours. Solar radiation had been deeply affected by aerosol clouds, so that atmospheric stratification was extremely stable. Along with the eastward movement of cold high pressure into the sea, the dominant wind direction near the ground changed from the northeast to the east, so that the source of the pollutant was cut off , and air quality quickly turned well. The changes of atmospheric vertical structure indicated that the high inversion layer and clouds near 700 hPa kept lower air clean and blocked upper pollution transport. The later sudden increase of wind speed and strengthening of atmospheric mechanical turbu- lent destroyed inversion layer, so that the upper pollutants invaded air near the ground rapidly. During the period of high pollution, the isothermal layer (aerosol clouds) leaded to decrease of wind speed, and the atmosphere became more stable. The pollution ended until the wind field changed.展开更多
Assessment of harmful impacts and risks of air pollution in case of accidents as well as of long lasting exposition is an important challenge of chemical transport modeling. Sad confirmation of this statement unexpect...Assessment of harmful impacts and risks of air pollution in case of accidents as well as of long lasting exposition is an important challenge of chemical transport modeling. Sad confirmation of this statement unexpectedly has come from the nuclear power plant accident in Fukushima which occurred while this paper was finalized. Two strategies to comply with the task of impact and risk assessment in extended regions like Central Europe or the Balkans are described. The first one is characterized by application of a single model system to an extended domain. The other one is based on the combined application of several chemical transport models designed for the use in various sub-domains in the region under consideration. Advantages and disadvantages exist for both approaches. For instance, the single model strategy allows unified and harmonized assessment of risks in a larger region, whereas the combined model strategy may pro-vide faster and locally more specific response in emergency cases. The single model approach is treated exploiting applications of the EURAD model system. The combined model approach is a novel way of joint use of chemical transport model systems developed for the Balkans. The models are described and the accuracy of simulations carried out with them is briefly demonstrated by comparison of simulated and observed concentrations of air pollutants. Applications regarding the search of sources for high pollution events and the assessment of risks through known sources are exem-plarily discussed.展开更多
The coastal zone is the significant environmental setting where ocean interfaces land. In addition, it is economically important because of its high residential, commercial and recreational values. Meanwhile, in the U...The coastal zone is the significant environmental setting where ocean interfaces land. In addition, it is economically important because of its high residential, commercial and recreational values. Meanwhile, in the United States, public coastal areas are increasingly off-limits due to elevated levels of fecal pollution and other contaminants. This study investigates the effects of rainfall, discharge, wave, and alongshore transport on coastal FIB (fecal indicator bacteria) concentrations at adjacent beaches in Orange County, California, over three years' period from October 2001 to September 2004. In order to identify the dominant tempora land spatial patterns of fecal pollutions along the coastal beaches, Empirical Orthogonal Function analysis was utilized for the three-year measurements (n = 39,525) of FIB concentration data from 17 sampling stations. Through the data analysis and the empirical orthogonal function analysis, it was found that the dominant factor effecting coastal FIB concentration is precipitation event and consequent water discharge from Santa Ana River in the area. The Empirical Orthogonal Function analysis revealed the potential non-point FIB sources around northern part of Orange County beaches. In addition, this study confirmed the existing alongshore transport by wave-driven surf zone current and offshore tidal currents.展开更多
Sulfur dioxide (SO2) and nitrogen dioxide (NO2) emissions generated at coal burning power plants and from transport are a leading cause of acid deposition and chemical smog in many parts of the world. Sulfur dioxide e...Sulfur dioxide (SO2) and nitrogen dioxide (NO2) emissions generated at coal burning power plants and from transport are a leading cause of acid deposition and chemical smog in many parts of the world. Sulfur dioxide emitted by thermal power plants and from transport in Kosovo is transported via prevailing winds to other locations. Through its journey, this SO2 gas undergoes a series of chemical reactions that ultimately transform it into sulfuric acid (H2SO4) which is deposited as acid rain. As a consequence of NO2 emissions from electricity production and transport in Kosovo the ozone (O3) is formed as photochemical smog due to sunlight, which triggers the breakdown of NO2. We modeled the impact of SO2 and NO2 emissions from energy system and transport in Kosovo on acid deposition and chemical smog locally. In model we consider the role of SO2 and NO2 pollution control technologies on mitigating these impacts.展开更多
Increasing air pollution around the world causes many problems,especially in the field of health.Air pollution affects not only human health but also other living things health.The factors that cause air pollution the...Increasing air pollution around the world causes many problems,especially in the field of health.Air pollution affects not only human health but also other living things health.The factors that cause air pollution the most are heating,industry,and transportation.Many countries in the world carry out various studies to reduce the effect of these factors on air pollution.Especially in the field of transportation,studies have been quite a lot in recent years.In this study,air pollution caused by transportation in Erzurum,Turkey has investigated.Emission amounts of NO_(X),PM_(10),and SO_(2) values have calculated according to the types of vehicles in the city.Then,the amount of emissions from transportation in the total sector has revealed.The transportation structure of the city has examined in general terms and the missing aspects in terms of pedestrian transportation have revealed.Finally,some solution proposals aiming to encourage the use of pedestrian transportation and micro mobility vehicles in order to reduce motor land vehicles are presented.展开更多
