期刊文献+
共找到27,690篇文章
< 1 2 250 >
每页显示 20 50 100
Structure and Properties of Pure Cotton Low-Twist Single Yarn Based on Addition of Long-Staple Cotton
1
作者 温润 谈敏 +1 位作者 许诺 张瑞寅 《Journal of Donghua University(English Edition)》 CAS 2022年第2期115-119,共5页
Pure cotton low-twist single yarn has good softness,bulkiness,and wearing comfort,but its lower strength makes the yarn break easily during the spinning process,which seriously affects the spinning effect and progress... Pure cotton low-twist single yarn has good softness,bulkiness,and wearing comfort,but its lower strength makes the yarn break easily during the spinning process,which seriously affects the spinning effect and progress.The addition of long-staple cotton helps to increase the average length and uniformity of the raw fiber,thereby improving the breaking load and spinnability of pure cotton low-twist single yarn.In this study,the addition of long-staple cotton,the twist factor,and the twist direction were used as variables to spin 22 kinds of combed 14.6 tex pure cotton low-twist single yarn with spinnability,and the breaking load,the hairiness,and the unevenness of the yarn were tested.The result shows that the spinnability of pure cotton low-twist single yarn is mainly related to the breaking load,and with the increase of the twist factor,the breaking load of low-twist single yarn shows an obvious upward trend.When the proportion of long-staple cotton is 70%,the breaking load of low-twist single yarn is the largest,and the harmful hairiness index and unevenness of the yarn are significantly improved. 展开更多
关键词 low twist single yarn long-staple cotton structure PROPERTY
下载PDF
Growth,leaf anatomy,and photosynthesis of cotton(Gossypium hirsutum L.)seedlings in response to four light-emitting diodes and high pressure sodium lamp 被引量:1
2
作者 ZHANG Yichi LIAO Baopeng +3 位作者 LI Fangjun ENEJI AEgrinya DU Mingwei TIAN Xiaoli 《Journal of Cotton Research》 CAS 2024年第1期79-89,共11页
Background Light is a critical factor in plant growth and development,particularly in controlled environments.Light-emitting diodes(LEDs)have become a reliable alternative to conventional high pressure sodium(HSP)lamp... Background Light is a critical factor in plant growth and development,particularly in controlled environments.Light-emitting diodes(LEDs)have become a reliable alternative to conventional high pressure sodium(HSP)lamps because they are more efficient and versatile in light sources.In contrast to well-known specialized LED light spectra for vegetables,the appropriate LED lights for crops such as cotton remain unknown.Results In this growth chamber study,we selected and compared four LED lights with varying percentages(26.44%–68.68%)of red light(R,600–700 nm),combined with other lights,for their effects on growth,leaf anatomy,and photosynthesis of cotton seedlings,using HSP lamp as a control.The total photosynthetic photon flux density(PPFD)was(215±2)μmol·m-2·s-1 for all LEDs and HSP lamp.The results showed significant differences in all tested parameters among lights,and the percentage of far red(FR,701–780 nm)within the range of 3.03%–11.86%was positively correlated with plant growth(characterized by leaf number and area,plant height,stem diameter,and total biomass),palisade layer thickness,photosynthesis rate(Pn),and stomatal conductance(Gs).The ratio of R/FR(4.445–11.497)negatively influenced the growth of cotton seedlings,and blue light(B)suppressed stem elongation but increased palisade cell length,chlorophyll content,and Pn.Conclusion The LED 2 was superior to other LED lights and HSP lamp.It had the highest ratio of FR within the total PPFD(11.86%)and the lowest ratio of R/FR(4.445).LED 2 may therefore be used to replace HPS lamp under controlled environments for the study of cotton at the seedling stage. 展开更多
关键词 cotton seedling Light-emitting diodes BIOMASS Palisade cell PHOTOSYNTHESIS
下载PDF
Journal of Cotton Research Annual Awards
3
《Journal of Cotton Research》 CAS 2024年第1期108-108,共1页
Hangdling Editor of the Year 2023.Journal of Cotton Research editorial office launches the award of Handling editors of the year to recognize handling editors with the most processed manuscripts in Journal of Cotton R... Hangdling Editor of the Year 2023.Journal of Cotton Research editorial office launches the award of Handling editors of the year to recognize handling editors with the most processed manuscripts in Journal of Cotton Research.Here are the Top 4 Handling editors of 2023:DONG Hezhong,Institute of Industrial Crops,Shandong Academy of Agricultural Sciences,China YANG Guozheng,College of Plant Science&Technology,Huazhong Agricultural University,China ZHANG Lizhen,College of Resources and Environmental Sciences,China Agricultural University,China ZHOU Zhiguo,College of Agriculture,Nanjing Agricultural University,China. 展开更多
关键词 AGRICULTURAL cotton NANJING
下载PDF
Alternate cotton-peanut intercropping:a new approach to increasing productivity and minimizing environmental impact
4
作者 CHI Baojie DONG Hezhong 《Journal of Cotton Research》 CAS 2024年第1期101-103,共3页
Recent publications have highlighted the development of an alternate cotton-peanut intercropping as a novel strat-egy to enhance agricultural productivity.In this article,we provide an overview of the progress made in... Recent publications have highlighted the development of an alternate cotton-peanut intercropping as a novel strat-egy to enhance agricultural productivity.In this article,we provide an overview of the progress made in the alternate cotton-peanut intercropping,specifically focusing on its yield benefits,environmental impacts,and the underlying mechanisms.In addition,we advocate for future investigations into the selection or development of appropriate crop varieties and agricultural equipment,pest management options,and the mechanisms of root-canopy interactions.This review is intended to provide a valuable reference for understanding and adopting an alternate intercropping system for sustainable cotton production. 展开更多
关键词 cotton PEANUT Alternate intercropping PRODUCTIVITY
下载PDF
Barley chitinase genes expression revamp resistance against whitefly (Bemisia Tabaci) in transgenic cotton (Gossypium hirsutum L.)
