In the field of civil engineering, magnetorheological fluid (MRF) damper-based semi-active control systems have received considerable attention for use in protecting structures from natural hazards such as strong ea...In the field of civil engineering, magnetorheological fluid (MRF) damper-based semi-active control systems have received considerable attention for use in protecting structures from natural hazards such as strong earthquakes and high winds. In this paper, the MRF damper-based semi-active control system is applied to a long-span spatially extended structure and its feasibility is discussed. Meanwhile, a _trust-region method based instantaneous optimal semi-active control algorithm (TIOC) is proposed to improve the performance of the semi-active control system in a multiple damper situation. The proposed TIOC describes the control process as a bounded constraint optimization problem, in which an optimal semi- active control force vector is solved by the trust-region method in every control step to minimize the structural responses. A numerical example of a railway station roof structure installed with MRF-04K dampers is presented. First, a modified Bouc- Wen model is utilized to describe the behavior of the selected MRF-04K damper. Then, two semi-active control systems, including the well-known clipped-optimal controller and the proposed TIOC controller, are considered. Based on the characteristics of the long-span spatially extended structure, the performance of the control system is evaluated under uniform earthquake excitation and travelling-wave excitation with different apparent velocities. The simulation results indicate that the MR fluid damper-based semi-active control systems have the potential to mitigate the responses of full-scale long-span spatially extended structures under earthquake hazards. The superiority of the proposed TIOC controller is demonstrated by comparing its control effectiveness with the clipped-optimal controller for several different cases.展开更多
The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy ...The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy in bridge deformation monitoring.This study monitored the deformation of the Ganjiang Super Bridge based on the small baseline subsets(SBAS)In SAR technology and Sentinel-1A data.We analyzed the deformation results combined with bridge structure,temperature,and riverbed sediment scouring.The results are as follows:(1)The Ganjiang Super Bridge area is stable overall,with deformation rates ranging from-15.6 mm/yr to 10.7 mm/yr(2)The settlement of the Ganjiang Super Bridge deck gradually increases from the bridge tower toward the main span,which conforms to the typical deformation pattern of a cable-stayed bridge.(3)The sediment scouring from the riverbed cause the serious settlement on the bridge’s east side compared with that on the west side.(4)The bridge deformation negatively correlates with temperature,with a faster settlement at a higher temperature and a slow rebound trend at a lower temperature.The study findings can provide scientific data support for the health monitoring of long-span railway bridges.展开更多
With the increment of the complexity of structural systems and the span of spatial structures, the interactions between parts of the structures, especially between some flexible substructures, become too complex to be...With the increment of the complexity of structural systems and the span of spatial structures, the interactions between parts of the structures, especially between some flexible substructures, become too complex to be analyzed clearly. In this paper, taking an actual gymnasium of a long-span spatial steel-cable-membrane hybrid structure as the calculation model, the static and dynamic analyses of the hybrid structures are performed by employing the global analysis of the whole hybrid structure and the substructural analysis of the truss arch substructure, the cable-membrane substructure, etc. In addition, the comparison of stresses and displacements of structural members in the global and substructural analyses is made. The numerical results show that serious errors exist in the substructural analysis of the hybrid structure, and the global analysis is necessary for the hybrid structure under the excitation of static loads and seismic loads.展开更多
The state equation and observation equation of the structural dynamic systems under various analysis scales are derived based on wavelet packet analysis. The time-frequency properties of structural dynamic response un...The state equation and observation equation of the structural dynamic systems under various analysis scales are derived based on wavelet packet analysis. The time-frequency properties of structural dynamic response under various scales are further formulated. The theoretical analysis results reveal that the wavelet packet energy spectrum (WPES) obtained from wavelet packet decomposition of structural dynamic response will detect the presence of structural damage. The sensitivity analysis of the WPES to structural damage and measurement noise is also performed. The transfer properties of the structural system matrix and the observation noise under various analysis scales are formulated, which verify the damage alarming reliability using the proposed WPES with preferable damage sensitivity and noise robusticity.展开更多
