期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Device Anomaly Detection Algorithm Based on Enhanced Long Short-Term Memory Network
1
作者 罗辛 陈静 +1 位作者 袁德鑫 杨涛 《Journal of Donghua University(English Edition)》 CAS 2023年第5期548-559,共12页
The problems in equipment fault detection include data dimension explosion,computational complexity,low detection accuracy,etc.To solve these problems,a device anomaly detection algorithm based on enhanced long short-... The problems in equipment fault detection include data dimension explosion,computational complexity,low detection accuracy,etc.To solve these problems,a device anomaly detection algorithm based on enhanced long short-term memory(LSTM)is proposed.The algorithm first reduces the dimensionality of the device sensor data by principal component analysis(PCA),extracts the strongly correlated variable data among the multidimensional sensor data with the lowest possible information loss,and then uses the enhanced stacked LSTM to predict the extracted temporal data,thus improving the accuracy of anomaly detection.To improve the efficiency of the anomaly detection,a genetic algorithm(GA)is used to adjust the magnitude of the enhancements made by the LSTM model.The validation of the actual data from the pumps shows that the algorithm has significantly improved the recall rate and the detection speed of device anomaly detection,with the recall rate of 97.07%,which indicates that the algorithm is effective and efficient for device anomaly detection in the actual production environment. 展开更多
关键词 anomaly detection production equipment genetic algorithm(GA) long short-term memory(LSTM) principal component analysis(PCA)
下载PDF
Multipath Selection Algorithm Based on Dynamic Flow Prediction
2
作者 Jingwen Wang Guolong Yu Xin Cui 《Journal of Computer and Communications》 2024年第7期94-104,共11页
Traditional traffic management techniques appear to be incompetent in complex data center networks, so proposes a load balancing strategy based on Long Short-Term Memory (LSTM) and quantum annealing by Software Define... Traditional traffic management techniques appear to be incompetent in complex data center networks, so proposes a load balancing strategy based on Long Short-Term Memory (LSTM) and quantum annealing by Software Defined Network (SDN) to dynamically predict the traffic and comprehensively consider the current and predicted load of the network in order to select the optimal forwarding path and balance the network load. Experiments have demonstrated that the algorithm achieves significant improvement in both system throughput and average packet loss rate for the purpose of improving network quality of service. 展开更多
关键词 Data Center Network Software Defined Network Load Balance Long short-term memory Quantum Annealing algorithms
下载PDF
An Improved Whale Optimization Algorithm for Global Optimization and Realized Volatility Prediction
3
作者 Xiang Wang Liangsa Wang +1 位作者 Han Li Yibin Guo 《Computers, Materials & Continua》 SCIE EI 2023年第12期2935-2969,共35页
The original whale optimization algorithm(WOA)has a low initial population quality and tends to converge to local optimal solutions.To address these challenges,this paper introduces an improved whale optimization algo... The original whale optimization algorithm(WOA)has a low initial population quality and tends to converge to local optimal solutions.To address these challenges,this paper introduces an improved whale optimization algorithm called OLCHWOA,incorporating a chaos mechanism and an opposition-based learning strategy.This algorithm introduces chaotic initialization and opposition-based initialization operators during the population initialization phase,thereby enhancing the quality of the initial whale population.Additionally,including an elite opposition-based learning operator significantly improves the algorithm’s global search capabilities during iterations.The work and contributions of this paper are primarily reflected in two aspects.Firstly,an improved whale algorithm with enhanced development capabilities and a wide range of application scenarios is proposed.Secondly,the proposed OLCHWOA is used to optimize the hyperparameters of the Long Short-Term Memory(LSTM)networks.Subsequently,a prediction model for Realized Volatility(RV)based on OLCHWOA-LSTM is proposed to optimize hyperparameters automatically.To evaluate the performance of OLCHWOA,a series of comparative experiments were conducted using a variety of advanced algorithms.These experiments included 38 standard test functions from CEC2013 and CEC2019 and three constrained engineering design problems.The experimental results show that OLCHWOA ranks first in accuracy and stability under the same maximum fitness function calls budget.Additionally,the China Securities Index 300(CSI 300)dataset is used to evaluate the effectiveness of the proposed OLCHWOA-LSTM model in predicting RV.The comparison results with the other eight models show that the proposed model has the highest accuracy and goodness of fit in predicting RV.This further confirms that OLCHWOA effectively addresses real-world optimization problems. 展开更多
