期刊文献+
共找到7,030篇文章
< 1 2 250 >
每页显示 20 50 100
Stability and accuracy of central difference method for real-time dynamic substructure testing considering mass participation coefficient
1
作者 Zheng Lichang Xu Guoshan +3 位作者 Yang Ge Wang Zhen Yang Kaibo Zheng Zhenyun 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第3期625-636,共12页
For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study prop... For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study proposes to investigate the stability and accuracy of the central difference method(CDM)for RTDST considering the specimen mass participation coefficient.First,the theory of the CDM for RTDST is presented.Next,the stability and accuracy of the CDM for RTDST considering the specimen mass participation coefficient are investigated.Finally,numerical simulations and experimental tests are conducted for verifying the effectiveness of the method.The study indicates that the stability of the algorithm is affected by the mass participation coefficient of the specimen,and the stability limit first increases and then decreases as the mass participation coefficient increases.In most cases,the mass participation coefficient will increase the stability limit of the algorithm,but in specific circumstances,the algorithm may lose its stability.The stability and accuracy of the CDM considering the mass participation coefficient are verified by numerical simulations and experimental tests on a three-story frame structure with a tuned liquid damper. 展开更多
关键词 real-time dynamic substructure testing central difference method stability mass participation coefficient tuned liquid damper
下载PDF
Stability analysis of CO_(2)gas shielded welding short-circuit transition process based on GMAW dynamic model 被引量:1
2
作者 赵一帆 王莹 +4 位作者 刘瑞涛 孟令坤 宋白钰 赵津 王重阳 《China Welding》 CAS 2023年第4期55-68,共14页
Base on the arc phase and short-circuit phase and their relationship, the paper considers the changes of the extension of wire, the arc length, liquid bridge resistance and mass of liquid bridge, combines the improved... Base on the arc phase and short-circuit phase and their relationship, the paper considers the changes of the extension of wire, the arc length, liquid bridge resistance and mass of liquid bridge, combines the improved “mass-spring” model with the loop model of welding power system, puts forward the critical judgment condition of droplet transition, and establishes a more accurate dynamic model for describing the short-circuit transition process. The dynamic changes of short-circuit transfer frequency, welding current and voltage, contact droplet and residual droplet equivalent radius and droplet equivalent radius at different wire feeding speeds were calculated and analyzed, and compared with the experimental results. It shows that the fluctuation of droplet displacement, velocity and wire extension length at the optimal arc starting point is the smallest. The smaller the initial liquid bridge curvature radius is, the better the stability of short-circuit transfer is. 展开更多
关键词 short-circuit transition dynamic model stability equivalent radius of droplet statistical distribution
下载PDF
Dynamic stability analysis of porous functionally graded beams under hygro-thermal loading using nonlocal strain gradient integral model 被引量:1
3
作者 Pei ZHANG P.SCHIAVONE Hai QING 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第12期2071-2092,共22页
We present a study on the dynamic stability of porous functionally graded(PFG)beams under hygro-thermal loading.The variations of the properties of the beams across the beam thicknesses are described by the power-law ... We present a study on the dynamic stability of porous functionally graded(PFG)beams under hygro-thermal loading.The variations of the properties of the beams across the beam thicknesses are described by the power-law model.Unlike most studies on this topic,we consider both the bending deformation of the beams and the hygro-thermal load as size-dependent,simultaneously,by adopting the equivalent differential forms of the well-posed nonlocal strain gradient integral theory(NSGIT)which are strictly equipped with a set of constitutive boundary conditions(CBCs),and through which both the stiffness-hardening and stiffness-softening effects of the structures can be observed with the length-scale parameters changed.All the variables presented in the differential problem formulation are discretized.The numerical solution of the dynamic instability region(DIR)of various bounded beams is then developed via the generalized differential quadrature method(GDQM).After verifying the present formulation and results,we examine the effects of different parameters such as the nonlocal/gradient length-scale parameters,the static force factor,the functionally graded(FG)parameter,and the porosity parameter on the DIR.Furthermore,the influence of considering the size-dependent hygro-thermal load is also presented. 展开更多