5
作者 BASHIR Samina YAQOOB Amina +7 位作者 BASHIR Rohina BUKHARI Shanila SHAHID Naila AZAM Saira BAKHSH Allah HUSNAIN Tayyab SHAHID Ahmad Ali RAO Abdul Qayyum 《Journal of Cotton Research》 CAS 2024年第1期90-100,共11页
Background Chitinase is an enzyme that hydrolyzes chitin,a major component of the exoskeleton of insects,including plant pests like whiteflies.The present study aimed to investigate the expression of chemically synthe... Background Chitinase is an enzyme that hydrolyzes chitin,a major component of the exoskeleton of insects,including plant pests like whiteflies.The present study aimed to investigate the expression of chemically synthesized barley ch1 and chi2 genes in cotton(Gossypium hirsutum)through Agrobacterium-mediated transformation.Fifty-five putative transgenic cotton plants were obtained,out of which fifteen plants successfully survived and were shifted to the field.Using gene-specific primers,amplification of 447 bp and 401 bp fragments confirmed the presence of the ch1 and chi2 genes in five transgenic cotton plants of the T0 generation.These five plants were further evalu-ated for their mRNA expression levels.The T0 transgenic cotton plants with the highest mRNA expression level and better yield performance in field,were selected to raise their subsequent progenies.Results The T1 cotton plants showed the highest mRNA expression levels of 3.5-fold in P10(2)for the ch1 gene and 3.7-fold in P2(1)for the chi2 gene.Fluorescent in situ hybridization(FISH)confirmed a single copy number of ch1 and chi2(hemizygous)on chromosome no.6.Furthermore,the efficacy of transgenes on whitefly was evaluated through an insect bioassay,where after 96 h of infestation,mortality rates of whitefly were calculated to be 78%–80%in transgenic cotton plants.The number of eggs on transgenic cotton plants were calculated to be 0.1%–0.12 per plant compared with the non-transgenic plants where egg number was calculated to be 0.90–1.00 per plant.Conclusion Based on these findings,it can be concluded that the chemically synthesized barley chitinase genes(ch1 and chi2)have the potential to be effective against insects with chitin exoskeletons,including whiteflies.The transgenic cotton plants expressing these genes showed increased resistance to whiteflies,resulting in reduced egg numbers and higher mortality rates. 展开更多
关键词 CHITINASE cotton White fly TRANSGENE BIOASSAY
下载PDF
Genetics of biochemical attributes regulating morpho-physiology of upland cotton under high temperature conditions
6
作者 MAJEED Sajid CHAUDHARY Muhammad Tanees +7 位作者 MUBARIK Muhammad Salman RANA Iqrar Ahmad SHABAN Muhammad TAN Daniel KY JIA Yinhua DU Xiongming HINZE Lori AZHAR Muhammad Tehseen 《Journal of Cotton Research》 CAS 2024年第1期29-44,共16页
Background Cotton is a strategically important fibre crop for global textile industry.It profoundly impacts several countries’industrial and agricultural sectors.Sustainable cotton production is continuously threaten... Background Cotton is a strategically important fibre crop for global textile industry.It profoundly impacts several countries’industrial and agricultural sectors.Sustainable cotton production is continuously threatened by the unpre-dictable changes in climate,specifically high temperatures.Breeding heat-tolerant,high-yielding cotton cultivars with wide adaptability to be grown in the regions with rising temperatures is one of the primary objectives of modern cotton breeding programmes.Therefore,the main objective of the current study is to figure out the effective breed-ing approach to imparting heat tolerance as well as the judicious utilization of commercially significant and stress-tolerant attributes in cotton breeding.Initially,the two most notable heat-susceptible(FH-115 and NIAB Kiran)and tolerant(IUB-13 and GH-Mubarak)cotton cultivars were spotted to develop filial and backcross populations to accom-plish the preceding study objectives.The heat tolerant cultivars were screened on the basis of various morphological(seed cotton yield per plant,ginning turnout percentage),physiological(pollen viability,cell membrane thermostabil-ity)and biochemical(peroxidase activity,proline content,hydrogen peroxide content)parameters.Results The results clearly exhibited that heat stress consequently had a detrimental impact on every studied plant trait,as revealed by the ability of crossing and their backcross populations to tolerate high temperatures.However,when considering overall yield,biochemical,and physiological traits,the IUB-13×FH-115 cross went over particularly well at both normal and high temperature conditions.Moreover,overall seed cotton yield per plant exhibited a posi-tive correlation with both pollen viability and antioxidant levels(POD activity and proline content).Conclusions Selection from segregation population and criteria involving pollen viability and antioxidant levels concluded to be an effective strategy for the screening of heat-tolerant cotton germplasms.Therefore,understanding acquired from this study can assist breeders identifying traits that should be prioritized in order to develop climate resilient cotton cultivars. 展开更多
关键词 ACCESSIONS BIOCHEMICAL BREEDING cotton Generation mean analysis Heat stress
下载PDF
Comparative analysis of SIMILAR to RCD ONE(SRO)family from tetraploid cotton species and their diploid progenitors depict their significance in cotton growth and development
7
作者 SHABAN Muhammad TABASSUM Riaz +5 位作者 RANA Iqrar Ahmad ATIF Rana Muhammad AZMAT Muhammad Abubakkar IQBAL Zubair MAJEED Sajid AZHAR Muhammad Tehseen 《Journal of Cotton Research》 CAS 2024年第1期45-57,共13页