During the service life of civil engineering structures such as long-span bridges, local damage at key positions may continually accumulate, and may finally result in their sudden failure. One core issue of global vib...During the service life of civil engineering structures such as long-span bridges, local damage at key positions may continually accumulate, and may finally result in their sudden failure. One core issue of global vibration-based health monitoring methods is to seek some damage indices that are sensitive to structural damage, This paper proposes an online structural health monitoring method for long-span suspension bridges using wavelet packet transform (WPT). The WPT- based method is based on the energy variations of structural ambient vibration responses decomposed using wavelet packet analysis. The main feature of this method is that the proposed wavelet packet energy spectrum (WPES) has the ability to detect structural damage from ambient vibration tests of a long-span suspension bridge. As an example application, the WPES-based health monitoring system is used on the Runyang Suspension Bridge under daily environmental conditions. The analysis reveals that changes in environmental temperature have a long-term influence on the WPES, while the effect of traffic loadings on the measured WPES of the bridge presents instantaneous changes because of the nonstationary properties of the loadings. The condition indication indices VD reflect the influences of environmental temperature on the dynamic properties of the Runyang Suspension Bridge. The field tests demonstrate that the proposed WPES-based condition indication index VD is a good candidate index for health monitoring of long-span suspension bridges under ambient excitations.展开更多
The precise control of the shape of transversely stiffened suspended cable systems is crucial. However, existing form-finding methods primarily rely on iterative calculations that treat loads as fixed known conditions...The precise control of the shape of transversely stiffened suspended cable systems is crucial. However, existing form-finding methods primarily rely on iterative calculations that treat loads as fixed known conditions. These methods are inefficient and fail to accurately control shape results. In this study, we propose a form-finding method that analyzes the load response of models under different sag and stress levels, taking into account the construction process. To analyze the system, a structural finite element model was established in ANSYS, and geometric nonlinear analysis was conducted using the Newton-Raphson method. The form-finding analysis results demonstrate that the proposed method achieves precise control of shape, with a maximum shape error ranging from 0.33% to 0.98%. Furthermore, the relationships between loads and tension forces are influenced by the deformed shape of the structures, exhibiting significant geometric nonlinear characteristics. Meanwhile, the load response analysis reveals that the stress level of the self-equilibrium state in the transversely stiffened suspended cable system is primarily governed by strength criteria, while shape is predominantly controlled by stiffness criteria. Importantly, by simulating the initial tensioning process as an initial condition, this method solves for a counterweight that satisfies the requirements and achieves a self-equilibrium state with the desired shape. The shape of the self-equilibrium state is precisely controlled by simulating the construction process. Overall, this work presents a new method for analyzing the form-finding process of large-span transversely stiffened suspended cable system, considering the construction process which was often overlooked in previous studies.展开更多
With the rapid developments of the high-speed railway in China, a great number of long-span bridges have been constructed in order to cross rivers and gorges. At present, the longest main span of a constructed high-sp...With the rapid developments of the high-speed railway in China, a great number of long-span bridges have been constructed in order to cross rivers and gorges. At present, the longest main span of a constructed high-speed railway bridge is only 630 m. The main span of Hutong Yangtze River Bridge and of Wufengshan Yangtze River Bridge, which are under construction, will be much longer, at 1092 m each. In order to overcome the technical issues that originate from the extremely large dead loading and the relatively small structural stiffness of long-span high-speed railway bridges, many new technologies in bridge construction, design, materials, and so forth have been developed. This paper carefully reviews progress in the construction technologies of multi-function combined bridges in China, including com- bined highway and railway bridges and multi-track railway bridges. Innovations and practices regarding new types of bridge and composite bridge structures, such as bridges with three cable planes and three main trusses, inclined main trusses, slab-truss composite sections, and steel-concrete composite sections, are introduced. In addition, investigations into high-performance materials and integral fabrication and erection techniques for long-span railway bridges are summarized. At the end of the paper, prospects for the future development of long-span high-speed railwav bridges are provided.展开更多