Characteristics of air pollution in Northeast China(NEC) received less research attention in the past comparing to other heavily polluted regions in China.Spatiotemporal variations of six criteria air pollutants(PM10,...Characteristics of air pollution in Northeast China(NEC) received less research attention in the past comparing to other heavily polluted regions in China.Spatiotemporal variations of six criteria air pollutants(PM10, PM2.5, SO2, NO2, O3 and CO) in Central Liaoning Urban Agglomeration(CLUA) and Harbin-Changchun Urban Agglomeration(HCUA) in NEC Plain were analyzed in this study based on three-year hourly observations of air pollutants and meteorological variables from 2015 to 2017.The results indicated that the annual mean concentrations of air pollutants are generally higher in the middle and southern regions in NEC Plain and lower in the northern region.Megacities such as Shenyang, Harbin and Changchun experience severe air pollution, with a three-year averaged air quality index(AQI) larger than 80, far exceeding the daily AQI standard at the first-level of 50 in China.The annual mean PM and SO2 concentrations decrease most significantly in NEC urban agglomerations from 2015 to 2017, followed by CO and NO2, while O3 shows a slight increasing trend.All the six pollutants exhibit obvious seasonal and diurnal variations, and these variations are dictated by local emission and meteorological conditions.PM2.5 and O3 concentrations in NEC urban agglomerations strongly depend on wind conditions.High O3 concentrations at different cities usually occur in presence of strong winds but are independent on wind direction(WD), while high PM2.5 is usually accompanied by weak winds and poor dispersion condition, and sometimes also occur when the northerly or southerly winds are strong.Regional transport of air pollutants between NEC urban agglomerations is common.A severe haze event on November 1–4, 2017 is examined to demonstrate the role of regional transport on pollution.展开更多
In this study,a two-dimensional flow-pollutant coupled model was developed based on a quadtree grid.This model was established to allow the accurate simulation of wind-driven flow in a large-scale shallow lake with ir...In this study,a two-dimensional flow-pollutant coupled model was developed based on a quadtree grid.This model was established to allow the accurate simulation of wind-driven flow in a large-scale shallow lake with irregular natural boundaries when focusing on important smallscale localized flow features.The quadtree grid was created by domain decomposition.The governing equations were solved using the finite volume method,and the normal fluxes of mass,momentum,and pollutants across the interface between cells were computed by means of a Godunov-type Osher scheme.The model was employed to simulate wind-driven flow in a circular basin with non-uniform depth.The computed values were in agreement with analytical data.The results indicate that the quadtree grid has fine local resolution and high efficiency,and is convenient for local refinement.It is clear that the quadtree grid model is effective when applied to complex flow domains.Finally,the model was used to calculate the flow field and concentration field of Taihu Lake,demonstrating its ability to predict the flow and concentration fields in an actual water area with complex geometry.展开更多
Due to the transboundary nature of air pollutants,a province's efforts to improve air quality can reduce PM2.5 concentration in the surrounding area.The inter-provincial PM2.5 pollution transport could bring great...Due to the transboundary nature of air pollutants,a province's efforts to improve air quality can reduce PM2.5 concentration in the surrounding area.The inter-provincial PM2.5 pollution transport could bring great challenges to related environmental management work,such as financial fund allocation and subsidy policy formulation.Herein,we examined the transport characteristics of PM2.5 pollution across provinces in 2013 and 2020 via chemical transport modeling and then monetized inter-provincial contributions of PM2.5 improvement based on pollutant emission control costs.We found that approximately 60%of the PM2.5 pollution was from local sources,while the remaining 40%originated from outside provinces.Furthermore,about 1011 billion RMB of provincial air pollutant abatement costs contributed to the PM2.5 concentration decline in other provinces during 2013-2020,accounting for 41.2%of the total abatement costs.Provinces with lower unit improvement costs for PM2.5,such as Jiangsu,Hebei,and Shandong,were major contributors,while Guangdong,Guangxi,and Fujian,bearing higher unit costs,were among the main beneficiaries.Our study identifies provinces that contribute to air quality improvement in other provinces,have high economic efficiency,and provide a quantitative framework for determining inter-provincial compensations.This study also reveals the uneven distribution of pollution abatement costs(PM2.5 improvement/abatement costs)due to transboundary PM2.5 transport,calling for adopting inter-provincial economic compensation policies.Such mechanisms ensure equitable cost-sharing and effective regional air quality management.展开更多
A tracer model with random diffusion coupled to the hydrodynamic model for the Zhujiang River Estuary (Pearl River Estuary, PRE) is to examine the effect of circulations on the transport of completely conservative pol...A tracer model with random diffusion coupled to the hydrodynamic model for the Zhujiang River Estuary (Pearl River Estuary, PRE) is to examine the effect of circulations on the transport of completely conservative pollutants. It is focused on answering the following questions: (1) What role does the estuarine plume front in the winter play in affecting the pollutants transport and its distribution in the PRE ? (2) What effect do the coastal currents driven by the monsoon have on the pollutants transport? The tracer experiment results show that: (1) the pollutant transport paths strongly depend on the circulation structures and plume frontal dynamics of the PRE and coastal waters; (2) during the summer when a southwesterly monsoon prevails, the pollutants from the four easterly river inlets and those from the bottom layer of offshore stations will greatly influence the water quality in Hong Kong waters, however, the pollutants released from the four westerly river-inlets will seldom affect the water qual展开更多
A two-dimensional, non-reactive convective cloud transport model is used to simulate in detail the vertical transport and wet scavenging of soluble pollutant gases by a deep thunderstorm systems Simulations show that ...A two-dimensional, non-reactive convective cloud transport model is used to simulate in detail the vertical transport and wet scavenging of soluble pollutant gases by a deep thunderstorm systems Simulations show that for gases with not very high solubility, a deep and intense thunderstorm can still rapidly and efficiently transport them from boundary layer(PBL) up to mid and upper troposphere. resulting in a local significant increase of concentration in the upper layer and a reduction in PBL. Dissolution effects decrease both the incloud gas concentration and the upward net fluxes. The higher the solubility is, the more remarkable the decrease is. However, for very low soluble gases (H<102 Matm-1), the influences are very slight. In addition, the effects of irreversible dissolution and aqueous reactions in drops on the vertical transport of gaseous pollutants are estimated in extreme.展开更多
