A lightweight aggregate concrete-filled steel tube(LACFST) spatial truss beam was tested under bending load. The performance was studied by the analysis of the beam deflection and strains in its chords and webs. Accor...A lightweight aggregate concrete-filled steel tube(LACFST) spatial truss beam was tested under bending load. The performance was studied by the analysis of the beam deflection and strains in its chords and webs. According to the test results, several assumptions were made to deduce the bearing capacity calculation method based on the force balance of the whole section. An optimal dimension relationship for the truss beam chords was proposed and verified by finite element analysis. Results show that the LACFST spatial truss beam failed after excessive deflection. The strain distribution agreed with Bernoulli-Euler theoretical prediction. The truss beam flexural bearing capacity calculation results matched test evidence with only a 3% difference between the two. Finite element analyses with different chord dimensions show that the ultimate bearing capacity increases as the chord dimensions increase when the chords have a diameter smaller than optimal one; otherwise, it remains almost unchanged as the chord dimensions increase.展开更多
Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of t...Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of the tensile steel tube is 0.252 during the using stage,and the average crack space of beams depends on the ratio of the sum of the bottom chord steel tube's outside diameter and the secondary bottom chord steel tube's section area to the effective tensile concrete area. The coefficient of uneven crack distribution is 1.68 and the formula for the calculation of crack width is established. Test results indicate that the ultimate stress increment of unbonded tendon in the beams decreases in linearity with the increase of the composite reinforcement index β0. The pure bending region of beams accords with the plane section assumption from loading to failure. The calculation formula of ultimate stress increment of the unbonded tendon and the method to calculate the bearing capacity of normal section of beams have been presented. Besides,the method to calculate the stiffness of this sort of beams is brought forward as well.展开更多
As a novel coupling beam for coupled shear wall structures,the bending-type frictional steel truss coupling beam(BFTCB)concentrates the deformation and energy dissipation in friction dampers at the bottom chord,allowi...As a novel coupling beam for coupled shear wall structures,the bending-type frictional steel truss coupling beam(BFTCB)concentrates the deformation and energy dissipation in friction dampers at the bottom chord,allowing the main body to remain elastic during earthquakes.As the preparatory work for resilient structure design based on the BFTCB,this work concentrates on developing the hysteretic model for BFTCB.Firstly,the BFTCB stiffness-strength decoupling mechanism was introduced,i.e.,the shear strength is provided by friction dampers while webs control its initial stiffness.Secondly,a hysteretic model that reflects the BFTCB two-stage sliding characteristic was proposed.The model consists of a trilinear backbone curve and the unloading and reverse loading rules.The model has eight control parameters,of which two core parameters(initial stiffness and limiting shear strength)are derived from the BFTCB stiffness-strength decoupling mechanism,whereas the remaining parameters are obtained by theoretical analysis and empirical calibration.The hysteretic model was then compared with the test curves and demonstrated good accuracy.Finally,a series of FE prototypes of BFTCB with different design stiffnesses and strengths was adopted to verify the hysteretic model.The results showed that the proposed model fitted well with the FE prototypes,indicating its applicability to BFTCB with varying core design parameters.Therefore,the hysteretic model can be adopted for BFTCB to support the resilient shear wall structure design.展开更多
Purpose of present work is to develop a reliable and simple method for structural analysis of RC Shear Walls. The shear wall is simulated by a truss model as the bar of a truss is the simplest finite element. An itera...Purpose of present work is to develop a reliable and simple method for structural analysis of RC Shear Walls. The shear wall is simulated by a truss model as the bar of a truss is the simplest finite element. An iterative method is used. Initially, there are only concrete bars. Repeated structural analyses are performed. After each structural analysis, every concrete bar exceeding tensile strength is replaced by a steel bar. For every concrete bar exceeding compressive strength, first its section area is increased. If this is not enough, a steel bar is placed at the side of it. For every steel bar exceeding tensile or compressive strength, its section area is increased. After the end of every structural analysis, if all concrete and steel bars fall within tensile and compressive strengths, the output data are written and the analysis is terminated. Otherwise, the structural analysis is repeated. As all the necessary conditions (static, elastic, linearized geometric) are satisfied and the stresses of ALL concrete and steel bars fall within the tensile and compressive strengths, the results are acceptable. Usually, the proposed method exhibits a fast convergence in 4 - 5 repeats of structural analysis of the RC Shear Wall.展开更多
基金Project(51208176)supported by the National Natural Science Foundation of ChinaProjects(2012M511187,2013T60493)supported by the China Postdoctoral Science FoundationProject(2015B17414)supported by the Fundamental Research Funds for the Central Universities,China
文摘A lightweight aggregate concrete-filled steel tube(LACFST) spatial truss beam was tested under bending load. The performance was studied by the analysis of the beam deflection and strains in its chords and webs. According to the test results, several assumptions were made to deduce the bearing capacity calculation method based on the force balance of the whole section. An optimal dimension relationship for the truss beam chords was proposed and verified by finite element analysis. Results show that the LACFST spatial truss beam failed after excessive deflection. The strain distribution agreed with Bernoulli-Euler theoretical prediction. The truss beam flexural bearing capacity calculation results matched test evidence with only a 3% difference between the two. Finite element analyses with different chord dimensions show that the ultimate bearing capacity increases as the chord dimensions increase when the chords have a diameter smaller than optimal one; otherwise, it remains almost unchanged as the chord dimensions increase.