This paper provides a review on the development of structural monitoring in Japan, with an emphasis on the type, strategy, and utilization of monitoring systems. The review focuses on bridge and building structures us...This paper provides a review on the development of structural monitoring in Japan, with an emphasis on the type, strategy, and utilization of monitoring systems. The review focuses on bridge and building structures using vibration-based techniques. Structural monitoring systems in Japan historically started with the objective of evaluating structural responses against extreme events. In the development of structural monitoring, monitoring systems and collected data were used to verify design assumptions, update speci cations, and facilitate the ef cacy of vibration control systems. Strategies and case studies on monitoring for the design veri cation of long-span bridges and tall buildings, the performance of seismic isolation systems in building and bridges, the veri cation of structural retro t, the veri cation of structural control systems (passive, semi-active, and active), structural assessment, and damage detec- tion are described. More recently, the application of monitoring systems has been extended to facilitate ef cient operation and effective maintenance through the rationalization of risk and asset management using monitoring data. This paper also summarizes the lessons learned and feedback obtained from case studies on the structural monitoring of bridges and buildings in Japan.展开更多
Modem long-span space structures,developed during the 1970s and 1980s,are light and effective structures based on new technologies and light-weight high-strength materials,such as membranes and steel cables.These stru...Modem long-span space structures,developed during the 1970s and 1980s,are light and effective structures based on new technologies and light-weight high-strength materials,such as membranes and steel cables.These structures include air-supported membrane structures,cable-membrane structures,cable truss structures,beam string structures,suspen-domes,cable domes,composite structures of cable dome and single-layer lattice shell,Tensairity structures and so forth.For the premodem space structures widely used since the mid-twentieth century(such as thin shells,space trusses,lattice shells and ordinary cable structures),new space structures have been developed by the combination of different structural forms and materials.The application of prestressing technology and the innovation of structural concepts and configurations are also associated with modem space structures,including composite space trusses,open-web grid structures,polyhedron space frame structures,partial double-layer lattice shells,cable-stayed grid structures,tree-type structures,prestressed segmental steel structures and so forth.This paper provides a review of the structural characteristics and practical applications in China of modem rigid space structures,modem flexible space structures and modem rigid-flexible combined space structures.展开更多
This study is devoted to the experimental validation of the multi-type sensor placement and response reconstruction method for structural health monitoring of long-span suspension bridges. The method for multi-type se...This study is devoted to the experimental validation of the multi-type sensor placement and response reconstruction method for structural health monitoring of long-span suspension bridges. The method for multi-type sensor placement and response reconstruction is briefly described. A test bed, comprising of a physical model and an updated finite element (P-E) model of a long-span suspension bridge is also concisely introduced. The proposed method is then applied to the test bed; the equation of motion of the test bed subject to ground motion, the objective function for sensor location optimization, the principles for mode selection and multi-type response reconstruction are established. A numerical study using the updated FE model is performed to select the sensor types, numbers, and locations. Subsequently, with the identified sensor locations and some practical considerations, fiber Bragg grating (FBG) sensors, laser displacement transducers, and accelerometers are installed on the physical bridge model. Finally, experimental investigations are conducted to validate the proposed method. The experimental results show that the reconstructed responses using the measured responses from the limited number of multitype sensors agree well with the actual bridge responses. The proposed method is validated to be feasible and effective for the monitoring of structural behavior of longspan suspension bridges.展开更多