Air pollution is a grand challenge of our time due to its multitude of adverse impacts on environment and society,with the scale of impacts more severe in developing countries,including China.Thus,China has initiated ...Air pollution is a grand challenge of our time due to its multitude of adverse impacts on environment and society,with the scale of impacts more severe in developing countries,including China.Thus,China has initiated and implemented strict air pollution control measures over last several years to reduce impacts of air pollution.Monitoring data from Jan 2015 to Dec 2019 on six criteria air pollutants(SO_(2),NO_(2),CO,O_(3),PM_(2.5),and PM_(10))at eight sites in southwestern China were investigated to understand the situation and analyze the impacts of transboundary air pollutants in this region.In terms of seasonal variation,the maximum concentrations of air pollutants at these sites were observed in winter or spring season depending on individual site.For diurnal variation,surface ozone peaked in the afternoon while the other pollutants had a bimodal pattern with peaks in the morning and late afternoon.There was limited transport of domestic emissions of air pollutants in China to these sites.Local emissions enhanced the concentrations of air pollutants during some pollution events.Mostly,the transboundary transport of air pollution from South Asia and Southeast Asia was associated with high concentrations of most air pollutants observed in southwestern China.Since air pollutants can be transported to southwestern China over long distances from the source regions,it is necessary to conduct more research to properly attribute and quantify transboundary transport of air pollutants,which will provide more solid scientific guidance for air pollution management in southwestern China.展开更多
Exploring transport patterns of soil contaminants is essential for solving the problem of heavy metal contamination in mine soils.In this study,contamination of Pb,Zn,and Cd in the mountain soils of the lead–zinc ore...Exploring transport patterns of soil contaminants is essential for solving the problem of heavy metal contamination in mine soils.In this study,contamination of Pb,Zn,and Cd in the mountain soils of the lead–zinc ore mines in Ganxi Township,Hengdong County,Hunan Province,China was investigated,and their transport patterns were further explored using a soil-column model and numerical simulation techniques.In total,111 mine soil samples were collected and placed into six experimental soil columns.By controlling the water flow,a control soil column group(CK),two mixed soil columns X1 with daily water flows of 1 and 5 L,and three mixed soil columns X3 with daily water flows of 2,3,and 4 L were evaluated.The results showed that the residual fraction of Pb accounted for 71.93%of the content on average,whereas the exchangeable fractions of Zn,Cd,and Fe-Mn oxide-bound fractions of Zn and Cd accounted for 28.60%,31.07%,and 43.2%and 53.54%of the content,respectively.Pb,Zn,and Cd in the soils of the CK,X1,and X3 groups mainly were accumulated at a depth from approximately 0 to 20 cm,and the content at this depth accounted for 60.09%of that at a 0~40 cm depth.The soil at a depth range of 0~10 cm was most seriously contaminated,and the proportion of content was 32.39%of that at a 0~40 cm depth.Numerical simulation showed that on the 5 th day,the pollutant transport range was 0~24 cm,and on the 9 th day,the pollutant transport range exceeded 40 cm.On the 15 th day,the transport capacity of pollutants at depths of 0~40 cm was close to the stable state,but the soil at a depth of 0~10 cm was still heavily polluted.These results reflect the transport pattern of heavy metal pollutants in the soil of lead–zinc ore mines and may provide a reliable scientific support for the prevention of heavy metal contamination in mine environments.展开更多
The circulation pattern and the pollutant transport in the Marmaris Bay are simulated by the developed three-dimensional baroclinic model. The Marmaris Bay is located at the Mediterranean Sea coast of Turkey. Since th...The circulation pattern and the pollutant transport in the Marmaris Bay are simulated by the developed three-dimensional baroclinic model. The Marmaris Bay is located at the Mediterranean Sea coast of Turkey. Since the sp ring tidal range is typically 20-30 cm, the dominant forcing for the circulation and water exchange is due to the wind action. In the Marmaris Bay, there is sea outfall discharging directly into the bay. and that threats the bay water quality significantly. The current patterns in the vicinity of the outfall have been observed by tracking drogues which are moved by currents at different water depths. In the simulations of pollutant transport, the coliforms-counts is used as the tracer. The model provides realistic predictions for the circulation and pollutant transport in the Marmaris Bay. The transport model component predictions well agree with the results of a laboratory model study.展开更多
A convective cloud transport model, without chemical processes, is developed by joining a set of concentration conservative equations into a two-dimensional, slab-symmetric and fully elastic numerical cloud model, and...A convective cloud transport model, without chemical processes, is developed by joining a set of concentration conservative equations into a two-dimensional, slab-symmetric and fully elastic numerical cloud model, and a numerical experiment is completed to simulate the vertical transport of ground-borne, inert gaseous pollutant by deepthunderstorm. The simulation shows that deep convective storm can very effectively transport high concentrated pollutant gas from PBL upward to the upper troposphere in 30 to 40 minutes, where the pollutant spreads laterally outward with strong anvil outflow, forming an extensive high concentration area. Meanwhile, relatively low concentration areas are formed in PBL both below and beside the cloud, mainly caused by dynamic pumping effect and sub-cloud downdraft flow. About 80% of the pollutant gas transported to the upper troposphere is from the layer below 1.5 km AGL (above ground level).展开更多