关键词 nonlocal strain gradient integral model dynamic stability porous functionally graded(PFG)shear deformation beam size-dependent hygro-thermal load generalized differential quadrature method(GDQM)
下载PDF
Free Energy,Stability,and Particle Source in Dynamical Holography
4
作者 田雨 吴小宁 张宏宝 《Chinese Physics Letters》 SCIE EI CAS CSCD 2023年第10期6-12,共7页
We study dynamical holographic systems and the relation between thermodynamical and dynamical stability of such systems,using the conserved currents in the bulk spacetime.In particular,in the probe limit a generalized... We study dynamical holographic systems and the relation between thermodynamical and dynamical stability of such systems,using the conserved currents in the bulk spacetime.In particular,in the probe limit a generalized free energy is defined with the property of monotonic decreasing in dynamic processes.It is then shown that the(absolute)thermodynamical stability implies the dynamical stability,while the linear dynamical stability implies the thermodynamical(meta-)stability.The holographic superfluid is taken as an example to illustrate our general formalism,where the dynamic evolution of the system in contact with a particle source is clarified by theoretical investigation and numerical verification.The case going beyond the probe limit is also discussed. 展开更多
关键词 stability dynamicAL HOLOGRAPHIC
下载PDF
Effect of Dynamic Pressure Feedback Orifice on Stability of Cartridge-Type Hydraulic Pilot-Operated Relief Valve
5
作者 Yaobao Yin Dong Wang +1 位作者 Junyong Fu Hong-chao Jian 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第4期227-241,共15页
Current research on pilot-operated relief valve stability is primarily conducted from the perspective of system dynamics or stability criteria,and most of the existing conclusions focus on the spool shape,damping hole... Current research on pilot-operated relief valve stability is primarily conducted from the perspective of system dynamics or stability criteria,and most of the existing conclusions focus on the spool shape,damping hole size,and pulsation frequency of the pump.However,the essential factors pertaining to the unstable vibration of relief valves remain ambiguous.In this study,the dynamic behavior of a pilot-operated relief valve is investigated using the frequency-domain method.The result suggests that the dynamic pressure feedback orifice is vital to the dynamic characteristics of the valve.A large orifice has a low flow resistance.In this case,the fluid in the main spring chamber flows freely,which is not conducive to the stability of the relief valve.However,a small orifice may create significant flow resistance,thus restricting fluid flow.In this case,the oil inside the main valve spring chamber is equivalent to a high-stiffness liquid spring.The main mass-spring vibration system has a natural frequency that differs significantly from the operating frequency of the relief valve,which is conducive to the stability of the relief valve.Good agreement is obtained between the theoretical analysis and experiments.The results indicate that designing a dynamic pressure feedback orifice of an appropriate size is beneficial to improving the stability of hydraulic pilot-operated relief valves.In addition,the dynamic pressure feedback orifice reduces the response speed of the relief valve.This study comprehensively considers the stability,rapidity,and immunity of relief valves and expands current investigations into the dynamic characteristics of relief valves from the perspective of classical control theory,thus revealing the importance of different parameters. 展开更多
关键词 Pilot-operated relief valve dynamic pressure feedback orifice stability RAPIDITY IMMUNITY
下载PDF
Influence of unsupported sleepers on the dynamic stability of ballasted bed based on wheelset impact tests
6
作者 Juzhen Liu Shuai Du +4 位作者 Ganzhong Liu Ping Wang Rong Chen Xiankui Wei Hao Liu 《Railway Engineering Science》 2023年第1期52-60,共9页