The analysis of dynamic responses of cable-stayed bridges subjected to wind and earthquake loads generally considers only the motions of the bridge deck and pylons.The influence of the stay cable vibration on the resp...The analysis of dynamic responses of cable-stayed bridges subjected to wind and earthquake loads generally considers only the motions of the bridge deck and pylons.The influence of the stay cable vibration on the responses of the bridge is either ignored or considered by approximate procedures.The transverse vibration of the stay cables,which can be significant in some cases,are usually neglected in previous research.In the present study,a new three-node cable element has been developed to model the transverse motions of the cables.The interactions between the cable behavior and the other parts of the bridge superstructure are considered by the concept of dynamic stiffness.The nonlinear effect of the cable caused by its self-weight is included in the formulation.Numerical examples are presented to demonstrate the accuracy and efficiency of the proposed model. The impact of cable vibration behavior on the dynamic characteristics of cable-stayed bridges is discussed.展开更多
The stability of long span steel arch structure of globe transportation center (GTC) in the Beijing Capital International Airport was studied. Different objective models such as single arch model, composite arch model...The stability of long span steel arch structure of globe transportation center (GTC) in the Beijing Capital International Airport was studied. Different objective models such as single arch model, composite arch model and global structural model were introduced to analyze the structural stability by means of the finite element technique. The eigen buckling factor of the steel arch structure was analyzed. The geometrical nonlinearity, elastic-plastic nonlinearity and initial imperfection were taken into account in the investigation of the structural buckling, and the nonlinearity reduction factors for the steel arch structure were discussed. The effects of geometrical nonlinearity and initial imperfection on the structural buckling are light while the effect of material nonlinearity is quite remarkable. For a single steel arch, the dominant buckling mode occurs in out-of-plane of arch structure. The out-of-plane buckling factor of the composite steel arch is greater than that of the single steel arch while the in-plane buckling factor of the former is somewhat less than that of the latter. Moreover, the webs near the steel arch feet have the lowest local buckling level and the local buckling is more serious than the global buckling for the global structure.展开更多
Numerous long-span bridges have been built throughout the world in recent years.These bridges are progressively damaged by continuous usage throughout their long service life.The failure of local structural components...Numerous long-span bridges have been built throughout the world in recent years.These bridges are progressively damaged by continuous usage throughout their long service life.The failure of local structural components is detrimental to the performance of the entire bridge,furthermore,detecting the local abnormality at an early stage is difficult.This paper explores a novel damage detection method for long-span bridges by incorporating stress influence lines(SILs)in control charts,and validates the efficacy of the method through a case study of the Tsing Ma Suspension Bridge.Damage indices based on SILs are subsequently proposed and applied to hypothetical damage scenarios in which one or two critical bridge components are subjected to severe damage.The comparison study suggests that the first-order difference of SIL change is an accurate indicator for location of the damage.To some extent,different levels of damage can be quantified by using SILs incorporating with X-bar control chart.Results of this study indicate that the proposed SIL-based method offers a promising technique for damage detection in long-span bridges.展开更多
Active control technology has been investigated and applied in numerous building structures and infrastructures since 1972 when it was firstly introduced into the civil engineering field by Professor JTP Yao.Now,half ...Active control technology has been investigated and applied in numerous building structures and infrastructures since 1972 when it was firstly introduced into the civil engineering field by Professor JTP Yao.Now,half a century has passed,a variety of control systems have been invented and implemented by researchers and engineers from all over the world.The recent years have witnessed remarkable research attempts and progress devoted to the development in this area based on modern control theory.However,there are still some unknown areas which are worthy of being explored in depth.One of such examples is the application of tuned mass dampers(TMD)to the flutter vibration control of long span bridges.Although applications of TMDs to bridges have been sighted in practice,their genuine effectiveness remains a serious question.The issues relating to how the coupled effect of TMD’s linear force being restricted by the rotational velocity of bridge’s deck during wind excitations which may eventually leads to flutter vibrations,remains unanswered.Such unusual phenomena and limitations were initially discovered and reported by the author sixteen years ago when investigating the barge ship crane hook’s swing motion control.In recent years,the author has invented the active rotary inertia driver(ARID)system which now has been granted patents in China,the US,Europe(including the UK,France,and Germany),Russia,Brazil,India,South Africa,Canada,Australia,Japan and Korean,etc.The ARID is an active control system which could exert direct control torque or moment to the target structures with rotational motions or vibrations natures,including and not limited to buildings,bridges or offshore platforms subjected to winds,earthquakes,and waves excitations.Furthermore,the ARID control system and its methodology can also be applicable to various mechanical systems including but not limited to cranes,vehicles,trains,ships,aircrafts,space crafts,satellites,and robotics.In this paper,the theory,modelling,comprehensive parametric analysis and case study of the ARID system for flutter vibration control of bridges will be discussed,as well as its promising applications in other various occasions.展开更多