The vertical transport features of gaseous pollutants, with a negative exponent profile of concentration, by different types of convective cloud systems are numerically investigated by using a two-dimensional, reactlo...The vertical transport features of gaseous pollutants, with a negative exponent profile of concentration, by different types of convective cloud systems are numerically investigated by using a two-dimensional, reactlonless convective cloud transport model. The results show that an isolated, weak storm is able to pump pollutant gas out PBL and transport it to the mid-troposphere, whereas a deep. intense thunderstorm can very efficiently transport air pollutants up to the mid and upper troposphere and laterally spread with anvil, forming an extensive concentration surge layer at aliitnde of ten odd kilometers altitude. Each type of convective transport results in concentration reduction in PHL. In a wind shear environment the transport efficiency of deep thunderstorm significantly increases and the pollutants enter into clouds on the downshear side at low level and spread downwind in anvil layer. On the other hand, for a cumulus cloud with plenty of liquid water. the gas dissolution effect is increased, and the irreversible aqueous reactions, in extreme, may significantly weaken the vertical transports of pollutant gases even with solubility coefficients no more than 103 M atm-1.展开更多
Hydrological and hydro-chemical monitoring of nitrogen(N) and phosphorus(P) in a small urbanized catchment was conducted in the hilly area of the central Sichuan Basin,China,from 2010 through 2011.The diffuse N and P ...Hydrological and hydro-chemical monitoring of nitrogen(N) and phosphorus(P) in a small urbanized catchment was conducted in the hilly area of the central Sichuan Basin,China,from 2010 through 2011.The diffuse N and P loadings in different forms of total nitrogen(TN) and phosphorus(TP),dissolved nitrogen(DN) and phosphorus(DP),as well as particulate nitrogen(PN) and phosphorus(PP) were calculated based on runoff discharges and chemical analyses.The results revealed that the diffuse pollution concentrations of TN,DN,PN,TP,DP and PP exhibited large variations during rainfall events,with peak concentrations occurring during the initial period.For all of the measured parameters,the event mean concentrations(EMCs) were observed to clearly vary among rainfall events.The EMCs of TN,DN,PN,TP,DP and PP(for all of the observed rainfall events) were 10.04,6.62,3.42,1.30,0.47 and0.83 mg/L,respectively.The losses of diffuse N and P exhibited clear seasonal patterns and mainly occurred during the period from July through September,when the losses totaled 99.3 and 9.6 kg/ha for TN and TP,respectively,accounting for 75% and 74% of the total annual loadings.The mean annual loadings of TN and TP were 124.6 and 12.9 kg/ha,respectively.The results indicate that residential areas in the hilly areaof the central Sichuan Basin are subject to high diffuse N and P loadings,posing a serious risk to the receiving water quality.Ecological buffering belts are recommended to incorporate into the urbanized catchment to reduce diffuse pollution.展开更多
Based on a coupled hydrodynamic–ecological model for regional and shelf seas (COHERENS), a three-dimensional baroclinic model for the Changjiang (Yangtze) River estuary and the adjacent sea area was established using...Based on a coupled hydrodynamic–ecological model for regional and shelf seas (COHERENS), a three-dimensional baroclinic model for the Changjiang (Yangtze) River estuary and the adjacent sea area was established using the sigma-coordinate in the vertical direction and spherical coordinate in the horizontal direction. In the study, changing-grid technology and the "dry-wet" method were designed to deal with the moving boundary. The minimum water depth limit condition was introduced for numerical simulation stability and to avoid producing negative depths in the shallow water areas. Using the Eulerian transport approaches included in COHERENS for the advection and dispersion of dissolved pollutants, numerical simulation of dissolved pollutant transport and diffusion in the Changjiang River estuary were carried out. The mass centre track of dissolved pollutants released from outlets in the south branch of the Changjiang River estuary water course has the characteristic of reverse current motion in the inner water course and clockwise motion offshore. In the transition area, water transport is a combination of the two types of motion. In a sewage-discharge numerical experiment, it is found that there are mainly two kinds of pollution distribution forms: one is a single nuclear structure and the other is a double nuclear (dinuclear) structure in the turbid zone of the Changjiang River estuary. The rate of expansion of the dissolved pollutant distribution decreased gradually. The results of the numerical experiment indicate that the maximum turbid zone of the Changjiang River estuary is also the zone enriched with pollutants. Backward pollutant flow occurs in the north branch of the estuary, which is similar to the backward salt water flow, and the backward flow of pollutants released upstream is more obvious.展开更多
基金supported by the National Key R&D Program (Grant Nos. 2017YFC0212603 and 2017YFC0212604)the Chinese Academy of Sciences Strategic Priority Research Program (Grant No. XDA19040201)the National Natural Science Foundation of China (Grant Nos. 41575128 and 41620104008)
文摘Severe haze pollution that occurred in January 2014 in Wuhan was investigated. The factors leading to Wuhan’s PM2.5 pollution and the characteristics and formation mechanism were found to be significantly different from other megacities, like Beijing. Both the growth rates and decline rates of PM2.5 concentrations in Wuhan were lower than those in Beijing, but the monthly PM2.5 value was approximately twice that in Beijing. Furthermore, the sharp increases of PM2.5 concentrations were often accompanied by strong winds. A high-precision modeling system with an online source-tagged method was established to explore the formation mechanism of five haze episodes. The long-range transport of the polluted air masses from the North China Plain (NCP) was the main factor leading to the sharp increases of PM2.5 concentrations in Wuhan, which contributed 53.4% of the monthly PM2.5 concentrations and 38.5% of polluted days. Furthermore, the change in meteorological conditions such as weakened winds and stable weather conditions led to the accumulation of air pollutants in Wuhan after the long-range transport. The contribution from Wuhan and surrounding cities to the PM2.5 concentrations was determined to be 67.4% during this period. Under the complex regional transport of pollutants from surrounding cities, the NCP, East China, and South China, the five episodes resulted in 30 haze days in Wuhan. The findings reveal important roles played by transregional and intercity transport in haze formation in Wuhan.