关键词 Whale optimization algorithm chaos mechanism opposition-based learning long short-term memory realized volatility
下载PDF
The Function of Oxytocin in Memory —A General Review of Oxytocin’s Effect on Memory
4
作者 Fan Gao 《World Journal of Neuroscience》 2023年第4期192-209,共18页
Introduction: While oxytocin (OT) is widely recognized for its pivotal role in reproductive behavior and the formation of social bonds, there remains a significant gap in our understanding of its potential influence o... Introduction: While oxytocin (OT) is widely recognized for its pivotal role in reproductive behavior and the formation of social bonds, there remains a significant gap in our understanding of its potential influence on learning and memory processes, encompassing both social and non-social aspects. Thus this paper serves as an attempt to investigate the comprehensive role of OT in Physiological, Cognitive, and Behavioral processes. Method: A comprehensive literature review was conducted to assemble evidence related to the influence of OT on learning and memory. Studies encompassing both social and non-social memory were incorporated into the analysis. Additionally, molecular mechanisms through which OT could potentially impact neuronal activity in the hippocampus and amygdala, consequently affecting learning and memory, were also investigated. Results: Our review reveals a spectrum of evidence that both supports and contradicts the theory that OT plays a significant role in social and non-social memory. While certain studies suggest a positive impact of OT on memory, others present findings that argue otherwise. However, multiple potential molecular mechanisms were discovered that may elucidate OT’s effects on learning and memory, particularly its potential to modulate neuronal activity in the hippocampus and amygdala. Conclusion: Despite the mixed evidence, OT might have a significant role in both social and non-social memory. Identified molecular mechanisms propose potential ways in which OT could influence learning and memory. The key role appears to be the modulation of neuronal activity in the hippocampus and amygdala by OT. Furthermore, it is plausible that OT’s function in memory is crucial for the social behaviors previously associated with it. Future research is necessitated to fully unravel the exact mechanisms and implications of OT’s role in learning and memory. 展开更多
关键词 OXYTOCIN Learning and memory long-term memory short-term memory EMOTION
下载PDF
Micro-expression recognition algorithm based on the combination of spatial and temporal domains
5
作者 Wu Jin Xi Meng +2 位作者 Dai Wei Wang Lei Wang Xinran 《High Technology Letters》 EI CAS 2021年第3期303-309,共7页
Aiming at the problem of unsatisfactory effects of traditional micro-expression recognition algorithms,an efficient micro-expression recognition algorithm is proposed,which uses convolutional neural networks(CNN)to ex... Aiming at the problem of unsatisfactory effects of traditional micro-expression recognition algorithms,an efficient micro-expression recognition algorithm is proposed,which uses convolutional neural networks(CNN)to extract spatial features of micro-expressions,and long short-term memory network(LSTM)to extract time domain features.CNN and LSTM are combined as the basis of micro-expression recognition.In many CNN structures,the visual geometry group(VGG)using a small convolution kernel is finally selected as the pre-network through comparison.Due to the difficulty of deep learning training and over-fitting,the dropout method and batch normalization method are used to solve the problem in the VGG network.Two data sets CASME and CASME II are used for test comparison,in order to solve the problem of insufficient data sets,randomly determine the starting frame,and a fixedlength frame sequence is used as the standard,and repeatedly read all sample frames of the entire data set to achieve trayersal and data amplification.Finallv.a hieh recognition rate of 67.48% is achieved. 展开更多
关键词 micro-expression recognition convolutional neural network(CNN) long short-term memory(LSTM) batch normalization algorithm DROPOUT
下载PDF
A phenomenological memristor model for synaptic memory and learning behaviors
6
作者 邵楠 张盛兵 邵舒渊 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第11期526-536,共11页