基金Supported by:National Science Fund for Distinguished Young Scholars of China Under Grant No. 50425824the National Natural Science Foundation of China Under Grant No.50578109,90715034 and 90715032
文摘In the field of civil engineering, magnetorheological fluid (MRF) damper-based semi-active control systems have received considerable attention for use in protecting structures from natural hazards such as strong earthquakes and high winds. In this paper, the MRF damper-based semi-active control system is applied to a long-span spatially extended structure and its feasibility is discussed. Meanwhile, a _trust-region method based instantaneous optimal semi-active control algorithm (TIOC) is proposed to improve the performance of the semi-active control system in a multiple damper situation. The proposed TIOC describes the control process as a bounded constraint optimization problem, in which an optimal semi- active control force vector is solved by the trust-region method in every control step to minimize the structural responses. A numerical example of a railway station roof structure installed with MRF-04K dampers is presented. First, a modified Bouc- Wen model is utilized to describe the behavior of the selected MRF-04K damper. Then, two semi-active control systems, including the well-known clipped-optimal controller and the proposed TIOC controller, are considered. Based on the characteristics of the long-span spatially extended structure, the performance of the control system is evaluated under uniform earthquake excitation and travelling-wave excitation with different apparent velocities. The simulation results indicate that the MR fluid damper-based semi-active control systems have the potential to mitigate the responses of full-scale long-span spatially extended structures under earthquake hazards. The superiority of the proposed TIOC controller is demonstrated by comparing its control effectiveness with the clipped-optimal controller for several different cases.
基金supported by the National Natural Science Foundation of China(Grant Nos.42264004,42274033,and 41904012)the Open Fund of Hubei Luojia Laboratory(Grant Nos.2201000049 and 230100018)+2 种基金the Guangxi Universities’1,000 Young and Middle-aged Backbone Teachers Training Program,the Fundamental Research Funds for Central Universities(Grant No.2042022kf1197)the Natural Science Foundation of Hubei(Grant No.2020CFB282)the China Postdoctoral Science Foundation(Grant Nos.2020T130482,2018M630879)。
文摘The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy in bridge deformation monitoring.This study monitored the deformation of the Ganjiang Super Bridge based on the small baseline subsets(SBAS)In SAR technology and Sentinel-1A data.We analyzed the deformation results combined with bridge structure,temperature,and riverbed sediment scouring.The results are as follows:(1)The Ganjiang Super Bridge area is stable overall,with deformation rates ranging from-15.6 mm/yr to 10.7 mm/yr(2)The settlement of the Ganjiang Super Bridge deck gradually increases from the bridge tower toward the main span,which conforms to the typical deformation pattern of a cable-stayed bridge.(3)The sediment scouring from the riverbed cause the serious settlement on the bridge’s east side compared with that on the west side.(4)The bridge deformation negatively correlates with temperature,with a faster settlement at a higher temperature and a slow rebound trend at a lower temperature.The study findings can provide scientific data support for the health monitoring of long-span railway bridges.
文摘With the increment of the complexity of structural systems and the span of spatial structures, the interactions between parts of the structures, especially between some flexible substructures, become too complex to be analyzed clearly. In this paper, taking an actual gymnasium of a long-span spatial steel-cable-membrane hybrid structure as the calculation model, the static and dynamic analyses of the hybrid structures are performed by employing the global analysis of the whole hybrid structure and the substructural analysis of the truss arch substructure, the cable-membrane substructure, etc. In addition, the comparison of stresses and displacements of structural members in the global and substructural analyses is made. The numerical results show that serious errors exist in the substructural analysis of the hybrid structure, and the global analysis is necessary for the hybrid structure under the excitation of static loads and seismic loads.