Background SRO(Similar to RCD1)genes family is largely recognized for their importance in the growth,develop-ment,and in responding to environmental stresses.However,genome-wide identification and functional character... Background SRO(Similar to RCD1)genes family is largely recognized for their importance in the growth,develop-ment,and in responding to environmental stresses.However,genome-wide identification and functional characteri-zation of SRO genes from cotton species have not been reported so far.Results A total of 36 SRO genes were identified from four cotton species.Phylogenetic analysis divided these genes into three groups with distinct structure.Syntenic and chromosomal distribution analysis indicated uneven distribu-tion of GaSRO,GrSRO,GhSRO,and GbSRO genes on A2,D5 genomes,Gh-At,Gh-Dt,Gb-At,and Gb-Dt subgenomes,respectively.Gene duplication analysis revealed the presence of six duplicated gene pairs among GhSRO genes.In promoter analysis,several elements responsive to the growth,development and hormones were found in GhSRO genes,implying gene induction during cotton growth and development.Several miRNAs responsive to plant growth and abiotic stress were predicted to target 12 GhSRO genes.Organ-specific expression profiling demonstrated the roles of GhSRO genes in one or more tissues.In addition,specific expression pattern of some GhSRO genes dur-ing ovule development depicted their involvement in these developmental processes.Conclusion The data presented in this report laid a foundation for understanding the classification and functions of SRO genes in cotton. 展开更多
关键词 cotton SRO miRNAs Gene duplications Gene expression Ovule development
下载PDF
Laboratory evaluation of toxicity of selected insecticides against egg and larval stages of cotton pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae)
8
作者 BUSNOOR Abhishek V. WADASKAR R.M. +5 位作者 FAND Babasaheb B. TAMBE V.J. PILLAI T. MAHULE D.J. NAGRARE V.S. PRASAD Y.G. 《Journal of Cotton Research》 CAS 2024年第1期15-28,共14页
Background The cryptic nature of pink bollworm Pectinophora gossypiella(Saunders)larvae enables its reduced vul-nerability to insecticidal control.Further,the development of resistance against Bacillus thuringiensis(B... Background The cryptic nature of pink bollworm Pectinophora gossypiella(Saunders)larvae enables its reduced vul-nerability to insecticidal control.Further,the development of resistance against Bacillus thuringiensis(Bt)toxins posed a serious threat to transgenic cotton cultivation.This necessitated determining the critical timing of spray applications on the control effectiveness.This study assessed the influence of egg age(freshly laid vs.three-day-old)and the loca-tion of larvae(directly exposed to the insecticide residues on the boll rind vs.burrowed inside the bolls)on insecticide control efficacy.Results The results revealed a significant decrease in the ovicidal activity of tested insecticides with an increase in the age of eggs from one day old to three days old(paired t-test,P<0.05).The larvae directly exposed to the insec-ticide residues on the boll rind were more susceptible(>80%mortality)than the larvae exposed after they had bur-rowed inside the bolls(<49%mortality).The inhibitory effects of tested insecticides on developmental biology were more pronounced in the experiment on pre-larval release insecticide treatment compared with insecticide treatment given post-larval release and entry inside the bolls.Conclusion Egg age influences the insecticide susceptibility,as does the larval location,directly exposed vs bur-rowed inside the bolls.Older eggs and the larvae that had burrowed inside the green bolls of cotton were relatively less susceptible to the insecticide treatments.The toxic effects of insecticides on egg and larval stages were primar-ily ephemeral.These findings are significant for devising a comprehensive strategy for pink bollworm management on a sustainable basis. 展开更多
关键词 Bioefficacy cotton INSECTICIDES Pink bollworm Pectinophora gossypiella Timings of spray
下载PDF
Surface Morphology and Thermo-Electrical Energy Analysis of Polyaniline (PANI) Incorporated Cotton Fabric
9
作者 Md.Shohan Parvez Md.Mustafizur Rahman +1 位作者 Mahendran Samykano Mohammad Yeakub Ali 《Energy Engineering》 EI 2024年第1期1-12,共12页
With the exponential development in wearable electronics,a significant paradigm shift is observed from rigid electronics to flexible wearable devices.Polyaniline(PANI)is considered as a dominant material in this secto... With the exponential development in wearable electronics,a significant paradigm shift is observed from rigid electronics to flexible wearable devices.Polyaniline(PANI)is considered as a dominant material in this sector,as it is endowed with the optical properties of both metal and semiconductors.However,its widespread application got delineated because of its irregular rigid form,level of conductivity,and precise choice of solvents.Incorporating PANI in textile materials can generate promising functionality for wearable applications.This research work employed a straightforward in-situ chemical oxidative polymerization to synthesize PANI on Cotton fabric surfaces with varying dopant(HCl)concentrations.Pre-treatment using NaOH is implemented to improve the conductivity of the fabric surface by increasing the monomer absorption.This research explores the morphological and structural analysis employing SEM,FTIR and EDX.The surface resistivity was measured using a digital multimeter,and thermal stability is measured using TGA.Upon successful polymerization,a homogenous coating layer is observed.It is revealed that the simple pre-treatment technique significantly reduces the surface resistivity of Cotton fabric to 1.27 kΩ/cm with increasing acid concentration and thermal stability.The electro-thermal energy can also reach up to 38.2°C within 50 s with a deployed voltage of 15 V.The modified fabric is anticipated to be used in thermal regulation,supercapacitor,sensor,UV shielding,antimicrobial and other prospective functional applications. 展开更多
关键词 POLYANILINE cotton in-situ polymerization SEM TGA heating fabric
下载PDF
GhWDL3 is involved in the formation and development of fiber cell morphology in upland cotton(Gossypium hirsutum L.)
