期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Internal Force Distribution in Steel-Concrete Composite Structure for Pylon of Cable-Stayed Bridge 被引量:5
1
作者 蒲黔辉 白光亮 《Journal of Southwest Jiaotong University(English Edition)》 2009年第2期95-101,共7页
Adopting a steel-anchor beam and steel corbel composite structure in the anchor zone on pylon is one of the key techniques for the design of Jintang bridge, a cable-stayed bridge in Zhoushan, China. In order to ensure... Adopting a steel-anchor beam and steel corbel composite structure in the anchor zone on pylon is one of the key techniques for the design of Jintang bridge, a cable-stayed bridge in Zhoushan, China. In order to ensure the safety of the steel-concrete composite structure, a stud connector model for the joint section was put forward. Experiments were conducted to obtain the relation between load and slip of specimen, the failure pattern of stud connector, the yield bearing capacity and ultimate bearing capacity of a single stud, etc. The whole process of the structural behavior of the specimen was comprehensively analyzed. The features of the internal force distribution in the steel-concrete composite structure and the strain distribution of stud connector under different loads were emphatically studied. The test results show that the stud connector is applicable for the steel-concrete composite structure for pylon of Jintang bridge. The stud has a good ductility performance and a obvious yield process before its destruction. The stud connector basically works in a state of elasticity under a load less than the yield load. 展开更多
关键词 Stud connector Experimental research Steel-concrete composite structure cable-stayed bridge Internal force distribution
下载PDF
Research review on steel–concrete composite joint of railway hybrid girder cable-stayed bridges 被引量:2
2
作者 Zhou Shi Jiachang Gu +1 位作者 Yongcong Zhou Ying Zhang 《Railway Sciences》 2022年第2期241-259,共19页
Purpose–This study aims to research the development trend,research status,research results and existing problems of the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge.Design/me... Purpose–This study aims to research the development trend,research status,research results and existing problems of the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge.Design/methodology/approach–Based on the investigation and analysis of the development history,structure form,structural parameters,stress characteristics,shear connector stress state,force transmission mechanism,and fatigue performance,aiming at the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge,the development trend,research status,research results and existing problems are expounded.Findings–The shear-compression composite joint has become the main form in practice,featuring shortened length and simplified structure.The length of composite joints between 1.5 and 3.0 m has no significant effect on the stress and force transmission laws of the main girder.The reasonable thickness of the bearing plate is 40–70 mm.The calculation theory and simplified calculation formula of the overall bearing capacity,the nonuniformity and distribution laws of the shear connector,the force transferring ratio of steel and concrete components,the fatigue failure mechanism and structural parameters effects are the focus of the research study.Originality/value–This study puts forward some suggestions and prospects for the structural design and theoretical research of the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge. 展开更多
关键词 RAILWAY Hybrid girder cable-stayed bridge Steel-concrete composite joint STRUCTURE Stress characteristics REVIEW
下载PDF
Effects of fundamental factors on coupled vibration of wind-rail vehicle-bridge system for long-span cable-stayed bridge 被引量:10
3
作者 张明金 李永乐 汪斌 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第5期1264-1272,共9页
In a wind-vehicle-bridge(WVB) system,there are various interactions among wind,vehicle and bridge.The mechanism for coupling vibration of wind-vehicle-bridge systems is explored to demonstrate the effects of fundament... In a wind-vehicle-bridge(WVB) system,there are various interactions among wind,vehicle and bridge.The mechanism for coupling vibration of wind-vehicle-bridge systems is explored to demonstrate the effects of fundamental factors,such as mean wind,fluctuating wind,buffeting,rail irregularities,light rail vehicle vibration and bridge stiffness.A long cable-stayed bridge which carries light rail traffic is regarded as a numerical example.Firstly,a finite element model is built for the long cable-stayed bridge.The deck can generally be idealized as three-dimensional spine beam while cables are modeled as truss elements.Vehicles are modeled as mass-spring-damper systems.Rail irregularities and wind fluctuation are simulated in time domain by spectrum representation method.Then,aerodynamic loads on vehicle and bridge deck are measured by section model wind tunnel tests.Eight vertical and torsional flutter derivatives of bridge deck are identified by weighting ensemble least-square method.Finally,dynamic responses of the WVB system are analyzed in a series of cases.The results show that the accelerations of the vehicle are excited by the fluctuating wind and the track irregularity to a great extent.The transverse forces of wheel axles mainly depend on the track irregularity.The displacements of the bridge are predominantly determined by the mean wind and restricted by its stiffness.And the accelerations of the bridge are enlarged after adding the fluctuating wind. 展开更多
关键词 wind-vehicle-bridge system coupled vibration long-span cable-stayed bridge fundamental factors
下载PDF
GPS Dynamic Monitoring Experiment and Result Analysis of Long-Span Cable-Stayed Bridge 被引量:1
4
作者 HUANG Shengxiang WU Wentan 《Geo-Spatial Information Science》 2006年第1期1-5,共5页