文摘The state equation and observation equation of the structural dynamic systems under various analysis scales are derived based on wavelet packet analysis. The time-frequency properties of structural dynamic response under various scales are further formulated. The theoretical analysis results reveal that the wavelet packet energy spectrum (WPES) obtained from wavelet packet decomposition of structural dynamic response will detect the presence of structural damage. The sensitivity analysis of the WPES to structural damage and measurement noise is also performed. The transfer properties of the structural system matrix and the observation noise under various analysis scales are formulated, which verify the damage alarming reliability using the proposed WPES with preferable damage sensitivity and noise robusticity.
基金National Hi-Tech Research and Development Program of China (863 Program) (No. 2006AA04Z416)the National Natural Science Foundation of China Under Grant No. 50538020
文摘During the service life of civil engineering structures such as long-span bridges, local damage at key positions may continually accumulate, and may finally result in their sudden failure. One core issue of global vibration-based health monitoring methods is to seek some damage indices that are sensitive to structural damage, This paper proposes an online structural health monitoring method for long-span suspension bridges using wavelet packet transform (WPT). The WPT- based method is based on the energy variations of structural ambient vibration responses decomposed using wavelet packet analysis. The main feature of this method is that the proposed wavelet packet energy spectrum (WPES) has the ability to detect structural damage from ambient vibration tests of a long-span suspension bridge. As an example application, the WPES-based health monitoring system is used on the Runyang Suspension Bridge under daily environmental conditions. The analysis reveals that changes in environmental temperature have a long-term influence on the WPES, while the effect of traffic loadings on the measured WPES of the bridge presents instantaneous changes because of the nonstationary properties of the loadings. The condition indication indices VD reflect the influences of environmental temperature on the dynamic properties of the Runyang Suspension Bridge. The field tests demonstrate that the proposed WPES-based condition indication index VD is a good candidate index for health monitoring of long-span suspension bridges under ambient excitations.
文摘The precise control of the shape of transversely stiffened suspended cable systems is crucial. However, existing form-finding methods primarily rely on iterative calculations that treat loads as fixed known conditions. These methods are inefficient and fail to accurately control shape results. In this study, we propose a form-finding method that analyzes the load response of models under different sag and stress levels, taking into account the construction process. To analyze the system, a structural finite element model was established in ANSYS, and geometric nonlinear analysis was conducted using the Newton-Raphson method. The form-finding analysis results demonstrate that the proposed method achieves precise control of shape, with a maximum shape error ranging from 0.33% to 0.98%. Furthermore, the relationships between loads and tension forces are influenced by the deformed shape of the structures, exhibiting significant geometric nonlinear characteristics. Meanwhile, the load response analysis reveals that the stress level of the self-equilibrium state in the transversely stiffened suspended cable system is primarily governed by strength criteria, while shape is predominantly controlled by stiffness criteria. Importantly, by simulating the initial tensioning process as an initial condition, this method solves for a counterweight that satisfies the requirements and achieves a self-equilibrium state with the desired shape. The shape of the self-equilibrium state is precisely controlled by simulating the construction process. Overall, this work presents a new method for analyzing the form-finding process of large-span transversely stiffened suspended cable system, considering the construction process which was often overlooked in previous studies.
文摘With the rapid developments of the high-speed railway in China, a great number of long-span bridges have been constructed in order to cross rivers and gorges. At present, the longest main span of a constructed high-speed railway bridge is only 630 m. The main span of Hutong Yangtze River Bridge and of Wufengshan Yangtze River Bridge, which are under construction, will be much longer, at 1092 m each. In order to overcome the technical issues that originate from the extremely large dead loading and the relatively small structural stiffness of long-span high-speed railway bridges, many new technologies in bridge construction, design, materials, and so forth have been developed. This paper carefully reviews progress in the construction technologies of multi-function combined bridges in China, including com- bined highway and railway bridges and multi-track railway bridges. Innovations and practices regarding new types of bridge and composite bridge structures, such as bridges with three cable planes and three main trusses, inclined main trusses, slab-truss composite sections, and steel-concrete composite sections, are introduced. In addition, investigations into high-performance materials and integral fabrication and erection techniques for long-span railway bridges are summarized. At the end of the paper, prospects for the future development of long-span high-speed railwav bridges are provided.