Properties that are similar to the memory and learning functions in biological systems have been observed and reported in the experimental studies of memristors fabricated by different materials. These properties incl... Properties that are similar to the memory and learning functions in biological systems have been observed and reported in the experimental studies of memristors fabricated by different materials. These properties include the forgetting effect, the transition from short-term memory(STM) to long-term memory(LTM), learning-experience behavior, etc. The mathematical model of this kind of memristor would be very important for its theoretical analysis and application design.In our analysis of the existing memristor model with these properties, we find that some behaviors of the model are inconsistent with the reported experimental observations. A phenomenological memristor model is proposed for this kind of memristor. The model design is based on the forgetting effect and STM-to-LTM transition since these behaviors are two typical properties of these memristors. Further analyses of this model show that this model can also be used directly or modified to describe other experimentally observed behaviors. Simulations show that the proposed model can give a better description of the reported memory and learning behaviors of this kind of memristor than the existing model. 展开更多
关键词 memristor model forgetting effect transition from short-term memory(STM) to long-term memory(LTM) learning-experience behavior
下载PDF
Predicting Reliability and Remaining Useful Life of Rolling Bearings Based on Optimized Neural Networks 被引量:1
7
作者 Tiantian Liang Runze Wang +2 位作者 Xuxiu Zhang Yingdong Wang Jianxiong Yang 《Structural Durability & Health Monitoring》 EI 2023年第5期433-455,共23页
In this study,an optimized long short-term memory(LSTM)network is proposed to predict the reliability and remaining useful life(RUL)of rolling bearings based on an improved whale-optimized algorithm(IWOA).The multi-do... In this study,an optimized long short-term memory(LSTM)network is proposed to predict the reliability and remaining useful life(RUL)of rolling bearings based on an improved whale-optimized algorithm(IWOA).The multi-domain features are extracted to construct the feature dataset because the single-domain features are difficult to characterize the performance degeneration of the rolling bearing.To provide covariates for reliability assessment,a kernel principal component analysis is used to reduce the dimensionality of the features.A Weibull distribution proportional hazard model(WPHM)is used for the reliability assessment of rolling bearing,and a beluga whale optimization(BWO)algorithm is combined with maximum likelihood estimation(MLE)to improve the estimation accuracy of the model parameters of the WPHM,which provides the data basis for predicting reliability.Considering the possible gradient explosion by training the rolling bearing lifetime data and the difficulties in selecting the key network parameters,an optimized LSTM network called the improved whale optimization algorithm-based long short-term memory(IWOA-LSTM)network is proposed.As IWOA better jumps out of the local optimization,the fitting and prediction accuracies of the network are correspondingly improved.The experimental results show that compared with the whale optimization algorithm-based long short-term memory(WOA-LSTM)network,the reliability prediction and RUL prediction accuracies of the rolling bearing are improved by the proposed IWOA-LSTM network. 展开更多
关键词 Rolling bearing prediction feature extraction long short-term memory network improve whale optimization algorithm
下载PDF
Measuring moisture content of dead fine fuels based on the fusion of spectrum meteorological data
8
作者 Bo Peng Jiawei Zhang +2 位作者 Jian Xing Jiuqing Liu Mingbao Li 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第5期1333-1346,共14页
Dead fine fuel moisture content(DFFMC)is a key factor affecting the spread of forest fires,which plays an important role in evaluation of forest fire risk.In order to achieve high-precision real-time measurement of DF... Dead fine fuel moisture content(DFFMC)is a key factor affecting the spread of forest fires,which plays an important role in evaluation of forest fire risk.In order to achieve high-precision real-time measurement of DFFMC,this study established a long short-term memory(LSTM)network based on particle swarm optimization(PSO)algorithm as a measurement model.A multi-point surface monitoring scheme combining near-infrared measurement method and meteorological measurement method is proposed.The near-infrared spectral information of dead fine fuels and the meteorological factors in the region are processed by data fusion technology to construct a spectral-meteorological data set.The surface fine dead fuel of Mongolian oak(Quercus mongolica Fisch.ex Ledeb.),white birch(Betula platyphylla Suk.),larch(Larix gmelinii(Rupr.)Kuzen.),and Manchurian walnut(Juglans mandshurica Maxim.)in the maoershan experimental forest farm of the Northeast Forestry University were investigated.We used the PSO-LSTM model for moisture content to compare the near-infrared spectroscopy,meteorological,and spectral meteorological fusion methods.The results show that the mean absolute error of the DFFMC of the four stands by spectral meteorological fusion method were 1.1%for Mongolian oak,1.3%for white birch,1.4%for larch,and 1.8%for Manchurian walnut,and these values were lower than those of the near-infrared method and the meteorological method.The spectral meteorological fusion method provides a new way for high-precision measurement of moisture content of fine dead fuel. 展开更多
