Purpose–This study aims to research the development trend,research status,research results and existing problems of the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge.Design/me...Purpose–This study aims to research the development trend,research status,research results and existing problems of the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge.Design/methodology/approach–Based on the investigation and analysis of the development history,structure form,structural parameters,stress characteristics,shear connector stress state,force transmission mechanism,and fatigue performance,aiming at the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge,the development trend,research status,research results and existing problems are expounded.Findings–The shear-compression composite joint has become the main form in practice,featuring shortened length and simplified structure.The length of composite joints between 1.5 and 3.0 m has no significant effect on the stress and force transmission laws of the main girder.The reasonable thickness of the bearing plate is 40–70 mm.The calculation theory and simplified calculation formula of the overall bearing capacity,the nonuniformity and distribution laws of the shear connector,the force transferring ratio of steel and concrete components,the fatigue failure mechanism and structural parameters effects are the focus of the research study.Originality/value–This study puts forward some suggestions and prospects for the structural design and theoretical research of the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge.展开更多
In the case of composite girders, an effective cooperation of both parts of the section is influenced by deformability of connectors. Limited flexural stiffness of welded studs, used commonly in bridge structures, doe...In the case of composite girders, an effective cooperation of both parts of the section is influenced by deformability of connectors. Limited flexural stiffness of welded studs, used commonly in bridge structures, does not provide full interaction of a steel beam and a concrete slab. This changes strain distribution in cross-sections of a composite girder and results in redistribution of internal forces in steel and concrete element. In the paper partial interaction index defined on the basis of a neutral axis position, which can be used for verification of steel-concrete interaction in real bridge structures rather than in specimens is proposed. The range of the index value changes, obtained during load testing of a typical steel-concrete composite beam bridge, is presented. The investigation was carried out on a motorway viaduct, consisting of two parallel structures. During the testing values of strains in girders under static and quasi-static loads were measured. The readings from the gauges were used to determine the index, characterizing composite action of the girders. Results of bridge testing under movable load, changing position along the bridge span is presented and obtained in-situ influence functions of strains and index values are commented in the paper.展开更多
Improving the cracking resistance of steel-normal concrete(NC)composite beams in the negative moment region is one of the main tasks in designing continuous composite beam(CCB)bridges due to the low tensile strength o...Improving the cracking resistance of steel-normal concrete(NC)composite beams in the negative moment region is one of the main tasks in designing continuous composite beam(CCB)bridges due to the low tensile strength of the NC deck at pier supports.This study proposed an innovative structural configuration for the negative bending moment region in a steel-concrete CCB bridge with the aid of ultrahigh performance concrete(UHPC)layer.In order to investigate the feasibility and effectiveness of this new UHPC jointed structure in the negative bending moment region,field load testing was conducted on a newly built full-scale bridge.The newly designed structural configuration was described in detail regarding the structural characteristics(cracking resistance,economy,durability,and constructability).In the field investigation,strains on the surface of the concrete bridge deck,rebar,and steel beam in the negative bending moment region,as well as mid-span deflection,were measured under different load cases.Also,a finite element model for the four-span superstructure of the full-scale bridge was established and validated by the field test results.The simulated results in terms of strains and mid-span deflection showed moderate consistency with the test results.This field test and the finite element model results demonstrated that the new configuration with the UHPC layer provided an effective alternative for the negative bending moment region of the composite beam.展开更多
Steel and steel-concrete composite girders are two types of girders commonly used for long-span bridges. However, practice has shown that the two types of girders have some drawbacks. For steel girders, the orthotropi...Steel and steel-concrete composite girders are two types of girders commonly used for long-span bridges. However, practice has shown that the two types of girders have some drawbacks. For steel girders, the orthotropic steel deck (OSD) is vulnerable to fatigue cracking and the asphalt overlay is susceptible to damage such as rutting and pot holes. While for steel-concrete composite girders, the concrete deck is generally thick and heavy, and the deck is prone to cracking because of its low tensile strength and high creep. Thus, to improve the serviceability and durability of girders for long-span bridges, three new types of steel-UHPC lightweight composite bridge girders are proposed, where UHPC denotes ultra-high performance concrete. The first two types consist of an OSD and a thin UHPC layer while the third type consists of a steel beam and a UHPC waffle deck. Due to excellent mechanical behaviors and impressive durability of UHPC, the steel-UHPC composite girders have the advantages of light weight, high strength, low creep coefficient, low risk of cracking, and excellent durability, making them competitive alternatives for long-span bridges. To date, the proposed steel-UHPC composite girders have been applied to 14 real bridges in China. It is expected that the application of the new steel-UHPC composite girders on long-span bridges will have a promising future.展开更多
基金supported by the Key Project of Science and Technology R&DProgram of CHINA RAILWAY(AJZH2020-001)and Science and Technology Program Project of Shudao Investment Group(SRIG2020GG0001).On behalf of all authors,the corresponding author states that there is no conflict of interest.
