期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Multipath Selection Algorithm Based on Dynamic Flow Prediction
1
作者 Jingwen Wang Guolong Yu Xin Cui 《Journal of Computer and Communications》 2024年第7期94-104,共11页
Traditional traffic management techniques appear to be incompetent in complex data center networks, so proposes a load balancing strategy based on Long Short-Term Memory (LSTM) and quantum annealing by Software Define... Traditional traffic management techniques appear to be incompetent in complex data center networks, so proposes a load balancing strategy based on Long Short-Term Memory (LSTM) and quantum annealing by Software Defined Network (SDN) to dynamically predict the traffic and comprehensively consider the current and predicted load of the network in order to select the optimal forwarding path and balance the network load. Experiments have demonstrated that the algorithm achieves significant improvement in both system throughput and average packet loss rate for the purpose of improving network quality of service. 展开更多
关键词 Data Center network Software Defined network Load Balance Long short-term memory Quantum Annealing algorithms
下载PDF
Predicting Reliability and Remaining Useful Life of Rolling Bearings Based on Optimized Neural Networks 被引量:1
2
作者 Tiantian Liang Runze Wang +2 位作者 Xuxiu Zhang Yingdong Wang Jianxiong Yang 《Structural Durability & Health Monitoring》 EI 2023年第5期433-455,共23页
In this study,an optimized long short-term memory(LSTM)network is proposed to predict the reliability and remaining useful life(RUL)of rolling bearings based on an improved whale-optimized algorithm(IWOA).The multi-do... In this study,an optimized long short-term memory(LSTM)network is proposed to predict the reliability and remaining useful life(RUL)of rolling bearings based on an improved whale-optimized algorithm(IWOA).The multi-domain features are extracted to construct the feature dataset because the single-domain features are difficult to characterize the performance degeneration of the rolling bearing.To provide covariates for reliability assessment,a kernel principal component analysis is used to reduce the dimensionality of the features.A Weibull distribution proportional hazard model(WPHM)is used for the reliability assessment of rolling bearing,and a beluga whale optimization(BWO)algorithm is combined with maximum likelihood estimation(MLE)to improve the estimation accuracy of the model parameters of the WPHM,which provides the data basis for predicting reliability.Considering the possible gradient explosion by training the rolling bearing lifetime data and the difficulties in selecting the key network parameters,an optimized LSTM network called the improved whale optimization algorithm-based long short-term memory(IWOA-LSTM)network is proposed.As IWOA better jumps out of the local optimization,the fitting and prediction accuracies of the network are correspondingly improved.The experimental results show that compared with the whale optimization algorithm-based long short-term memory(WOA-LSTM)network,the reliability prediction and RUL prediction accuracies of the rolling bearing are improved by the proposed IWOA-LSTM network. 展开更多
关键词 Rolling bearing prediction feature extraction long short-term memory network improve whale optimization algorithm
下载PDF
Micro-expression recognition algorithm based on the combination of spatial and temporal domains
3
作者 Wu Jin Xi Meng +2 位作者 Dai Wei Wang Lei Wang Xinran 《High Technology Letters》 EI CAS 2021年第3期303-309,共7页
Aiming at the problem of unsatisfactory effects of traditional micro-expression recognition algorithms,an efficient micro-expression recognition algorithm is proposed,which uses convolutional neural networks(CNN)to ex... Aiming at the problem of unsatisfactory effects of traditional micro-expression recognition algorithms,an efficient micro-expression recognition algorithm is proposed,which uses convolutional neural networks(CNN)to extract spatial features of micro-expressions,and long short-term memory network(LSTM)to extract time domain features.CNN and LSTM are combined as the basis of micro-expression recognition.In many CNN structures,the visual geometry group(VGG)using a small convolution kernel is finally selected as the pre-network through comparison.Due to the difficulty of deep learning training and over-fitting,the dropout method and batch normalization method are used to solve the problem in the VGG network.Two data sets CASME and CASME II are used for test comparison,in order to solve the problem of insufficient data sets,randomly determine the starting frame,and a fixedlength frame sequence is used as the standard,and repeatedly read all sample frames of the entire data set to achieve trayersal and data amplification.Finallv.a hieh recognition rate of 67.48% is achieved. 展开更多
关键词 micro-expression recognition convolutional neural network(CNN) long short-term memory(LSTM) batch normalization algorithm DROPOUT
下载PDF
Measuring moisture content of dead fine fuels based on the fusion of spectrum meteorological data
4
作者 Bo Peng Jiawei Zhang +2 位作者 Jian Xing Jiuqing Liu Mingbao Li 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第5期1333-1346,共14页
