Considering arch rib, lateral brace, suspender, girder, pier and track position, the model for the interaction between long-span tied arch continuous bridge and multiple tracks was established by using steel-concrete ...Considering arch rib, lateral brace, suspender, girder, pier and track position, the model for the interaction between long-span tied arch continuous bridge and multiple tracks was established by using steel-concrete composite section beam element to simulate concrete-filled steel tube(CFST) arch rib, using the beam element with rigid arm to simulate the prestressed concrete girder and using nonlinear bar element to simulate longitudinal constraint between track and bridge. Taking a(77+3×156.8+77) m tied arch continuous bridge with four tracks on the Harbin-Qiqihar Passenger Dedicated Line as an example, the arrangement of continuously welded rail(CWR) was explored. The longitudinal force in CWR on the tied arch continuous bridge, the pier top horizontal force and torque due to the unbalance load case, were analyzed under the action of temperature, vertical live load, train braking and wind load.Studies show that, it can significantly reduce track displacement to set the track expansion devices at main span arch springing on both sides; the track stress due to arch temperature variation can reach 40.8 MPa; the track stress, pier top horizontal force and torque are related to the number of loaded tracks and train running direction, and the bending force applied to unloaded track is close to the loaded track, while the braking force applied to unloaded track is 1/4 to 1/2 of the loaded track; the longitudinal force of track due to the wind load is up to 12.4 MPa, which should be considered.展开更多
A long-span concrete-filled steel tubular(CFST)arch bridge suffers severe vehicle-induced dynamic responses during its service life.However,few quantitative studies have been reported on the typical diseases suffered ...A long-span concrete-filled steel tubular(CFST)arch bridge suffers severe vehicle-induced dynamic responses during its service life.However,few quantitative studies have been reported on the typical diseases suffered by such bridges and their effects on vehicle-induced dynamic response.Thus,a series of field tests and theoretical analyses were conducted to study the effects of typical diseases on the vehicle-induced dynamic response of a typical CFST arch bridge.The results show that a support void results in a height difference between both sides of the expansion joint,thus increasing the effect of vehicle impact on the main girder and suspenders.The impact factor of the displacement response of the main girder exceeds the design value.The variation of the suspender force is significant,and the diseases are found to have a greater effect on a shorter suspender.The theoretical analysis results also show that the support void causes an obvious longitudinal displacement of the main girder that is almost as large as the vertical displacement.The support void can also cause significant changes in the vehicle-induced acceleration response,particularly when the supports and steel box girder continue to collide with each other under the vehicle load.展开更多
The use of Network hanger arrangement, a development of the classical Nielsen V-hanger system, in steel bowstring arch bridges allows for important steel saving, with very slender main elements, owing to the remarkabl...The use of Network hanger arrangement, a development of the classical Nielsen V-hanger system, in steel bowstring arch bridges allows for important steel saving, with very slender main elements, owing to the remarkable reduction of bending stresses in the arches and tie beams. The present paper describes the main features of the design and construction of several long-span arch bridges of this typology in Spain: the three pedestrian footbridges for the Madrid cycling ring track, with spans of 52, 60 and 80 m, the Bridge over River Deba in Guipuzcoa with a span of 110 m and Palma del Rio Bridge over River Guadalquivir in Cordoba, 130 m long. In all cases, two inclined arches linked at the crown were implemented, a very effective disposition to reduce the out-of-plane buckling length. The multiple crossings of the hanger system, consisting of prestressed bars in the case of Deba Bridge and the footbridges, and locked coil cables for Palma del Rio Bridge, were dealt with by means of crossing devices which led to a technically satisfactory solution with minimal visual impact. An innovative approach to bowstring arches was introduced in Valdebebas Bridge over M-12 motorway in Madrid, next to the new T-4 Terminal of Barajas Airport, with a span of 162 m, where the hangers are replaced by a structural steel mesh -diagrid- which acts as the web of a simply-supported beam whose compression head is the arch and the tie beam is the deck.展开更多