关键词 Near infrared spectroscopy Meteorological factors Data fusion long-term and short-term memory network Particle swarm optimization algorithm
下载PDF
Research on Welding Quality Traceability Model of Offshore Platform Block Construction Process
9
作者 Jinghua Li Wenhao Yin +1 位作者 Boxin Yang Qinghua Zhou 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第1期699-730,共32页
Quality traceability plays an essential role in assembling and welding offshore platform blocks.The improvement of the welding quality traceability system is conducive to improving the durability of the offshore platf... Quality traceability plays an essential role in assembling and welding offshore platform blocks.The improvement of the welding quality traceability system is conducive to improving the durability of the offshore platform and the process level of the offshore industry.Currently,qualitymanagement remains in the era of primary information,and there is a lack of effective tracking and recording of welding quality data.When welding defects are encountered,it is difficult to rapidly and accurately determine the root cause of the problem from various complexities and scattered quality data.In this paper,a composite welding quality traceability model for offshore platform block construction process is proposed,it contains the quality early-warning method based on long short-term memory and quality data backtracking query optimization algorithm.By fulfilling the training of the early-warning model and the implementation of the query optimization algorithm,the quality traceability model has the ability to assist enterprises in realizing the rapid identification and positioning of quality problems.Furthermore,the model and the quality traceability algorithm are checked by cases in actual working conditions.Verification analyses suggest that the proposed early-warningmodel for welding quality and the algorithmfor optimizing backtracking requests are effective and can be applied to the actual construction process. 展开更多
关键词 Quality traceability model block construction process welding quality management long short-term memory quality data backtracking query optimization algorithm
下载PDF
Al-Biruni Based Optimization of Rainfall Forecasting in Ethiopia
10
作者 El-Sayed M.El-kenawy Abdelaziz A.Abdelhamid +3 位作者 Fadwa Alrowais Mostafa Abotaleb Abdelhameed Ibrahim Doaa Sami Khafaga 《Computer Systems Science & Engineering》 SCIE EI 2023年第6期2885-2899,共15页
Rainfall plays a significant role in managing the water level in the reser-voir.The unpredictable amount of rainfall due to the climate change can cause either overflow or dry in the reservoir.Many individuals,especia... Rainfall plays a significant role in managing the water level in the reser-voir.The unpredictable amount of rainfall due to the climate change can cause either overflow or dry in the reservoir.Many individuals,especially those in the agricultural sector,rely on rain forecasts.Forecasting rainfall is challenging because of the changing nature of the weather.The area of Jimma in southwest Oromia,Ethiopia is the subject of this research,which aims to develop a rainfall forecasting model.To estimate Jimma's daily rainfall,we propose a novel approach based on optimizing the parameters of long short-term memory(LSTM)using Al-Biruni earth radius(BER)optimization algorithm for boosting the fore-casting accuracy.N ash-Sutcliffe model eficiency(NSE),mean square error(MSE),root MSE(RMSE),mean absolute error(MAE),and R2 were all used in the conducted experiments to assess the proposed approach,with final scores of(0.61),(430.81),(19.12),and(11.09),respectively.Moreover,we compared the proposed model to current machine-learning regression models;such as non-optimized LSTM,bidirectional LSTM(BiLSTM),gated recurrent unit(GRU),and convolutional LSTM(ConvLSTM).It was found that the proposed approach achieved the lowest RMSE of(19.12).In addition,the experimental results show that the proposed model has R-with a value outperforming the other models,which confirms the superiority of the proposed approach.On the other hand,a statistical analysis is performed to measure the significance and stability of the proposed approach and the recorded results proved the expected perfomance. 展开更多
关键词 Rainfall prediction long short-term memory Al-Biruni earth radius algorithm meta-heuristic optimization
下载PDF
LDformer:a parallel neural network model for long-term power forecasting
11
作者 Ran TIAN Xinmei LI +3 位作者 Zhongyu MA Yanxing LIU Jingxia WANG Chu WANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2023年第9期1287-1301,共15页