基金the National Key Scientific and Technological Infrastructure project “Earth System Science Numerical Simulator Facility” (Earth Lab)
文摘The attainment of suitable ambient air quality standards is a matter of great concern for successfully hosting the ⅩⅩⅣ Olympic Winter Games(OWG). Transport patterns and potential sources of pollutants in Zhangjiakou(ZJK) were investigated using pollutant monitoring datasets and a dispersion model. The PM_(2.5) concentration during February in ZJK has increased slightly(28%) from 2018 to 2021, mostly owing to the shift of main potential source regions of west-central Inner Mongolia and Mongolian areas(2015–18) to the North China Plain and northern Shanxi Province(NCPS) after 2018.Using CO as an indicator, the relative contributions of the different regions to the receptor site(ZJK) were evaluated based on the source-receptor-relationship method(SRR) and an emission inventory. We found that the relative contribution of pollutants from NCPS increased from 33% to 68% during 2019–21. Central Inner Mongolia(CIM) also has an important impact on ZJK under unfavorable weather conditions. This study demonstrated that the effect of pollution control measures in the NCPS and CIM should be strengthened to ensure that the air quality meets the standard during the ⅩⅩⅣ OWG.
文摘Based on data of PM2.5 hourly concentration and HYSPLIT model backward trajectory in coastal cities of Fujian Province during January 25 -26, 2014, a typical regional pollution process affecting Fujian from the north to the south and the east to the west on January 26 was investiga- ted. Taking Fuzhou as an example, based on weather situation on the ground and at high altitudes as well as corresponding meteorological data such as wind direction, wind velocity, and visibility, the changes of meteorological elements before, during and after the pollution were compared. Based on the V-3θ atmospheric vertical structure diagrams, the weather reasons for the generation, maintaining and dissipation of the pollution were discussed. The results indicated that the regional pollution was transported from the northeast to the southwest. The northeasterly air flow in front of the cold ridge strengthened and moved toward the east, so that the pollutant from the north affected Fujian form the north to the south and from the east to the west. As a result, there was a dramatic increase of pollutant concentration, rapid drop of visibility, and deterioration of air quality in the affected areas. The heavy pollution process featured high-speed transport and short-time generation. The air quality changed from good state to heavy pollution in just 3 -4 hours. The maximum of IAQIpM2.5 reached 280. The whole pollution process lasted for 14 hours. Solar radiation had been deeply affected by aerosol clouds, so that atmospheric stratification was extremely stable. Along with the eastward movement of cold high pressure into the sea, the dominant wind direction near the ground changed from the northeast to the east, so that the source of the pollutant was cut off , and air quality quickly turned well. The changes of atmospheric vertical structure indicated that the high inversion layer and clouds near 700 hPa kept lower air clean and blocked upper pollution transport. The later sudden increase of wind speed and strengthening of atmospheric mechanical turbu- lent destroyed inversion layer, so that the upper pollutants invaded air near the ground rapidly. During the period of high pollution, the isothermal layer (aerosol clouds) leaded to decrease of wind speed, and the atmosphere became more stable. The pollution ended until the wind field changed.
文摘Assessment of harmful impacts and risks of air pollution in case of accidents as well as of long lasting exposition is an important challenge of chemical transport modeling. Sad confirmation of this statement unexpectedly has come from the nuclear power plant accident in Fukushima which occurred while this paper was finalized. Two strategies to comply with the task of impact and risk assessment in extended regions like Central Europe or the Balkans are described. The first one is characterized by application of a single model system to an extended domain. The other one is based on the combined application of several chemical transport models designed for the use in various sub-domains in the region under consideration. Advantages and disadvantages exist for both approaches. For instance, the single model strategy allows unified and harmonized assessment of risks in a larger region, whereas the combined model strategy may pro-vide faster and locally more specific response in emergency cases. The single model approach is treated exploiting applications of the EURAD model system. The combined model approach is a novel way of joint use of chemical transport model systems developed for the Balkans. The models are described and the accuracy of simulations carried out with them is briefly demonstrated by comparison of simulated and observed concentrations of air pollutants. Applications regarding the search of sources for high pollution events and the assessment of risks through known sources are exem-plarily discussed.
文摘The coastal zone is the significant environmental setting where ocean interfaces land. In addition, it is economically important because of its high residential, commercial and recreational values. Meanwhile, in the United States, public coastal areas are increasingly off-limits due to elevated levels of fecal pollution and other contaminants. This study investigates the effects of rainfall, discharge, wave, and alongshore transport on coastal FIB (fecal indicator bacteria) concentrations at adjacent beaches in Orange County, California, over three years' period from October 2001 to September 2004. In order to identify the dominant tempora land spatial patterns of fecal pollutions along the coastal beaches, Empirical Orthogonal Function analysis was utilized for the three-year measurements (n = 39,525) of FIB concentration data from 17 sampling stations. Through the data analysis and the empirical orthogonal function analysis, it was found that the dominant factor effecting coastal FIB concentration is precipitation event and consequent water discharge from Santa Ana River in the area. The Empirical Orthogonal Function analysis revealed the potential non-point FIB sources around northern part of Orange County beaches. In addition, this study confirmed the existing alongshore transport by wave-driven surf zone current and offshore tidal currents.
文摘Sulfur dioxide (SO2) and nitrogen dioxide (NO2) emissions generated at coal burning power plants and from transport are a leading cause of acid deposition and chemical smog in many parts of the world. Sulfur dioxide emitted by thermal power plants and from transport in Kosovo is transported via prevailing winds to other locations. Through its journey, this SO2 gas undergoes a series of chemical reactions that ultimately transform it into sulfuric acid (H2SO4) which is deposited as acid rain. As a consequence of NO2 emissions from electricity production and transport in Kosovo the ozone (O3) is formed as photochemical smog due to sunlight, which triggers the breakdown of NO2. We modeled the impact of SO2 and NO2 emissions from energy system and transport in Kosovo on acid deposition and chemical smog locally. In model we consider the role of SO2 and NO2 pollution control technologies on mitigating these impacts.