10
作者 CHEN Baojun TIAN Zailong +9 位作者 FU Guoyong ZHANG Ai SUN Yaru WANG Jingjing PAN Zhaoe LI Hongge HU Daowu XIA Yingying HE Shoupu DU Xiongming 《Journal of Cotton Research》 CAS 2024年第1期58-68,共11页
Background Cotton fiber is a model tissue for studying microtubule-associated proteins(MAPs).The Xklp2(TPX2)proteins that belong to the novel MAPs member mainly participate in the formation and development of microtub... Background Cotton fiber is a model tissue for studying microtubule-associated proteins(MAPs).The Xklp2(TPX2)proteins that belong to the novel MAPs member mainly participate in the formation and development of microtubule(MT).However,there is a lack of studies concerning the systematic characterization of the TPX2 genes family in cotton.Therefore,the identification and portrayal of G.hirsutum TPX2 genes can provide key targets for molecular manipula-tion in the breeding of cotton fiber improvement.Result In this study,TPX2 family genes were classified into two distinct subclasses TPXLs and MAP genes WAVE DAMP-ENED2-LIKE(WDLs)and quite conservative in quantity.GhWDL3 was significantly up-regulated in 15 days post anthe-sis fibers of ZRI-015(an upland cotton with longer and stronger fiber).GhWDL3 promotes all stem hairs to become straight when overexpressed in Arabidopsis,which may indirectly regulate cotton fiber cell morphology during fiber development.Virus induced gene silencing(VIGS)results showed that GhWDL3 inhibited fiber cell elongation at fiber development periods through regulating the expression of cell wall related genes.Conclusion These results reveal that GhWDL3 regulated cotton fiber cell elongation and provide crucial information for the further investigation in the regulatory mechanisms/networks of cotton fiber length. 展开更多
关键词 Upland cotton GhWDL3 Fiber length TPX2 CYTOSKELETON Microtubule-associated proteins(MAPs)
下载PDF
The BEL1-like transcription factor GhBLH5-A05 participates in cotton response to drought stress
11
作者 Jing-Bo Zhang Yao Wang +4 位作者 Shi-Peng Zhang Fan Cheng Yong Zheng Yang Li Xue-Bao Li 《The Crop Journal》 SCIE CSCD 2024年第1期177-187,共11页
Drought stress impairs crop growth and development.BEL1-like family transcription factors may be involved in plant response to drought stress,but little is known of the molecular mechanism by which these proteins regu... Drought stress impairs crop growth and development.BEL1-like family transcription factors may be involved in plant response to drought stress,but little is known of the molecular mechanism by which these proteins regulate plant response and defense to drought stress.Here we show that the BEL1-like transcription factor GhBLH5-A05 functions in cotton(Gossypium hirsutum)response and defense to drought stress.Expression of GhBLH5-A05 in cotton was induced by drought stress.Overexpression of GhBLH5-A05 in both Arabidopsis and cotton increased drought tolerance,whereas silencing GhBLH5-A05 in cotton resulted in elevated sensitivity to drought stress.GhBLH5-A05 binds to cis elements in the promoters of GhRD20-A09 and GhDREB2C-D05 to activate the expression of these genes.GhBLH5-A05 interacted with the KNOX transcription factor GhKNAT6-A03.Co-expression of GhBLH5-A05 and GhKNAT6-A03 increased the transcription of GhRD20-A09 and GhDREB2C-D05.We conclude that GhBLH5-A05 acts as a regulatory factor with GhKNAT6-A03 functioning in cotton response to drought stress by activating the expression of the drought-responsive genes GhRD20-A09 and GhDREB2C-D05. 展开更多
关键词 cotton(Gossypium hirsutum) BEL1-like transcription factor Drought stress Transcriptional regulation Drought tolerance
下载PDF
Gene expression pattern of K transporter GhHAK5 gene of potassium efficient and in-efficient cotton cultivars based on morphological physiognomies as affected by potassium nutrition and reduced irrigation 被引量:1
12
作者 AKHTAR Muhammad Naeem HAQ Tanveer ul +1 位作者 AKHTAR Muhammad Waseem ABBASS Ghulam 《Journal of Cotton Research》 CAS 2023年第3期166-185,共20页
Background Under K deficiency the uptake and distribution pattern in plant cells is mediated through different transport proteins and channels which were controlled by specific gene family.Therefore,a hydroponic exper... Background Under K deficiency the uptake and distribution pattern in plant cells is mediated through different transport proteins and channels which were controlled by specific gene family.Therefore,a hydroponic experiment was conducted under control condition for testing the gene expression pattern of the K transporter under adequate and low K supply levels.After that,a 2-year field experiment was conducted to evaluate five selected cotton cultivars(four K-efficient cultivars,viz.,CIM-554,CYTO-124,FH-142,IUB-2013,and one K non-efficient,BH-212) screened from the initial hydroponics culture experiment and two levels of potassium(0 K_(2)O kg·ha^(-1) and 50 K_(2)O kg·ha^(-1)) were tested under reduced