The unsupported sleeper can change the load characteristics of ballast particles and thus affect the dynamic stability of a ballasted bed.In this work,a laboratory test was constructed on a ballasted track containing ... The unsupported sleeper can change the load characteristics of ballast particles and thus affect the dynamic stability of a ballasted bed.In this work,a laboratory test was constructed on a ballasted track containing unsupported sleepers.The ballasted track was excited by a wheelset,and the influence of unsupported sleepers on the dynamic stability of a ballasted bed was studied.The results show that the main frequency of the sleeper vibration appeared at 670 Hz,and the first-order rigid vibration mode at the frequency of 101 Hz had a significant effect on the condition without the unsupported sleeper.When the sleepers were continuously unsupported,the vibration damping effect of ballasted bed within the frequency range of 0–450 Hz was better than that at higher frequencies.Within the frequency range of 70–250 Hz,the vibration damping effect of the ballasted bed with unsupported sleepers was better than that without the unsupported sleeper.Owing to the excitation from the wheelset impact,the lateral resistance of the ballasted bed with unsupported sleepers whose hanging heights were 30,60,and 90 mm increased by 37.43%,12.25%,and 18.23%,respectively,while the lateral resistance of the ballasted bed without the unsupported sleeper remained basically unchanged.The unsupported sleeper could increase the difference in the quality of the ballasted bed between two adjacent sleepers.In addition,test results show that the hanging height of the unsupported sleeper had little effect on the lateral resistance of a ballasted bed without external excitation,but had an obvious effect on the rate of change of the lateral resistance of a ballasted bed and the acceleration amplitude of the sleeper vibration under the wheelset impact. 展开更多
关键词 Unsupported sleeper Ballasted bed Wheelset impact test VIBRATION dynamic stability
下载PDF
Thermal–moisture dynamics and thermal stability of active layer in response to wet/dry conditions in the central region of the Qinghai–Tibet Plateau,China
7
作者 MingLi Zhang ZhiXiong Zhou +3 位作者 Zhi Wen FengXi Zhou Zhao Ma BingBing Lei 《Research in Cold and Arid Regions》 CSCD 2023年第1期27-38,共12页
The amount of rainfall varies unevenly in different regions of the Qinghai-Tibet Plateau, with some regions becoming wetter and others drier. Precipitation has an important impact on the process of surface energy bala... The amount of rainfall varies unevenly in different regions of the Qinghai-Tibet Plateau, with some regions becoming wetter and others drier. Precipitation has an important impact on the process of surface energy balance and the energy-water transfer within soils. To clarify the thermal-moisture dynamics and thermal stability of the active layer in permafrost regions under wet/dry conditions, the verified water-vapour-heat coupling model was used. Changes in the surface energy balance, energy-water transfer within the soil, and thickness of the active layer were quantitatively analyzed. The results demonstrate that rainfall changes significantly affect the Bowen ratio, which in turn affects surface energy exchange. Under wet/dry conditions, there is a positive correlation between rainfall and liquid water flux under the hydraulic gradient;water vapour migration is the main form under the temperature gradient, which indicates that the influence of water vapour migration on thermalmoisture dynamics of the active layer cannot be neglected. Concurrently, regardless of wet or dry conditions,disturbance of the heat transport by conduction caused by rainfall is stronger than that of convection by liquid water. In addition, when rainfall decreases by 1.5 times(212 mm) and increases by 1.5 times(477 mm), the thickness of the active layer increases by 0.12 m and decreases by 0.21 m, respectively. The results show that dry conditions are not conducive to the preservation of frozen soil;however, wet conditions are conducive to the preservation of frozen soil, although there is a threshold value. When this threshold value is exceeded, rainfall is unfavourable for the development of frozen soil. 展开更多
关键词 Active layer Wet/dry conditions Qinghai-Tibet Plateau(QTP) Thermal-moisture dynamics Permafrost thermal stability Numerical modelling
下载PDF
A Sufficient Statistical Test for Dynamic Stability
8
作者 Muhammad Ashfaq Ahmed Nasreen Nawaz 《Journal of Data Analysis and Information Processing》 2023年第2期144-174,共31页