Accurate long-term power forecasting is important in the decision-making operation of the power grid and power consumption management of customers to ensure the power system’s reliable power supply and the grid econ... Accurate long-term power forecasting is important in the decision-making operation of the power grid and power consumption management of customers to ensure the power system’s reliable power supply and the grid economy’s reliable operation.However,most time-series forecasting models do not perform well in dealing with long-time-series prediction tasks with a large amount of data.To address this challenge,we propose a parallel time-series prediction model called LDformer.First,we combine Informer with long short-term memory(LSTM)to obtain deep representation abilities in the time series.Then,we propose a parallel encoder module to improve the robustness of the model and combine convolutional layers with an attention mechanism to avoid value redundancy in the attention mechanism.Finally,we propose a probabilistic sparse(ProbSparse)self-attention mechanism combined with UniDrop to reduce the computational overhead and mitigate the risk of losing some key connections in the sequence.Experimental results on five datasets show that LDformer outperforms the state-of-the-art methods for most of the cases when handling the different long-time-series prediction tasks. 展开更多
关键词 long-term power forecasting Long short-term memory(LSTM) UniDrop Self-attention mechanism
原文传递
Prediction of Health Level of Multiform Lithium Sulfur Batteries Based on Incremental Capacity Analysis and an Improved LSTM 被引量:1
12
作者 Hao Zhang Hanlei Sun +3 位作者 Le Kang Yi Zhang Licheng Wang Kai Wang 《Protection and Control of Modern Power Systems》 SCIE EI 2024年第2期21-31,共11页
Capacity estimation plays a crucial role in battery management systems,and is essential for ensuring the safety and reliability of lithium-sulfur(Li-S)batteries.This paper proposes a method that uses a long short-term... Capacity estimation plays a crucial role in battery management systems,and is essential for ensuring the safety and reliability of lithium-sulfur(Li-S)batteries.This paper proposes a method that uses a long short-term memory(LSTM)neural network to estimate the state of health(SOH)of Li-S batteries.The method uses health features extracted from the charging curve and incre-mental capacity analysis(ICA)as input for the LSTM network.To enhance the robustness and accuracy of the network,the Adam algorithm is employed to optimize specific hyperparameters.Experimental data from three different groups of batteries with varying nominal capac-ities are used to validate the proposed method.The results demonstrate the effectiveness of the method in accurately estimating the capacity degradation of all three batteries.Also,the study examines the impact of different lengths of network training sets on capacity estimation.The results reveal that the ICA-LSTM model achieves a prediction accuracy of mean absolute error 4.6%and mean squared error 0.21%with three different training set lengths of 20%,40%,and 60%.The analysis demonstrates that the lightweight model maintains high SOH estimation accu-racy even with a small training set,and exhibits strong adaptive and generalization capabilities when applied to different Li-S batteries.Overall,the proposed method,supported by experimental validation and analysis,demonstrates its efficacy in ensuring accurate and reliable SOH estimation,thereby enhancing the safety and per-formance of Li-S batteries.Index Terms—Adam algorithm,incremental capacity analysis,Li-S battery,long short-term memory,state of health. 展开更多
关键词 Adam algorithm incremental capacity analysis Li-S battery long short-term memory state of health
原文传递
Detection and Defense Method Against False Data Injection Attacks for Distributed Load Frequency Control System in Microgrid
13
作者 Zhixun Zhang Jianqiang Hu +3 位作者 Jianquan Lu Jie Yu Jinde Cao Ardak Kashkynbayev 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第3期913-924,共12页
In the realm of microgrid(MG),the distributed load frequency control(LFC)system has proven to be highly susceptible to the negative effects of false data injection attacks(FDIAs).Considering the significant responsibi... In the realm of microgrid(MG),the distributed load frequency control(LFC)system has proven to be highly susceptible to the negative effects of false data injection attacks(FDIAs).Considering the significant responsibility of the distributed LFC system for maintaining frequency stability within the MG,this paper proposes a detection and defense method against unobservable FDIAs in the distributed LFC system.Firstly,the method integrates a bi-directional long short-term memory(Bi LSTM)neural network and an improved whale optimization algorithm(IWOA)into the LFC controller to detect and counteract FDIAs.Secondly,to enable the Bi LSTM neural network to proficiently detect multiple types of FDIAs with utmost precision,the model employs a historical MG dataset comprising the frequency and power variances.Finally,the IWOA is utilized to optimize the proportional-integral-derivative(PID)controller parameters to counteract the negative impacts of FDIAs.The proposed detection and defense method is validated by building the distributed LFC system in Simulink. 展开更多