irrigation(50% available water content;50 AWC) and normal irrigation conditions(100% available water content;100 AWC).Result Results revealed that the transcript levels of GhHAK5aD in roots were significantly higher in K^(+) efficient cultivars than that in K^(+) non-efficient cultivars.The GhHAK5aD expression upon K^(+) deficiency was higher in roots but lower in shoots,indicating that GhHAK5aD could have a role in K^(+) uptake in roots,instead of transport of K^(+) from root to shoot.Similarly,under field conditions the cultivar FH-142 showed an increase of 22.3%,4.9%,2.4%,and 1.4% as compared with BH-212,IUB-2013,CYTO-124,and CIM-554,respectively,in seed cotton yield(SCY) with K application under reduced irrigation conditions.With applied K,the FH-142 showed an increase in net photosynthetic rate by 57.3% as compared with the rest of the cultivars under reduced irrigation over K control.However,the overall performance indicators of K-efficient cultivars like FH-142,CYTO-124,CIM-554,and IUB-2013 were better than BH-212(K in-efficient) under reduced irrigation conditions with applied K at 50 kg·ha^(-1).Fiber quality trait improved significantly with K application under water deficit.The increase in micronaire was 3.6%,4.7%,7.8%,3.4%,and 6.7% in BH-212,IUB-2013,CIM-554,CYTO-124,and FH-142,respectively,with K application at 50 kg·ha^(-1) over without K application under reduced irrigation conditions during the cotton growing season.Similarly,the cultivars FH-142 increased by 12% with K application under reduced irrigation as compared with other cultivars.The performance of K-efficient cultivars under reduced irrigation conditions was 30% better in SCY and quality traits with the application of K at 50 kg·ha^(-1) as compared with K-non-efficient cultivars.Similarly,water use efficiency(WUE)(40.1%) and potassium use efficiency(KUE)(20.2%) were also noted higher in case of FH-142 as compared with other cultivar with K application under reduced conditions.Conclusion Higher expression of GhHAK5aD gene was observed in K-efficient cultivars as compared with K-nonefficient cultivars in roots indicates that GhHAK5aD may be contributing to genotypic differences for K^(+) efficiency in cotton.K-efficient cotton cultivars can be used for the low-K environments and can also be recommended for general cultivars. 展开更多
关键词 cotton K-efficient cultivars Drought Potassium use efficiency WUE
下载PDF
Nitrogen nutrition diagnosis for cotton under mulched drip irrigation using unmanned aerial vehicle multispectral images 被引量:1
13
作者 PEI Sheng-zhao ZENG Hua-liang +2 位作者 DAI Yu-long BAI Wen-qiang FAN Jun-liang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第8期2536-2552,共17页
Remote sensing has been increasingly used for precision nitrogen management to assess the plant nitrogen status in a spatial and real-time manner.The nitrogen nutrition index(NNI)can quantitatively describe the nitrog... Remote sensing has been increasingly used for precision nitrogen management to assess the plant nitrogen status in a spatial and real-time manner.The nitrogen nutrition index(NNI)can quantitatively describe the nitrogen status of crops.Nevertheless,the NNI diagnosis for cotton with unmanned aerial vehicle(UAV)multispectral images has not been evaluated yet.This study aimed to evaluate the performance of three machine learning models,i.e.,support vector machine(SVM),back propagation neural network(BPNN),and extreme gradient boosting(XGB)for predicting canopy nitrogen weight and NNI of cotton over the whole growing season from UAV images.The results indicated that the models performed better when the top 15 vegetation indices were used as input variables based on their correlation ranking with nitrogen weight and NNI.The XGB model performed the best among the three models in predicting nitrogen weight.The prediction accuracy of nitrogen weight at the upper half-leaf level(R^(2)=0.89,RMSE=0.68 g m^(-2),RE=14.62%for calibration and R^(2)=0.83,RMSE=1.08 g m^(-2),RE=19.71%for validation)was much better than that at the all-leaf level(R^(2)=0.73,RMSE=2.20 g m^(-2),RE=26.70%for calibration and R^(2)=0.70,RMSE=2.48 g m^(-2),RE=31.49%for validation)and at the plant level(R^(2)=0.66,RMSE=4.46 g m^(-2),RE=30.96%for calibration and R^(2)=0.63,RMSE=3.69 g m^(-2),RE=24.81%for validation).Similarly,the XGB model(R^(2)=0.65,RMSE=0.09,RE=8.59%for calibration and R^(2)=0.63,RMSE=0.09,RE=8.87%for validation)also outperformed the SVM model(R^(2)=0.62,RMSE=0.10,RE=7.92%for calibration and R^(2)=0.60,RMSE=0.09,RE=8.03%for validation)and BPNN model(R^(2)=0.64,RMSE=0.09,RE=9.24%for calibration and R^(2)=0.62,RMSE=0.09,RE=8.38%for validation)in predicting NNI.The NNI predictive map generated from the optimal XGB model can intuitively diagnose the spatial distribution and dynamics of nitrogen nutrition in cotton fields,which can help farmers implement precise cotton nitrogen management in a timely and accurate manner. 展开更多