基金Project(51378503)supported by the National Natural Science Foundation of ChinaProject(2014M552158)supported by China Postdoctoral Science Foundation
文摘Considering arch rib, lateral brace, suspender, girder, pier and track position, the model for the interaction between long-span tied arch continuous bridge and multiple tracks was established by using steel-concrete composite section beam element to simulate concrete-filled steel tube(CFST) arch rib, using the beam element with rigid arm to simulate the prestressed concrete girder and using nonlinear bar element to simulate longitudinal constraint between track and bridge. Taking a(77+3×156.8+77) m tied arch continuous bridge with four tracks on the Harbin-Qiqihar Passenger Dedicated Line as an example, the arrangement of continuously welded rail(CWR) was explored. The longitudinal force in CWR on the tied arch continuous bridge, the pier top horizontal force and torque due to the unbalance load case, were analyzed under the action of temperature, vertical live load, train braking and wind load.Studies show that, it can significantly reduce track displacement to set the track expansion devices at main span arch springing on both sides; the track stress due to arch temperature variation can reach 40.8 MPa; the track stress, pier top horizontal force and torque are related to the number of loaded tracks and train running direction, and the bending force applied to unloaded track is close to the loaded track, while the braking force applied to unloaded track is 1/4 to 1/2 of the loaded track; the longitudinal force of track due to the wind load is up to 12.4 MPa, which should be considered.
基金This research was supported by the National Natural Science Foundation of China(Grant Nos.51908015,51978021)National Key Research and Development Program of China(Grant Nos.2017YFC1500604,2017YFC1500603)+1 种基金Beijing Municipal Education Commission(Nos.KM201910005020,IDHT20190504)the Basic Research Fund of Beijing University of Technology(No.004000546318524).
文摘A long-span concrete-filled steel tubular(CFST)arch bridge suffers severe vehicle-induced dynamic responses during its service life.However,few quantitative studies have been reported on the typical diseases suffered by such bridges and their effects on vehicle-induced dynamic response.Thus,a series of field tests and theoretical analyses were conducted to study the effects of typical diseases on the vehicle-induced dynamic response of a typical CFST arch bridge.The results show that a support void results in a height difference between both sides of the expansion joint,thus increasing the effect of vehicle impact on the main girder and suspenders.The impact factor of the displacement response of the main girder exceeds the design value.The variation of the suspender force is significant,and the diseases are found to have a greater effect on a shorter suspender.The theoretical analysis results also show that the support void causes an obvious longitudinal displacement of the main girder that is almost as large as the vertical displacement.The support void can also cause significant changes in the vehicle-induced acceleration response,particularly when the supports and steel box girder continue to collide with each other under the vehicle load.
文摘The use of Network hanger arrangement, a development of the classical Nielsen V-hanger system, in steel bowstring arch bridges allows for important steel saving, with very slender main elements, owing to the remarkable reduction of bending stresses in the arches and tie beams. The present paper describes the main features of the design and construction of several long-span arch bridges of this typology in Spain: the three pedestrian footbridges for the Madrid cycling ring track, with spans of 52, 60 and 80 m, the Bridge over River Deba in Guipuzcoa with a span of 110 m and Palma del Rio Bridge over River Guadalquivir in Cordoba, 130 m long. In all cases, two inclined arches linked at the crown were implemented, a very effective disposition to reduce the out-of-plane buckling length. The multiple crossings of the hanger system, consisting of prestressed bars in the case of Deba Bridge and the footbridges, and locked coil cables for Palma del Rio Bridge, were dealt with by means of crossing devices which led to a technically satisfactory solution with minimal visual impact. An innovative approach to bowstring arches was introduced in Valdebebas Bridge over M-12 motorway in Madrid, next to the new T-4 Terminal of Barajas Airport, with a span of 162 m, where the hangers are replaced by a structural steel mesh -diagrid- which acts as the web of a simply-supported beam whose compression head is the arch and the tie beam is the deck.