文摘This paper provides a review on the development of structural monitoring in Japan, with an emphasis on the type, strategy, and utilization of monitoring systems. The review focuses on bridge and building structures using vibration-based techniques. Structural monitoring systems in Japan historically started with the objective of evaluating structural responses against extreme events. In the development of structural monitoring, monitoring systems and collected data were used to verify design assumptions, update speci cations, and facilitate the ef cacy of vibration control systems. Strategies and case studies on monitoring for the design veri cation of long-span bridges and tall buildings, the performance of seismic isolation systems in building and bridges, the veri cation of structural retro t, the veri cation of structural control systems (passive, semi-active, and active), structural assessment, and damage detec- tion are described. More recently, the application of monitoring systems has been extended to facilitate ef cient operation and effective maintenance through the rationalization of risk and asset management using monitoring data. This paper also summarizes the lessons learned and feedback obtained from case studies on the structural monitoring of bridges and buildings in Japan.
文摘Modem long-span space structures,developed during the 1970s and 1980s,are light and effective structures based on new technologies and light-weight high-strength materials,such as membranes and steel cables.These structures include air-supported membrane structures,cable-membrane structures,cable truss structures,beam string structures,suspen-domes,cable domes,composite structures of cable dome and single-layer lattice shell,Tensairity structures and so forth.For the premodem space structures widely used since the mid-twentieth century(such as thin shells,space trusses,lattice shells and ordinary cable structures),new space structures have been developed by the combination of different structural forms and materials.The application of prestressing technology and the innovation of structural concepts and configurations are also associated with modem space structures,including composite space trusses,open-web grid structures,polyhedron space frame structures,partial double-layer lattice shells,cable-stayed grid structures,tree-type structures,prestressed segmental steel structures and so forth.This paper provides a review of the structural characteristics and practical applications in China of modem rigid space structures,modem flexible space structures and modem rigid-flexible combined space structures.
文摘This study is devoted to the experimental validation of the multi-type sensor placement and response reconstruction method for structural health monitoring of long-span suspension bridges. The method for multi-type sensor placement and response reconstruction is briefly described. A test bed, comprising of a physical model and an updated finite element (P-E) model of a long-span suspension bridge is also concisely introduced. The proposed method is then applied to the test bed; the equation of motion of the test bed subject to ground motion, the objective function for sensor location optimization, the principles for mode selection and multi-type response reconstruction are established. A numerical study using the updated FE model is performed to select the sensor types, numbers, and locations. Subsequently, with the identified sensor locations and some practical considerations, fiber Bragg grating (FBG) sensors, laser displacement transducers, and accelerometers are installed on the physical bridge model. Finally, experimental investigations are conducted to validate the proposed method. The experimental results show that the reconstructed responses using the measured responses from the limited number of multitype sensors agree well with the actual bridge responses. The proposed method is validated to be feasible and effective for the monitoring of structural behavior of longspan suspension bridges.
基金Natural Science and Engineering Research Council of Canada
文摘The analysis of dynamic responses of cable-stayed bridges subjected to wind and earthquake loads generally considers only the motions of the bridge deck and pylons.The influence of the stay cable vibration on the responses of the bridge is either ignored or considered by approximate procedures.The transverse vibration of the stay cables,which can be significant in some cases,are usually neglected in previous research.In the present study,a new three-node cable element has been developed to model the transverse motions of the cables.The interactions between the cable behavior and the other parts of the bridge superstructure are considered by the concept of dynamic stiffness.The nonlinear effect of the cable caused by its self-weight is included in the formulation.Numerical examples are presented to demonstrate the accuracy and efficiency of the proposed model. The impact of cable vibration behavior on the dynamic characteristics of cable-stayed bridges is discussed.