关键词 UAV nitrogen diagnosis leaf nitrogen weight nitrogen nutrition index cotton
下载PDF
A bZIP transcription factor GhVIP1 increased drought tolerance in upland cotton 被引量:1
14
作者 ZHAO Pei XU Yuewei +3 位作者 CHEN Wei SANG Xiaohui ZHAO Yunlei WANG Hongmei 《Journal of Cotton Research》 CAS 2023年第2期125-137,共13页
Background Cotton is extremely affected by severe natural stresses.Drought is one of the most serious abiotic stress that adversely influences cotton growth,productivity,and fiber quality.Previous studies indicate tha... Background Cotton is extremely affected by severe natural stresses.Drought is one of the most serious abiotic stress that adversely influences cotton growth,productivity,and fiber quality.Previous studies indicate that basic leucinezipper(bZIP)transcription factors are involved in the response of plants to various stresses.However,the molecular function and regulatory mechanism of GhVIP1 in response to drought stress are still unknown.Results In this research,GhVIP1 was cloned from a drought-tolerant variety.Expression of GhVIP1 was up-regulated in response to multiple abiotic stresses,especially under drought stress.And GhVIP1 was highly expressed in the root,stem,and 10 days post-anthesis ovule.Inhibiting the expression of GhVIP1 in cotton using the virus-induced gene silencing method resulted in higher electrical conductivity in leaves,but lower water content under drought stress compared with the WT plant.Overexpression of GhVIP1 in Arabidopsis enhanced plant drought tolerance through increasing the seed germination rate and improving the development of root.The exogenous expression of GhVIP1 up-regulated the transcription of genes associated with drought response and proline biosynthesis during drought stress in Arabidopsis.Conclusion In summary,these results indicated that GhVIP1 played a positive role in plants’response to drought stress.The use of GhVIP1 via modern biotechnology might facilitate the improvement of drought tolerance in cotton cultivars. 展开更多
关键词 cotton GhVIP1 Drought stress Proline Biosynthesis
下载PDF
GhIQD10 interacts with GhCaM7 to control cotton fiber elongation via calcium signaling 被引量:1
15
作者 Fan Xu Li Wang +5 位作者 Jun Xu Qian Chen Caixia Ma Li Huang Guiming Li Ming Luo 《The Crop Journal》 SCIE CSCD 2023年第2期447-456,共10页
IQ67-domain(IQD)proteins function in plant defense and in organ development.The mechanisms by which they influence cotton fiber development are unknown.In the present study,GhIQD10 was expressed mainly in the transiti... IQ67-domain(IQD)proteins function in plant defense and in organ development.The mechanisms by which they influence cotton fiber development are unknown.In the present study,GhIQD10 was expressed mainly in the transition period of cotton fiber development,and GhIQD10-overexpression lines showed shorter fibers.GhIQD10 interacted with GhCaM7 and the interaction was inhibited by Ca^(2+).In in vitro ovule culture,Ca^(2+)rescued the shorter-fiber phenotype of GhIQD10-overexpression lines,which were insensitive to the Ca^(2+)channel inhibitor verapamil and the Ca^(2+)pool release channel blocker 2-aminoethoxydiphenyl borate.We conclude that GhIQD10 affects cotton fiber elongation via Ca^(2+)signaling by interacting with GhCaM7.Brassinosteroid(BR)biosynthesis and signaling genes were up-regulated in GhIQD10-overexpression lines.Fiber development in these lines was not affected by epibrassinolide or the BR biosynthesis inhibitor brassinozole,indicating that the influence of GhIQD10 on fiber elongation was not associated with BR. 展开更多
关键词 cotton Fiber elongation IQ67-domian protein CA^(2+) BRASSINOSTEROID
下载PDF
Genetic variability predicting breeding potential of upland cotton(Gossypium hirsutum L.)for high temperature tolerance 被引量:1
16
作者 FAROOQ Amjad SHAKEEL Amir +5 位作者 SAEED Asif FAROOQ Jehanzeb RIZWAN Muhammad CHATTHA Waqas Shafqat SARWAR Ghulam RAMZAN Yasir 《Journal of Cotton Research》 CAS 2023年第2期81-97,共17页
Background High temperature stress at peak flowering stage of cotton is a major hindrance for crop potential.This study aimed to increase genetic divergence regarding heat tolerance in newly developed cultivars and hy... Background High temperature stress at peak flowering stage of cotton is a major hindrance for crop potential.This study aimed to increase genetic divergence regarding heat tolerance in newly developed cultivars and hybrids.Fifty cotton genotypes and 40 F1(hybrids)were tested under field conditions following the treatments,viz.,high temperature stress and control at peak flowering stage in August and October under April and June sowing,respectively.Results The mean squares revealed significant differences among genotypes,treatments,genotype×treatment for relative cell injury,chlorophyll contents,canopy temperature,boll retention and seed cotton yield per plant.The genetic diversity among 50 genotypes was