文摘Purpose–This study aims to research the development trend,research status,research results and existing problems of the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge.Design/methodology/approach–Based on the investigation and analysis of the development history,structure form,structural parameters,stress characteristics,shear connector stress state,force transmission mechanism,and fatigue performance,aiming at the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge,the development trend,research status,research results and existing problems are expounded.Findings–The shear-compression composite joint has become the main form in practice,featuring shortened length and simplified structure.The length of composite joints between 1.5 and 3.0 m has no significant effect on the stress and force transmission laws of the main girder.The reasonable thickness of the bearing plate is 40–70 mm.The calculation theory and simplified calculation formula of the overall bearing capacity,the nonuniformity and distribution laws of the shear connector,the force transferring ratio of steel and concrete components,the fatigue failure mechanism and structural parameters effects are the focus of the research study.Originality/value–This study puts forward some suggestions and prospects for the structural design and theoretical research of the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge.
文摘In the case of composite girders, an effective cooperation of both parts of the section is influenced by deformability of connectors. Limited flexural stiffness of welded studs, used commonly in bridge structures, does not provide full interaction of a steel beam and a concrete slab. This changes strain distribution in cross-sections of a composite girder and results in redistribution of internal forces in steel and concrete element. In the paper partial interaction index defined on the basis of a neutral axis position, which can be used for verification of steel-concrete interaction in real bridge structures rather than in specimens is proposed. The range of the index value changes, obtained during load testing of a typical steel-concrete composite beam bridge, is presented. The investigation was carried out on a motorway viaduct, consisting of two parallel structures. During the testing values of strains in girders under static and quasi-static loads were measured. The readings from the gauges were used to determine the index, characterizing composite action of the girders. Results of bridge testing under movable load, changing position along the bridge span is presented and obtained in-situ influence functions of strains and index values are commented in the paper.
基金The authors would like to acknowledge the following funders for their support to the studies in this paper:the National Key R&D Program of China(No.2018YFC0705406)the National Natural Science Foundation of China(Grant No.51778223)+1 种基金the Major Program of Science and Technology of Hunan Province(No.2017SK1010)the Hunan Provincial Innovation Foundation for Postgraduate(No.CX2017B119).
文摘Improving the cracking resistance of steel-normal concrete(NC)composite beams in the negative moment region is one of the main tasks in designing continuous composite beam(CCB)bridges due to the low tensile strength of the NC deck at pier supports.This study proposed an innovative structural configuration for the negative bending moment region in a steel-concrete CCB bridge with the aid of ultrahigh performance concrete(UHPC)layer.In order to investigate the feasibility and effectiveness of this new UHPC jointed structure in the negative bending moment region,field load testing was conducted on a newly built full-scale bridge.The newly designed structural configuration was described in detail regarding the structural characteristics(cracking resistance,economy,durability,and constructability).In the field investigation,strains on the surface of the concrete bridge deck,rebar,and steel beam in the negative bending moment region,as well as mid-span deflection,were measured under different load cases.Also,a finite element model for the four-span superstructure of the full-scale bridge was established and validated by the field test results.The simulated results in terms of strains and mid-span deflection showed moderate consistency with the test results.This field test and the finite element model results demonstrated that the new configuration with the UHPC layer provided an effective alternative for the negative bending moment region of the composite beam.
基金The authors would like to thank the following funders for providing support to this research: the National Key Research and Development Program of China (No. 2018YFC0705400)the National Natural Science Foundation of China (Grant Nos. 51778223 and 51708200)the Major Program of Science and Technology of Hunan Province (No. 2017SK1010).
文摘Steel and steel-concrete composite girders are two types of girders commonly used for long-span bridges. However, practice has shown that the two types of girders have some drawbacks. For steel girders, the orthotropic steel deck (OSD) is vulnerable to fatigue cracking and the asphalt overlay is susceptible to damage such as rutting and pot holes. While for steel-concrete composite girders, the concrete deck is generally thick and heavy, and the deck is prone to cracking because of its low tensile strength and high creep. Thus, to improve the serviceability and durability of girders for long-span bridges, three new types of steel-UHPC lightweight composite bridge girders are proposed, where UHPC denotes ultra-high performance concrete. The first two types consist of an OSD and a thin UHPC layer while the third type consists of a steel beam and a UHPC waffle deck. Due to excellent mechanical behaviors and impressive durability of UHPC, the steel-UHPC composite girders have the advantages of light weight, high strength, low creep coefficient, low risk of cracking, and excellent durability, making them competitive alternatives for long-span bridges. To date, the proposed steel-UHPC composite girders have been applied to 14 real bridges in China. It is expected that the application of the new steel-UHPC composite girders on long-span bridges will have a promising future.