For the sake of timely appraising the working con di tion of the bridge, measuring the dynamic characteristics of the bridge structur e is very important and necessary. A GPS dynamic monitoring test was carried out in... For the sake of timely appraising the working con di tion of the bridge, measuring the dynamic characteristics of the bridge structur e is very important and necessary. A GPS dynamic monitoring test was carried out in the Wuhan Baishazhou Bridge, which is one of the longest span cable-stayed bridges having been built in China. This paper introduces the experimental imple menting scheme and data processing method. The vibration characteristics of the middle span of cable-stayed bridge are availably obtained by use of the spectra l analytic approach. The measuring results are very identical to the theoretical designed values. The research demonstrates that, with GPS receiver of the high sampling rate and suitable data processing method, the vibration characteristics of the bridge structure can be determined with high accuracy. 展开更多
关键词 long-span cable-stayed bridge GPS monitoring dynamic characteristic spectral analysis
下载PDF
Study of the aerostatic and aerodynamic stability of super long-span cable-stayed bridges 被引量:2
5
作者 Zhang Xinjun Sun Hailing 《Engineering Sciences》 EI 2014年第2期82-92,共11页
With the increase of span length, the bridge tends to be more flexible, and the wind stability be- comes an important problem for the design and construction of super long-span cable-stayed bridges. By taking a super ... With the increase of span length, the bridge tends to be more flexible, and the wind stability be- comes an important problem for the design and construction of super long-span cable-stayed bridges. By taking a super long-span cable-stayed bridge with a main span of 1 400 m as example, the aerostatic and aerodynamic stability of the bridge are investigated by three-dimensional nonlinear aerostatic and aerodynamic stability analy- sis, and the results are compared with those of a suspension bridge with a main span of 1 385 m, and from the aspect of wind stability, the feasibility of using cable-stayed bridge in super long-span bridge with a main span above l 000 m is discussed. In addition, the influences of design parameters including the depth and width of the girder, the tower structure, the tower height-to-span ratio, the side-to-main span ratio, the auxiliary piers in the side span and the anchorage system of stay cables, etc on the aerostatic and aerodynamic stability of su- per long-span cable-stayed bridges are investigated numerically; the key design parameters are pointed out, and also their reasonable values are proposed. 展开更多
关键词 super long-span cable-stayed bridge aerostatic stability aerodynamic stability design parameters
下载PDF
Modeling of cable vibration effects of cable-stayed bridges
6
作者 S.H.Cheng David T.Lau 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2002年第1期74-85,共12页
The analysis of dynamic responses of cable-stayed bridges subjected to wind and earthquake loads generally considers only the motions of the bridge deck and pylons.The influence of the stay cable vibration on the resp... The analysis of dynamic responses of cable-stayed bridges subjected to wind and earthquake loads generally considers only the motions of the bridge deck and pylons.The influence of the stay cable vibration on the responses of the bridge is either ignored or considered by approximate procedures.The transverse vibration of the stay cables,which can be significant in some cases,are usually neglected in previous research.In the present study,a new three-node cable element has been developed to model the transverse motions of the cables.The interactions between the cable behavior and the other parts of the bridge superstructure are considered by the concept of dynamic stiffness.The nonlinear effect of the cable caused by its self-weight is included in the formulation.Numerical examples are presented to demonstrate the accuracy and efficiency of the proposed model. The impact of cable vibration behavior on the dynamic characteristics of cable-stayed bridges is discussed. 展开更多
关键词 cable-stayed bridges cable vibration DYNAMICS finite elements long-span structures
下载PDF
Innovative steel-UHPC composite bridge girders for long-span bridges 被引量:7
7
作者 Xudong SHAO Lu DENG Junhui CAO 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2019年第4期981-989,共9页
Steel and steel-concrete composite girders are two types of girders commonly used for long-span bridges. However, practice has shown that the two types of girders have some drawbacks. For steel girders, the orthotropi... Steel and steel-concrete composite girders are two types of girders commonly used for long-span bridges. However, practice has shown that the two types of girders have some drawbacks. For steel girders, the orthotropic steel deck (OSD) is vulnerable to fatigue cracking and the asphalt overlay is susceptible to damage such as rutting and pot holes. While for steel-concrete composite girders, the concrete deck is generally thick and heavy, and the deck is prone to cracking because of its low tensile strength and high creep. Thus, to improve the serviceability and durability of girders for long-span bridges, three new types of steel-UHPC lightweight composite bridge girders are proposed, where UHPC denotes ultra-high performance concrete. The first two types consist of an OSD and a thin UHPC layer while the third type consists of a steel beam and a UHPC waffle deck. Due to excellent mechanical behaviors and impressive durability of UHPC, the steel-UHPC composite girders have the advantages of light weight, high strength, low creep coefficient, low risk of cracking, and excellent durability, making them competitive alternatives for long-span bridges. To date, the proposed steel-UHPC composite girders have been applied to 14 real bridges in China. It is expected that the application of the new steel-UHPC composite girders on long-span bridges will have a promising future. 展开更多