analyzed through cluster analysis and heat susceptibility index(HSI).The heat tolerant genotypes including FH-Noor,NIAB-545,FH-466,FH-Lalazar,FH-458,NIAB-878,IR-NIBGE-8,Weal-AGShahkar,and heat sensitive,i.e.,CIM-602,Silky-3,FH-326,SLH-12 and FH-442 were hybridized in line×tester fashion to produce F1 populations.The breeding materials’populations(40 F1)revealed higher specific combining ability variances along with dominance variances,decided the non-additive type gene action for all the traits.The best general combining ability effects for most of the traits were displayed by the lines,i.e.,FH-Lalazar,NIAB-878 along with testers FH-326 and Silky-3.Specific combining ability effects and better-parent heterosis were showed by the crosses,viz.,FH-Lalazar×Silky-3,FH-Lalazar×FH-326,NIAB-878×Silky-3,and NIAB-878×FH-326 for seed cotton yield and yield contributing traits under high temperature stress.Conclusion Heterosis breeding should be carried out in the presence of non-additive type gene action for all the studied traits.The best combiner parents with better-parent heterosis may be used in crossing program to develop high yielding cultivars,and hybrids for high temperature stress tolerance. 展开更多
关键词 High temperature Upland cotton Peak flowering HETEROSIS Gene action Combining ability
下载PDF
High-temperature stress suppresses allene oxide cyclase 2 and causes male sterility in cotton by disrupting jasmonic acid signaling 被引量:1
17
作者 Aamir Hamid Khan Yizan Ma +9 位作者 Yuanlong Wu Adnan Akbar Muhammad Shaban Abid Ullah Jinwu Deng Abdul Saboor Khan Huabin Chi Longfu Zhu Xianlong Zhang Ling Min 《The Crop Journal》 SCIE CSCD 2023年第1期33-45,共13页
Cotton(Gossypium spp.) yield is reduced by stress. In this study, high temperature(HT) suppressed the expression of the jasmonic acid(JA) biosynthesis gene allene oxide cyclase 2(GhAOC2), reducing JA content and causi... Cotton(Gossypium spp.) yield is reduced by stress. In this study, high temperature(HT) suppressed the expression of the jasmonic acid(JA) biosynthesis gene allene oxide cyclase 2(GhAOC2), reducing JA content and causing male sterility in the cotton HT-sensitive line H05. Anther sterility was reversed by exogenous application of methyl jasmonate(MeJA) to early buds. To elucidate the role of GhAOC2 in JA biosynthesis and identify its putative contribution to the anther response to HT, we created gene knockout cotton plants using the CRISPR/Cas9 system. Ghaoc2 mutant lines showed male-sterile flowers with reduced JA content in the anthers at the tetrad stage(TS), tapetum degradation stage(TDS), and anther dehiscence stage(ADS). Exogenous application of MeJA to early mutant buds(containing TS or TDS anthers) rescued the sterile pollen and indehiscent anther phenotypes, while ROS signals were reduced in ADS anthers. We propose that HT downregulates the expression of GhAOC2 in anthers, reducing JA biosynthesis and causing excessive ROS accumulation in anthers, leading to male sterility. These findings suggest exogenous JA application as a strategy for increasing male fertility in cotton under HT. 展开更多
关键词 cotton(Gossypium hirsutum) Jasmonic acid Allene oxide cyclase 2 ROS CRISPR/Cas9 High-temperature stress
下载PDF
Assembly and phylogenomic analysis of cotton mitochondrial genomes provide insights into the history of cotton evolution
18
作者 Yanlei Feng Yukang Wang +10 位作者 Hejun Lu Jun Li Delara Akhter Fang Liu Ting Zhao Xingxing Shen Xiaobo Li James Whelan Tianzhen Zhang Jianping Hu Ronghui Pan 《The Crop Journal》 SCIE CSCD 2023年第6期1782-1792,共11页
Cotton is a major crop that provides the most important renewable textile fibers in the world.Studies of the taxonomy and evolution of cotton species have received wide attentions,not only due to cotton’s economic va... Cotton is a major crop that provides the most important renewable textile fibers in the world.Studies of the taxonomy and evolution of cotton species have received wide attentions,not only due to cotton’s economic value but also due to the fact that Gossypium is an ideal model system to study the origin,evolution,and cultivation of polyploid species.Previous studies suggested the involvement of mitochondrial genome editing sites and copy number as well as mitochondrial functions in cotton fiber elongation.Whereas,with only a few mitogenomes assembled in the cotton genus Gossypium,our knowledge about their roles in cotton evolution and speciation is still scarce.To close this gap,here we assembled 20 mitogenomes from 15 cotton species spanning all the cotton clades(A–G,K,and AD genomes)and 5 cotton relatives using short and long sequencing reads.Systematic analyses uncovered a high level of mitochondrial gene sequence conservation,abundant sequence repeats and many insertions of foreign sequences,as well as extensive structural variations in cotton mitogenomes.The sequence repeats and foreign sequences caused significant mitogenome size inflation in Gossypium and its close relative Kokia in general,while there is no significant difference between the lint and fuzz cotton mitogenomes in terms of gene content,RNA editing,and gene expression level.Interestingly,we further revealed the specific presence and expression of two novel mitochondrial open reading frames(ORFs)in lint-fiber cotton species.Finally,these structural features and novel ORFs help us gain valuable insights into the history of cotton evolution and polyploidization and the origin of species producing long lint fibers from a mitogenomic perspective. 展开更多