Dead fine fuel moisture content(DFFMC)is a key factor affecting the spread of forest fires,which plays an important role in evaluation of forest fire risk.In order to achieve high-precision real-time measurement of DF... Dead fine fuel moisture content(DFFMC)is a key factor affecting the spread of forest fires,which plays an important role in evaluation of forest fire risk.In order to achieve high-precision real-time measurement of DFFMC,this study established a long short-term memory(LSTM)network based on particle swarm optimization(PSO)algorithm as a measurement model.A multi-point surface monitoring scheme combining near-infrared measurement method and meteorological measurement method is proposed.The near-infrared spectral information of dead fine fuels and the meteorological factors in the region are processed by data fusion technology to construct a spectral-meteorological data set.The surface fine dead fuel of Mongolian oak(Quercus mongolica Fisch.ex Ledeb.),white birch(Betula platyphylla Suk.),larch(Larix gmelinii(Rupr.)Kuzen.),and Manchurian walnut(Juglans mandshurica Maxim.)in the maoershan experimental forest farm of the Northeast Forestry University were investigated.We used the PSO-LSTM model for moisture content to compare the near-infrared spectroscopy,meteorological,and spectral meteorological fusion methods.The results show that the mean absolute error of the DFFMC of the four stands by spectral meteorological fusion method were 1.1%for Mongolian oak,1.3%for white birch,1.4%for larch,and 1.8%for Manchurian walnut,and these values were lower than those of the near-infrared method and the meteorological method.The spectral meteorological fusion method provides a new way for high-precision measurement of moisture content of fine dead fuel. 展开更多
关键词 Near infrared spectroscopy Meteorological factors Data fusion long-term and short-term memory network Particle swarm optimization algorithm
下载PDF
Detection and Defense Method Against False Data Injection Attacks for Distributed Load Frequency Control System in Microgrid
5
作者 Zhixun Zhang Jianqiang Hu +3 位作者 Jianquan Lu Jie Yu Jinde Cao Ardak Kashkynbayev 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第3期913-924,共12页
In the realm of microgrid(MG),the distributed load frequency control(LFC)system has proven to be highly susceptible to the negative effects of false data injection attacks(FDIAs).Considering the significant responsibi... In the realm of microgrid(MG),the distributed load frequency control(LFC)system has proven to be highly susceptible to the negative effects of false data injection attacks(FDIAs).Considering the significant responsibility of the distributed LFC system for maintaining frequency stability within the MG,this paper proposes a detection and defense method against unobservable FDIAs in the distributed LFC system.Firstly,the method integrates a bi-directional long short-term memory(Bi LSTM)neural network and an improved whale optimization algorithm(IWOA)into the LFC controller to detect and counteract FDIAs.Secondly,to enable the Bi LSTM neural network to proficiently detect multiple types of FDIAs with utmost precision,the model employs a historical MG dataset comprising the frequency and power variances.Finally,the IWOA is utilized to optimize the proportional-integral-derivative(PID)controller parameters to counteract the negative impacts of FDIAs.The proposed detection and defense method is validated by building the distributed LFC system in Simulink. 展开更多
关键词 MICROGRID load frequency control false data injection attack bi-directional long short-term memory(BiLSTM)neural network improved whale optimization algorithm(IWOA) detection and defense
原文传递
A novel hybrid model for water quality prediction based on VMD and IGOA optimized for LSTM 被引量:3
6
作者 Zhaocai Wang Qingyu Wang Tunhua Wu 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2023年第7期133-149,共17页
Water quality prediction is vital for solving water pollution and protecting the water environment.In terms of the characteristics of nonlinearity,instability,and randomness of water quality parameters,a short-term wa... Water quality prediction is vital for solving water pollution and protecting the water environment.In terms of the characteristics of nonlinearity,instability,and randomness of water quality parameters,a short-term water quality prediction model was proposed based on variational mode decomposition(VMD)and improved grasshopper optimization algorithm(IGOA),so as to optimize long short-term memory neural network(LSTM).First,VMD was adopted to decompose the water quality data into a series of relatively stable components,with the aim to reduce the instability of the original data and increase the predictability,then each component was input into the iGOA-LSTM model for prediction.Finally,each component was added to obtain the predicted values.In this study,the monitoring data from Dayangzhou Station and Shengmi Station of the Ganjiang River was used for training and prediction.The experimental results showed that the prediction accuracy of the VMDIGOA-LSTM model proposed was higher than that of the integrated model of Ensemble Empirical Mode Decomposition(EEMD),the integrated model of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN),Nonlinear Autoregressive Network with Exogenous Inputs(NARX),Recurrent Neural Network(RNN),as well as other models,showing better performance in short-term prediction.The current study will provide a reliable solution for water quality prediction studies in other areas. 展开更多
关键词 Waterquality prediction Grasshopper optimization algorithm Variational mode decomposition Long short-term memory neural network
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部