In the existing Statistics and Econometrics literature, there does not exist a statistical test which may test for all kinds of roots of the characteristic polynomial leading to an unstable dynamic response, i.e., pos... In the existing Statistics and Econometrics literature, there does not exist a statistical test which may test for all kinds of roots of the characteristic polynomial leading to an unstable dynamic response, i.e., positive and negative real unit roots, complex unit roots and the roots lying inside the unit circle. This paper develops a test which is sufficient to prove dynamic stability (in the context of roots of the characteristic polynomial) of a univariate as well as a multivariate time series without having a structural break. It covers all roots (positive and negative real unit roots, complex unit roots and the roots inside the unit circle whether single or multiple) which may lead to an unstable dynamic response. Furthermore, it also indicates the number of roots causing instability in the time series. The test is much simpler in its application as compared to the existing tests as the series is strictly stationary under the null (C01, C12). 展开更多
关键词 dynamic stability Real and Complex Roots Unit Circle
下载PDF
Physical modeling of long-term dynamic characteristics of the subgrade for medium-low-speed maglevs
9
作者 Minqi Dong Wubin Wang +4 位作者 Chengjin Wang Zhichao Huang Zhaofeng Ding Zhixing Deng Qian Su 《Railway Engineering Science》 2023年第3期293-308,共16页
To investigate the dynamic characteristics and long-term dynamic stability of the new subgrade structure of medium-low-speed(MLS)maglevs,cyclic vibration tests were performed under natural and rainfall conditions,and ... To investigate the dynamic characteristics and long-term dynamic stability of the new subgrade structure of medium-low-speed(MLS)maglevs,cyclic vibration tests were performed under natural and rainfall conditions,and the dynamic response of the subgrade structure was monitored.The dynamic response attenuation characteristics along the depth direction of the subgrade were compared,and the distribution characteristics of the dynamic stress on the surface of the subgrade along the longitudinal direction of the line were analyzed.The critical dynamic stress and cumulative deformation were used as indicators to evaluate the long-term dynamic stability of the subgrade.Results show that water has a certain effect on the dynamic characteristics of the subgrade,and the dynamic stress and acceleration increase with the water content.With the dowel steel structure set between the rail-bearing beams,stress concentration at the end of the loaded beam can be prevented,and the diffusion distance of the dynamic stress along the longitudinal direction increases.The dynamic stress measured in the subgrade bed range is less than 1/5 of the critical dynamic stress.The postconstruction settlement of the subgrade after similarity ratio conversion is 3.94 mm and 7.72 mm under natural and rainfall conditions,respectively,and both values are less than the 30 mm limit,indicating that the MLS maglev subgrade structure has good long-term dynamic stability. 展开更多
关键词 Medium-low-speed maglev SUBGRADE dynamic characteristics long-term dynamic stability Model test
下载PDF
Evaluation of slope stability through rock mass classification and kinematic analysis of some major slopes along NH-1A from Ramban to Banihal, North Western Himalayas
10
作者 Amit Jaiswal A.K.Verma T.N.Singh 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期167-182,共16页
The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabil... The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road. 展开更多
关键词 Rock mass classification Kinematic analysis Slope stability Himalayan road Static and dynamic conditions
下载PDF
Trajectory planning for multi-robot coordinated towing system based on stability
11
作者 赵志刚 ZHAO Xiangtang +2 位作者 WEI Qizhe SU Cheng MENG Jiadong 《High Technology Letters》 EI CAS 2024年第1期43-51,共9页