文摘Increasing air pollution around the world causes many problems,especially in the field of health.Air pollution affects not only human health but also other living things health.The factors that cause air pollution the most are heating,industry,and transportation.Many countries in the world carry out various studies to reduce the effect of these factors on air pollution.Especially in the field of transportation,studies have been quite a lot in recent years.In this study,air pollution caused by transportation in Erzurum,Turkey has investigated.Emission amounts of NO_(X),PM_(10),and SO_(2) values have calculated according to the types of vehicles in the city.Then,the amount of emissions from transportation in the total sector has revealed.The transportation structure of the city has examined in general terms and the missing aspects in terms of pedestrian transportation have revealed.Finally,some solution proposals aiming to encourage the use of pedestrian transportation and micro mobility vehicles in order to reduce motor land vehicles are presented.
基金Under the auspices of National Key Research and Development Program of China(No.2017YFC0212301,2016YFC0203304)Basic Research Funds of Central Public Welfare Research Institutes(No.2018SYIAEZD4)+3 种基金Program of Liaoning Meteorological Office(No.201904,D201603)Key Program of National Natural Science Foundation of China(No.41730647)Program of Laboratory of Atmospheric Chemistry,China Meteorological Administration(No.2017B02)Key Program of Natural Science Foundation of Liaoning Province(No.20170520359)
文摘Characteristics of air pollution in Northeast China(NEC) received less research attention in the past comparing to other heavily polluted regions in China.Spatiotemporal variations of six criteria air pollutants(PM10, PM2.5, SO2, NO2, O3 and CO) in Central Liaoning Urban Agglomeration(CLUA) and Harbin-Changchun Urban Agglomeration(HCUA) in NEC Plain were analyzed in this study based on three-year hourly observations of air pollutants and meteorological variables from 2015 to 2017.The results indicated that the annual mean concentrations of air pollutants are generally higher in the middle and southern regions in NEC Plain and lower in the northern region.Megacities such as Shenyang, Harbin and Changchun experience severe air pollution, with a three-year averaged air quality index(AQI) larger than 80, far exceeding the daily AQI standard at the first-level of 50 in China.The annual mean PM and SO2 concentrations decrease most significantly in NEC urban agglomerations from 2015 to 2017, followed by CO and NO2, while O3 shows a slight increasing trend.All the six pollutants exhibit obvious seasonal and diurnal variations, and these variations are dictated by local emission and meteorological conditions.PM2.5 and O3 concentrations in NEC urban agglomerations strongly depend on wind conditions.High O3 concentrations at different cities usually occur in presence of strong winds but are independent on wind direction(WD), while high PM2.5 is usually accompanied by weak winds and poor dispersion condition, and sometimes also occur when the northerly or southerly winds are strong.Regional transport of air pollutants between NEC urban agglomerations is common.A severe haze event on November 1–4, 2017 is examined to demonstrate the role of regional transport on pollution.
基金supported by the National Natural Science Foundation of China(Grants No.51739002 and 51479064)the World-Class Universities(Disciplines)and Characteristic Development Guidance Funds for the Central Universitiesthe Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions(Grant No.PPZY2015A051)
文摘In this study,a two-dimensional flow-pollutant coupled model was developed based on a quadtree grid.This model was established to allow the accurate simulation of wind-driven flow in a large-scale shallow lake with irregular natural boundaries when focusing on important smallscale localized flow features.The quadtree grid was created by domain decomposition.The governing equations were solved using the finite volume method,and the normal fluxes of mass,momentum,and pollutants across the interface between cells were computed by means of a Godunov-type Osher scheme.The model was employed to simulate wind-driven flow in a circular basin with non-uniform depth.The computed values were in agreement with analytical data.The results indicate that the quadtree grid has fine local resolution and high efficiency,and is convenient for local refinement.It is clear that the quadtree grid model is effective when applied to complex flow domains.Finally,the model was used to calculate the flow field and concentration field of Taihu Lake,demonstrating its ability to predict the flow and concentration fields in an actual water area with complex geometry.
基金National Natural Science Foundation of China under Grant No.72171157 and 72140005.
文摘Due to the transboundary nature of air pollutants,a province's efforts to improve air quality can reduce PM2.5 concentration in the surrounding area.The inter-provincial PM2.5 pollution transport could bring great challenges to related environmental management work,such as financial fund allocation and subsidy policy formulation.Herein,we examined the transport characteristics of PM2.5 pollution across provinces in 2013 and 2020 via chemical transport modeling and then monetized inter-provincial contributions of PM2.5 improvement based on pollutant emission control costs.We found that approximately 60%of the PM2.5 pollution was from local sources,while the remaining 40%originated from outside provinces.Furthermore,about 1011 billion RMB of provincial air pollutant abatement costs contributed to the PM2.5 concentration decline in other provinces during 2013-2020,accounting for 41.2%of the total abatement costs.Provinces with lower unit improvement costs for PM2.5,such as Jiangsu,Hebei,and Shandong,were major contributors,while Guangdong,Guangxi,and Fujian,bearing higher unit costs,were among the main beneficiaries.Our study identifies provinces that contribute to air quality improvement in other provinces,have high economic efficiency,and provide a quantitative framework for determining inter-provincial compensations.This study also reveals the uneven distribution of pollution abatement costs(PM2.5 improvement/abatement costs)due to transboundary PM2.5 transport,calling for adopting inter-provincial economic compensation policies.Such mechanisms ensure equitable cost-sharing and effective regional air quality management.