关键词 steel-UHPC composite bridge GIRDER long-span bridge ORTHOTROPIC STEEL deck fatigue cracking durability
原文传递
A theoretical model for investigating shear lag in composite cable-stayed bridges
8
作者 Wenting ZHANG Lan DUAN +1 位作者 Chunsheng WANG Weihua REN 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第12期1907-1923,共17页
The slab of the composite girder is usually very wide in composite cable-stayed bridges,and the main girder has an obvious shear lag.There is an axial force in the main girder due to cable forces,which changes the nor... The slab of the composite girder is usually very wide in composite cable-stayed bridges,and the main girder has an obvious shear lag.There is an axial force in the main girder due to cable forces,which changes the normal stress distribution of the composite girder and affects the shear lag.To investigate the shear lag in the twin I-shaped composite girder(TICG)of cable-stayed bridges,analytical solutions of TICGs under bending moment and axial force were derived by introducing the additional deflection into the longitudinal displacement function.A shear lag coefficient calculation method of the TICG based on additional deflection was proposed.Experiments with three load cases were conducted to simulate the main girder in cable-stayed bridges.And the stress,deflection,and shear lag coefficient obtained from the theoretical method considering additional deflection(TMAD)were verified by the experimental and finite element results.A generalized verification of a composite girder from existing references was made,indicating that the proposed method could provide more accurate results for the shear lag effect. 展开更多
关键词 cable-stayed bridge composite girder shear lag energy method additional deflection
原文传递
Vertical dynamic response of the ballastless track on long-span plate-truss cable-stayed bridges 被引量:11
9
作者 LI Yong Le SU Yang +1 位作者 XIA Fei Long ZHANG Nan 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第2期236-247,共12页
An analytical model is presented to study vertical dynamic response of the ballastless track on long-span plate-truss cable-stayed bridges based on an explicit dynamic analysis method.In the model,the train,ballastles... An analytical model is presented to study vertical dynamic response of the ballastless track on long-span plate-truss cable-stayed bridges based on an explicit dynamic analysis method.In the model,the train,ballastless track and bridge are treated as a coupled vibration system with interaction.By simulating the dynamic process of the system,this paper discusses the distribution law of dynamic responses of the bridge deck and the bed slab.It shows the necessity of a base plate for the ballastless track on the long-span plate-truss cable-stayed bridge.Comparison of the influence of different train speeds and stiffness of the elastic vibration-damping pad on the dynamic responses of the bridge deck and the bed slab is also made.The reasonable stiffness value of elastic vibration-damping pad is proposed. 展开更多
关键词 long-span cable-stayed bridge plate-truss girder ballastless track train-induced vibration vehicle-bridge system
原文传递
Mechanical Analysis and Numerical Simulation for New Type of Dynamic Control Devices
10
作者 CHEN Suhua LI Ruiqi +2 位作者 FEI Liang YU Zhiguang DING Jianming 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第6期735-749,共15页
The conventional dynamic control devices,such as fluid viscous damper(VFD)and isolating bearings,are unsuitable for the double-deck cable-stayed bridge due to a lack of sustainability,so it is necessary to introduce s... The conventional dynamic control devices,such as fluid viscous damper(VFD)and isolating bearings,are unsuitable for the double-deck cable-stayed bridge due to a lack of sustainability,so it is necessary to introduce some high-tech dynamic control devices to reduce dynamic response for double-deck cable-stayed bridges under earthquakes.A(90+128)m-span double-deck cable-stayed bridge with a steel truss beam is taken as the prototype bridge.A 3D finite element model is built to conduct the nonlinear time-history analysis of different site categories in fortification intensityⅨ(0.40 g)degree area.Two new types of dynamic control devices-cable sliding friction aseismic bearings(CSFABs)and elasticity fluid viscous dampers composite devices(EVFDs)are introduced to reduce the dynamic responses of double-deck cable-stayed bridges with steel truss beam.The parametric optimization design for the damping coefficient C and the elastic stiffness of spring K of EVFDs is conducted.The following conclusions are drawn:(1)The hybrid support system by EVFDs and CSFABs play a good function under both seismic and regular work,especially in eliminating the expansion joints damage;(2)The hybrid support system can reduce the beam-end displacement by 75%and the tower-bottom bending moment by 60%under the longitudinal seismic excitation.In addition,it can reduce the pier-bottom bending moment by at least 45%under transverse seismic and control the relative displacement between the pier and beam within 0.3 m.(3)Assuming the velocity indexα=0.3,the parametric optimization suggests the damping coefficient C as 2000 kN·s·m-1in siteⅠ0,4000kN·s·m-1in siteⅡ,6000 kN·s·m-1in siteⅣ,and the elastic stiffness of spring K as 10000 kN/m in siteⅠ0,50000 kN/m in siteⅡ,and 100000 kN/m in siteⅣ. 展开更多
关键词 dynamic control device double-deck cable-stayed bridge with steel truss beam cable-sliding friction aseismic bearings(CSFABs) elasticity fluid viscous dampers composite devices(EVFDs)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部