文摘Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of the tensile steel tube is 0.252 during the using stage,and the average crack space of beams depends on the ratio of the sum of the bottom chord steel tube's outside diameter and the secondary bottom chord steel tube's section area to the effective tensile concrete area. The coefficient of uneven crack distribution is 1.68 and the formula for the calculation of crack width is established. Test results indicate that the ultimate stress increment of unbonded tendon in the beams decreases in linearity with the increase of the composite reinforcement index β0. The pure bending region of beams accords with the plane section assumption from loading to failure. The calculation formula of ultimate stress increment of the unbonded tendon and the method to calculate the bearing capacity of normal section of beams have been presented. Besides,the method to calculate the stiffness of this sort of beams is brought forward as well.
基金supported by the Scientific Research Fund of MultiFunctional Shaking Tables Laboratory of Beijing University of Civil Engineering and Architecture(2022MFSTL06)Science&Technology Foundation of Liaoning Province,China:General Program(2021-MS131).
文摘As a novel coupling beam for coupled shear wall structures,the bending-type frictional steel truss coupling beam(BFTCB)concentrates the deformation and energy dissipation in friction dampers at the bottom chord,allowing the main body to remain elastic during earthquakes.As the preparatory work for resilient structure design based on the BFTCB,this work concentrates on developing the hysteretic model for BFTCB.Firstly,the BFTCB stiffness-strength decoupling mechanism was introduced,i.e.,the shear strength is provided by friction dampers while webs control its initial stiffness.Secondly,a hysteretic model that reflects the BFTCB two-stage sliding characteristic was proposed.The model consists of a trilinear backbone curve and the unloading and reverse loading rules.The model has eight control parameters,of which two core parameters(initial stiffness and limiting shear strength)are derived from the BFTCB stiffness-strength decoupling mechanism,whereas the remaining parameters are obtained by theoretical analysis and empirical calibration.The hysteretic model was then compared with the test curves and demonstrated good accuracy.Finally,a series of FE prototypes of BFTCB with different design stiffnesses and strengths was adopted to verify the hysteretic model.The results showed that the proposed model fitted well with the FE prototypes,indicating its applicability to BFTCB with varying core design parameters.Therefore,the hysteretic model can be adopted for BFTCB to support the resilient shear wall structure design.
文摘Purpose of present work is to develop a reliable and simple method for structural analysis of RC Shear Walls. The shear wall is simulated by a truss model as the bar of a truss is the simplest finite element. An iterative method is used. Initially, there are only concrete bars. Repeated structural analyses are performed. After each structural analysis, every concrete bar exceeding tensile strength is replaced by a steel bar. For every concrete bar exceeding compressive strength, first its section area is increased. If this is not enough, a steel bar is placed at the side of it. For every steel bar exceeding tensile or compressive strength, its section area is increased. After the end of every structural analysis, if all concrete and steel bars fall within tensile and compressive strengths, the output data are written and the analysis is terminated. Otherwise, the structural analysis is repeated. As all the necessary conditions (static, elastic, linearized geometric) are satisfied and the stresses of ALL concrete and steel bars fall within the tensile and compressive strengths, the results are acceptable. Usually, the proposed method exhibits a fast convergence in 4 - 5 repeats of structural analysis of the RC Shear Wall.