文摘A tracer model with random diffusion coupled to the hydrodynamic model for the Zhujiang River Estuary (Pearl River Estuary, PRE) is to examine the effect of circulations on the transport of completely conservative pollutants. It is focused on answering the following questions: (1) What role does the estuarine plume front in the winter play in affecting the pollutants transport and its distribution in the PRE ? (2) What effect do the coastal currents driven by the monsoon have on the pollutants transport? The tracer experiment results show that: (1) the pollutant transport paths strongly depend on the circulation structures and plume frontal dynamics of the PRE and coastal waters; (2) during the summer when a southwesterly monsoon prevails, the pollutants from the four easterly river inlets and those from the bottom layer of offshore stations will greatly influence the water quality in Hong Kong waters, however, the pollutants released from the four westerly river-inlets will seldom affect the water qual
文摘A two-dimensional, non-reactive convective cloud transport model is used to simulate in detail the vertical transport and wet scavenging of soluble pollutant gases by a deep thunderstorm systems Simulations show that for gases with not very high solubility, a deep and intense thunderstorm can still rapidly and efficiently transport them from boundary layer(PBL) up to mid and upper troposphere. resulting in a local significant increase of concentration in the upper layer and a reduction in PBL. Dissolution effects decrease both the incloud gas concentration and the upward net fluxes. The higher the solubility is, the more remarkable the decrease is. However, for very low soluble gases (H<102 Matm-1), the influences are very slight. In addition, the effects of irreversible dissolution and aqueous reactions in drops on the vertical transport of gaseous pollutants are estimated in extreme.
基金This study was supported by the National Natural Science Foundation of China(41907328)the Strategic Priority Research Program of Chinese Academy of Sciences,Pan-Third Pole Environment Study for a Green Silk Road(Pan-TPE)(XDA20040501)+4 种基金State Key Laboratory of Cryospheric Science(SKLCS-ZZ-2020)financial support from the Youth Innovation Promotion Association of Chinese Academy of Sciences(2016070)financial support from the Chinese Academy of Sciences‘‘Light of West China”ProgramCAS-President’s International Fellowship Initiative(PIFI,Grant No.2019PC0076)support provided by the Institute for Advanced Sustainability Studies(IASS),which is funded by the German Federal Ministry for Education and Research(BMBF)and the Brandenburg Ministry for Science,Research and Culture(MWFK).
文摘Air pollution is a grand challenge of our time due to its multitude of adverse impacts on environment and society,with the scale of impacts more severe in developing countries,including China.Thus,China has initiated and implemented strict air pollution control measures over last several years to reduce impacts of air pollution.Monitoring data from Jan 2015 to Dec 2019 on six criteria air pollutants(SO_(2),NO_(2),CO,O_(3),PM_(2.5),and PM_(10))at eight sites in southwestern China were investigated to understand the situation and analyze the impacts of transboundary air pollutants in this region.In terms of seasonal variation,the maximum concentrations of air pollutants at these sites were observed in winter or spring season depending on individual site.For diurnal variation,surface ozone peaked in the afternoon while the other pollutants had a bimodal pattern with peaks in the morning and late afternoon.There was limited transport of domestic emissions of air pollutants in China to these sites.Local emissions enhanced the concentrations of air pollutants during some pollution events.Mostly,the transboundary transport of air pollution from South Asia and Southeast Asia was associated with high concentrations of most air pollutants observed in southwestern China.Since air pollutants can be transported to southwestern China over long distances from the source regions,it is necessary to conduct more research to properly attribute and quantify transboundary transport of air pollutants,which will provide more solid scientific guidance for air pollution management in southwestern China.
基金funded by the Natural Science Foundation of Hunan Province,grant number“2021JJ30679”the Hunan Provincial Department of Education General Project,grant number“19C1744”。
文摘Exploring transport patterns of soil contaminants is essential for solving the problem of heavy metal contamination in mine soils.In this study,contamination of Pb,Zn,and Cd in the mountain soils of the lead–zinc ore mines in Ganxi Township,Hengdong County,Hunan Province,China was investigated,and their transport patterns were further explored using a soil-column model and numerical simulation techniques.In total,111 mine soil samples were collected and placed into six experimental soil columns.By controlling the water flow,a control soil column group(CK),two mixed soil columns X1 with daily water flows of 1 and 5 L,and three mixed soil columns X3 with daily water flows of 2,3,and 4 L were evaluated.The results showed that the residual fraction of Pb accounted for 71.93%of the content on average,whereas the exchangeable fractions of Zn,Cd,and Fe-Mn oxide-bound fractions of Zn and Cd accounted for 28.60%,31.07%,and 43.2%and 53.54%of the content,respectively.Pb,Zn,and Cd in the soils of the CK,X1,and X3 groups mainly were accumulated at a depth from approximately 0 to 20 cm,and the content at this depth accounted for 60.09%of that at a 0~40 cm depth.The soil at a depth range of 0~10 cm was most seriously contaminated,and the proportion of content was 32.39%of that at a 0~40 cm depth.Numerical simulation showed that on the 5 th day,the pollutant transport range was 0~24 cm,and on the 9 th day,the pollutant transport range exceeded 40 cm.On the 15 th day,the transport capacity of pollutants at depths of 0~40 cm was close to the stable state,but the soil at a depth of 0~10 cm was still heavily polluted.These results reflect the transport pattern of heavy metal pollutants in the soil of lead–zinc ore mines and may provide a reliable scientific support for the prevention of heavy metal contamination in mine environments.