关键词 cotton evolution cotton phylogeny Lint fiber cotton Mitochondrial genome Mitochondrial genes
下载PDF
Flavanone and flavonoid hydroxylase genes regulate fiber color formation in naturally colored cotton
19
作者 Hongli Zheng Bailin Duan +6 位作者 Bo Yuan Zhengbin Chen Dongliang Yu Liping Ke Wenlong Zhou Haifeng Liu Yuqiang Sun 《The Crop Journal》 SCIE CSCD 2023年第3期766-773,共8页
Using naturally colored cotton(NCC)can eliminate dyeing,printing and industrial processing,and reduce sewage discharge and energy consumption.Proanthocyanidins(PAs),the primary coloration components in brown fibers,ar... Using naturally colored cotton(NCC)can eliminate dyeing,printing and industrial processing,and reduce sewage discharge and energy consumption.Proanthocyanidins(PAs),the primary coloration components in brown fibers,are polyphenols formed by oligomers or polymers of flavan-3-ol units derived from anthocyanidins.Three essential structural genes for flavanone and flavonoid hydroxylation encoding flavanone-3-hydroxylase(F3H),flavonoid 3’-hydroxylase(F3’H)and flavonoid 3’5’-hydroxylase(F3’5’H)are initially committed in the flavonoid biosynthesis pathway to produce common precursors.The three genes were all expressed predominantly in developing fibers of NCCs,and their expression patterns varied temporally and spatially among NCC varieties.In GhF3Hi,GhF3’Hi and GhF3’5’Hi silenced lines of NCC varieties XC20 and ZX1,the expression level of the three genes decreased in developing cotton fiber,negatively correlated with anthocyanidin content and fiber color depth.Fiber color depth and type in RNAi lines changed with endogenous gene silencing efficiency and expression pattern,the three hydroxylase genes functioned in fiber color formation.GhF3H showed functional differentiation among NCC varieties and GhF3’H acted in the accumulation of anthocyanin in fiber.Compared with GhF3’H,GhF3’5’H was expressed more highly in brown fiber with a longer duration of expression and caused lighter color of fibers in GhF3’5’H silenced lines.These three genes regulating fiber color depth and type could be used to improve these traits by genetic manipulation. 展开更多
关键词 Naturally colored cotton Brown cotton fiber Fiber color Anthocyanidin Flavanone/flavanoid hydroxylase
下载PDF
Spatial Pattern of Cotton Yield Variability and Its Response to Climate Change in Cotton Belt of Pakistan
20
作者 YU Shan DU Wala +4 位作者 ZHANG Xiang HONG Ying LIU Yang HONG Mei CHEN Siyu 《Chinese Geographical Science》 SCIE CSCD 2023年第2期351-362,共12页
Cotton is a revenue source for cotton-producing countries;as the second-largest crop in Pakistan,it significantly contributes to its economy.Over the past few decades,cotton productivity has become unstable in Pakista... Cotton is a revenue source for cotton-producing countries;as the second-largest crop in Pakistan,it significantly contributes to its economy.Over the past few decades,cotton productivity has become unstable in Pakistan,and climate change is one of the main factors that impact cotton yield.Due to climate change,it becomes very important to understand the change trend and its impact on cotton yield at the regional level.Here,we investigate the relationship of standardized cotton yield variability with the variability of climate factors using a 15-yr moving window.The piecewise regression was fitted to obtain the trend-shifting point of climate factors.The results show that precipitation has experienced an overall decreasing trend of–0.64 mm/yr during the study period,with opposing trends of–1.39 mm/yr and 1.52 mm/yr before and after the trend-shifting point,respectively.We found that cotton yield variability increased at a rate of 0.17%/yr,and this trend was highly correlated with the variability of climate factors.The multiple regression analysis explains that climate variability is a dominant factor and controlled 81%of the cotton production in the study area from 1990 to 2019,while it controlled 73%of the production from 1990 to 2002 and 84%from 2002 to 2019.These findings reveal that climate factors affact the distinct spatial pattern of changes in cotton yield variability at the tehsil level. 展开更多
关键词 cotton crop yield variability climate impact on cotton yield regression analysis 15-yr moving window Pakistan
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部