关键词 MICROGRID load frequency control false data injection attack bi-directional long short-term memory(BiLSTM)neural network improved whale optimization algorithm(IWOA) detection and defense
原文传递
A novel hybrid model for water quality prediction based on VMD and IGOA optimized for LSTM 被引量:3
14
作者 Zhaocai Wang Qingyu Wang Tunhua Wu 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2023年第7期133-149,共17页
Water quality prediction is vital for solving water pollution and protecting the water environment.In terms of the characteristics of nonlinearity,instability,and randomness of water quality parameters,a short-term wa... Water quality prediction is vital for solving water pollution and protecting the water environment.In terms of the characteristics of nonlinearity,instability,and randomness of water quality parameters,a short-term water quality prediction model was proposed based on variational mode decomposition(VMD)and improved grasshopper optimization algorithm(IGOA),so as to optimize long short-term memory neural network(LSTM).First,VMD was adopted to decompose the water quality data into a series of relatively stable components,with the aim to reduce the instability of the original data and increase the predictability,then each component was input into the iGOA-LSTM model for prediction.Finally,each component was added to obtain the predicted values.In this study,the monitoring data from Dayangzhou Station and Shengmi Station of the Ganjiang River was used for training and prediction.The experimental results showed that the prediction accuracy of the VMDIGOA-LSTM model proposed was higher than that of the integrated model of Ensemble Empirical Mode Decomposition(EEMD),the integrated model of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN),Nonlinear Autoregressive Network with Exogenous Inputs(NARX),Recurrent Neural Network(RNN),as well as other models,showing better performance in short-term prediction.The current study will provide a reliable solution for water quality prediction studies in other areas. 展开更多
关键词 Waterquality prediction Grasshopper optimization algorithm Variational mode decomposition Long short-term memory neural network
原文传递
Global action against dementia call for innovations
15
作者 Dajue Wang 《Translational Neuroscience and Clinics》 2016年第4期260-274,共15页
With the fast-growing aging population, dementia has become a health priority.However, in the past, medicine was largely dealing with physical disorders, and not enough knowledge and experience have been accumulated f... With the fast-growing aging population, dementia has become a health priority.However, in the past, medicine was largely dealing with physical disorders, and not enough knowledge and experience have been accumulated for mental health. The main and first symptom of this disorder is the loss of memory; hence, understanding the hippocampal formation is the key to tackling dementia. In 2007, a milestone book titled "Hippocampus Book" was published. One of the authors/editors is the 2014 Nobel Laureate in Physiology and Medicine, Professor John O'Keefe. It is a MUST-READ encyclopedia about the hippocampal formation, for those who wish to commit themselves to helping the patients with dementia. The formation consists of the hippocampus,entorhinal cortex, subiculum, presubiculum, parasubiculum, and dentate gyrus. The hippocampus is further divided into CA1, CA2, and CA3. The entorhinal cortex is the gateway of receiving all sensory information from the neocortex, while the subiculum is the exit for the efferent projections to the neocortex. Memory is divided into short-term and long-term memory. The former does not require protein synthesis while the latter does. The electrophysiological activities of creating these memories are short-term potentiation and long-term potentiation respectively. In most cases, the entorhinal cortex is the first structure to be damaged, and even short-term memory cannot be created. However, all except spatial memory are stored in the neocortex. Damage to the hippocampal formation would not affect the storage and retrieval of memories. Hence, past memories may remain intact in the early phases of the disorder. This devastating progressive disease has no cure. However, the highly plastic hippocampal formation may offer us some hope. It is the responsibility of the pharmaceutical industries to develop new drugs. Clinicians should add their efforts to the endeavor. The author would suggest that they explore insulin-like growth factors,brain stimulation, cell transplantation, and animal-assisted therapy to find some innovative solutions to help patients with dementia. As the current status of neuroscience stands, the animal-assisted therapy seems to stand out among all methods. It alleviates symptoms and stabilizes the ailment. 展开更多
关键词 hippocampal formation entorhinal cortex memory short-term potentiation long-term potentiation innovative therapies
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部