文摘The circulation pattern and the pollutant transport in the Marmaris Bay are simulated by the developed three-dimensional baroclinic model. The Marmaris Bay is located at the Mediterranean Sea coast of Turkey. Since the sp ring tidal range is typically 20-30 cm, the dominant forcing for the circulation and water exchange is due to the wind action. In the Marmaris Bay, there is sea outfall discharging directly into the bay. and that threats the bay water quality significantly. The current patterns in the vicinity of the outfall have been observed by tracking drogues which are moved by currents at different water depths. In the simulations of pollutant transport, the coliforms-counts is used as the tracer. The model provides realistic predictions for the circulation and pollutant transport in the Marmaris Bay. The transport model component predictions well agree with the results of a laboratory model study.
基金This Project is supported by the National Natural Science Foundation of China.
文摘A convective cloud transport model, without chemical processes, is developed by joining a set of concentration conservative equations into a two-dimensional, slab-symmetric and fully elastic numerical cloud model, and a numerical experiment is completed to simulate the vertical transport of ground-borne, inert gaseous pollutant by deepthunderstorm. The simulation shows that deep convective storm can very effectively transport high concentrated pollutant gas from PBL upward to the upper troposphere in 30 to 40 minutes, where the pollutant spreads laterally outward with strong anvil outflow, forming an extensive high concentration area. Meanwhile, relatively low concentration areas are formed in PBL both below and beside the cloud, mainly caused by dynamic pumping effect and sub-cloud downdraft flow. About 80% of the pollutant gas transported to the upper troposphere is from the layer below 1.5 km AGL (above ground level).
文摘The vertical transport features of gaseous pollutants, with a negative exponent profile of concentration, by different types of convective cloud systems are numerically investigated by using a two-dimensional, reactlonless convective cloud transport model. The results show that an isolated, weak storm is able to pump pollutant gas out PBL and transport it to the mid-troposphere, whereas a deep. intense thunderstorm can very efficiently transport air pollutants up to the mid and upper troposphere and laterally spread with anvil, forming an extensive concentration surge layer at aliitnde of ten odd kilometers altitude. Each type of convective transport results in concentration reduction in PHL. In a wind shear environment the transport efficiency of deep thunderstorm significantly increases and the pollutants enter into clouds on the downshear side at low level and spread downwind in anvil layer. On the other hand, for a cumulus cloud with plenty of liquid water. the gas dissolution effect is increased, and the irreversible aqueous reactions, in extreme, may significantly weaken the vertical transports of pollutant gases even with solubility coefficients no more than 103 M atm-1.
基金provided by the Innovative Team Program of Chinese Academy of Sciences (Grant No.KZZD-EW-TZ-06)the National Natural Science Foundation of China (Grant No.41430750)the National Science & Technology Pillar Program (Grant No.2011BAD31B03)
文摘Hydrological and hydro-chemical monitoring of nitrogen(N) and phosphorus(P) in a small urbanized catchment was conducted in the hilly area of the central Sichuan Basin,China,from 2010 through 2011.The diffuse N and P loadings in different forms of total nitrogen(TN) and phosphorus(TP),dissolved nitrogen(DN) and phosphorus(DP),as well as particulate nitrogen(PN) and phosphorus(PP) were calculated based on runoff discharges and chemical analyses.The results revealed that the diffuse pollution concentrations of TN,DN,PN,TP,DP and PP exhibited large variations during rainfall events,with peak concentrations occurring during the initial period.For all of the measured parameters,the event mean concentrations(EMCs) were observed to clearly vary among rainfall events.The EMCs of TN,DN,PN,TP,DP and PP(for all of the observed rainfall events) were 10.04,6.62,3.42,1.30,0.47 and0.83 mg/L,respectively.The losses of diffuse N and P exhibited clear seasonal patterns and mainly occurred during the period from July through September,when the losses totaled 99.3 and 9.6 kg/ha for TN and TP,respectively,accounting for 75% and 74% of the total annual loadings.The mean annual loadings of TN and TP were 124.6 and 12.9 kg/ha,respectively.The results indicate that residential areas in the hilly areaof the central Sichuan Basin are subject to high diffuse N and P loadings,posing a serious risk to the receiving water quality.Ecological buffering belts are recommended to incorporate into the urbanized catchment to reduce diffuse pollution.
基金Supported by the Public Welfare Special Scientific Research Project funded by the Ministry of Water Resources of China (No. 200701026)National Natural Science Foundation of China (No. 50709007)the Startup Fund of Hohai University (No. 2084/40801107)
文摘Based on a coupled hydrodynamic–ecological model for regional and shelf seas (COHERENS), a three-dimensional baroclinic model for the Changjiang (Yangtze) River estuary and the adjacent sea area was established using the sigma-coordinate in the vertical direction and spherical coordinate in the horizontal direction. In the study, changing-grid technology and the "dry-wet" method were designed to deal with the moving boundary. The minimum water depth limit condition was introduced for numerical simulation stability and to avoid producing negative depths in the shallow water areas. Using the Eulerian transport approaches included in COHERENS for the advection and dispersion of dissolved pollutants, numerical simulation of dissolved pollutant transport and diffusion in the Changjiang River estuary were carried out. The mass centre track of dissolved pollutants released from outlets in the south branch of the Changjiang River estuary water course has the characteristic of reverse current motion in the inner water course and clockwise motion offshore. In the transition area, water transport is a combination of the two types of motion. In a sewage-discharge numerical experiment, it is found that there are mainly two kinds of pollution distribution forms: one is a single nuclear structure and the other is a double nuclear (dinuclear) structure in the turbid zone of the Changjiang River estuary. The rate of expansion of the dissolved pollutant distribution decreased gradually. The results of the numerical experiment indicate that the maximum turbid zone of the Changjiang River estuary is also the zone enriched with pollutants. Backward pollutant flow occurs in the north branch of the estuary, which is similar to the backward salt water flow, and the backward flow of pollutants released upstream is more obvious.