基金Key Project of Chinese Ministry of Educa-tion (No. 104079)National Natural Sci-ence Foundation of China (No. 10572091)
文摘The stability of long span steel arch structure of globe transportation center (GTC) in the Beijing Capital International Airport was studied. Different objective models such as single arch model, composite arch model and global structural model were introduced to analyze the structural stability by means of the finite element technique. The eigen buckling factor of the steel arch structure was analyzed. The geometrical nonlinearity, elastic-plastic nonlinearity and initial imperfection were taken into account in the investigation of the structural buckling, and the nonlinearity reduction factors for the steel arch structure were discussed. The effects of geometrical nonlinearity and initial imperfection on the structural buckling are light while the effect of material nonlinearity is quite remarkable. For a single steel arch, the dominant buckling mode occurs in out-of-plane of arch structure. The out-of-plane buckling factor of the composite steel arch is greater than that of the single steel arch while the in-plane buckling factor of the former is somewhat less than that of the latter. Moreover, the webs near the steel arch feet have the lowest local buckling level and the local buckling is more serious than the global buckling for the global structure.
基金supported by the National Natural Science Foundation of China(Grant Nos.51108395,51378445 and 51178366)the Fundamental Research Funds for the Central Universities(Grant No.2012121032)Hubei Key Laboratory of Roadway Bridge and Structure Engineering(Wuhan University of Technology)(Grant No.DQJJ201315)
文摘Numerous long-span bridges have been built throughout the world in recent years.These bridges are progressively damaged by continuous usage throughout their long service life.The failure of local structural components is detrimental to the performance of the entire bridge,furthermore,detecting the local abnormality at an early stage is difficult.This paper explores a novel damage detection method for long-span bridges by incorporating stress influence lines(SILs)in control charts,and validates the efficacy of the method through a case study of the Tsing Ma Suspension Bridge.Damage indices based on SILs are subsequently proposed and applied to hypothetical damage scenarios in which one or two critical bridge components are subjected to severe damage.The comparison study suggests that the first-order difference of SIL change is an accurate indicator for location of the damage.To some extent,different levels of damage can be quantified by using SILs incorporating with X-bar control chart.Results of this study indicate that the proposed SIL-based method offers a promising technique for damage detection in long-span bridges.
基金supported by the Ministry of Science and Technology of China (Grant No.2019YFE0112400)the Department of Science and Technology of Shandong Province (Grant No.2021CXGC011204)Liaoning Provincial Key Laboratory of Safety and Protection for Infrastructure Engineering。
文摘Active control technology has been investigated and applied in numerous building structures and infrastructures since 1972 when it was firstly introduced into the civil engineering field by Professor JTP Yao.Now,half a century has passed,a variety of control systems have been invented and implemented by researchers and engineers from all over the world.The recent years have witnessed remarkable research attempts and progress devoted to the development in this area based on modern control theory.However,there are still some unknown areas which are worthy of being explored in depth.One of such examples is the application of tuned mass dampers(TMD)to the flutter vibration control of long span bridges.Although applications of TMDs to bridges have been sighted in practice,their genuine effectiveness remains a serious question.The issues relating to how the coupled effect of TMD’s linear force being restricted by the rotational velocity of bridge’s deck during wind excitations which may eventually leads to flutter vibrations,remains unanswered.Such unusual phenomena and limitations were initially discovered and reported by the author sixteen years ago when investigating the barge ship crane hook’s swing motion control.In recent years,the author has invented the active rotary inertia driver(ARID)system which now has been granted patents in China,the US,Europe(including the UK,France,and Germany),Russia,Brazil,India,South Africa,Canada,Australia,Japan and Korean,etc.The ARID is an active control system which could exert direct control torque or moment to the target structures with rotational motions or vibrations natures,including and not limited to buildings,bridges or offshore platforms subjected to winds,earthquakes,and waves excitations.Furthermore,the ARID control system and its methodology can also be applicable to various mechanical systems including but not limited to cranes,vehicles,trains,ships,aircrafts,space crafts,satellites,and robotics.In this paper,the theory,modelling,comprehensive parametric analysis and case study of the ARID system for flutter vibration control of bridges will be discussed,as well as its promising applications in other various occasions.