Given the unconstrained characteristics of the multi-robot coordinated towing system,the rope can only provide a unidirectional constraint force to the suspended object,which leads to the weak ability of the system to... Given the unconstrained characteristics of the multi-robot coordinated towing system,the rope can only provide a unidirectional constraint force to the suspended object,which leads to the weak ability of the system to resist external disturbances and makes it difficult to control the trajectory of the suspended object.Based on the kinematics and statics of the multi-robot coordinated towing system with fixed base,the dynamic model of the system is established by using the Newton-Euler equations and the Udwadia-Kalaba equations.To plan the trajectories with high stability and strong control,trajectory planning is performed by combining the dynamics and stability of the towing system.Based on the dynamic stability of the motion trajectory of the suspended object,the stability of the suspended object is effectively improved through online real-time planning and offline manual adjustment.The effectiveness of the proposed method is verified by comparing the motion stability of the suspended object before and after planning.The results provide a foundation for the motion planning and coordinated control of the towing system. 展开更多
关键词 towing system unconstrained system trajectory planning dynamic stability
下载PDF
Research on the Stability Analysis Method of DC Microgrid Based on Bifurcation and Strobe Theory
12
作者 Wei Chen Nan Qiu Xusheng Yang 《Energy Engineering》 EI 2024年第4期987-1005,共19页
During the operation of a DC microgrid,the nonlinearity and low damping characteristics of the DC bus make it prone to oscillatory instability.In this paper,we first establish a discrete nonlinear system dynamic model... During the operation of a DC microgrid,the nonlinearity and low damping characteristics of the DC bus make it prone to oscillatory instability.In this paper,we first establish a discrete nonlinear system dynamic model of a DC microgrid,study the effects of the converter sag coefficient,input voltage,and load resistance on the microgrid stability,and reveal the oscillation mechanism of a DC microgrid caused by a single source.Then,a DC microgrid stability analysis method based on the combination of bifurcation and strobe is used to analyze how the aforementioned parameters influence the oscillation characteristics of the system.Finally,the stability region of the system is obtained by the Jacobi matrix eigenvalue method.Grid simulation verifies the feasibility and effectiveness of the proposed method. 展开更多
关键词 DC microgrid BIFURCATION nonlinear dynamics stability analysis oscillation characteristics
下载PDF
Retrospective Case Series on The Enduring Rotational Stability of The AcrySof IQ Toric Intraocular Lens in Cataract Patients Suffering from Myopia
13
作者 Jie Luo Yang Liu +2 位作者 Bing Wang Lei Li Junyu Yang 《Journal of Clinical and Nursing Research》 2024年第3期207-214,共8页
Objective:To analyze the enduring rotational steadiness of AcrySof IQ Toric intraocular lens(IOL)in cataract patients suffering from myopia in a long-term study.Methods:A retrospective study was conducted on a case se... Objective:To analyze the enduring rotational steadiness of AcrySof IQ Toric intraocular lens(IOL)in cataract patients suffering from myopia in a long-term study.Methods:A retrospective study was conducted on a case series involving 78 patients.A total of 120 eyes with an axial length(AL)ranging from 24-30 mm and corneal astigmatism≥1.50 D underwent implantation of AcrySof IQ Toric IOL guided by the version navigation system.The eyes were divided into two groups based on AL.Group A included 60 eyes with high myopia(AL≥26 mm),while Group B consisted of eyes with low to moderate myopia(24 mm≤AL<26 mm).Data on the preoperative AL were collected.Measurements were taken for residual astigmatism,the best corrected visual acuity(BCDVA),corneal astigmatism,and IOL rotation occurring between 24-and 48-months post-surgery.The percentage of eyes with an IOL rotation of under 5°and 10°was analyzed.Results:The mean length of follow-up times was recorded as 34.27±4.98,and the average rotation was 2.73±1.29°.Group A exhibited a slightly higher average rotation of 2.87±1.31°,compared to the rotation of 2.59±1.27°observed in Group B.At both the 24-36 month and 26-48 month post-operation marks,the degree of IOL rotation did not show a statistically significant difference between the two groups,with none of the patients experiencing a rotation exceeding 10°(P>0.05).The percentage of rotation degrees under 5°was recorded as 98.22%.After the procedure,the BCDVA was 0.1322±0.03 LogMAR.There was a substantial increase in theχvalue after the operation as compared to the pre-operativeχ^(2) value(χ^(2)=76.79).The standard deviation of preoperative corneal astigmatism was statistically significant(P<0.05)at 2.17±1.08 D.Following the surgical procedure,the remaining astigmatism was measured at 0.41±0.26 D.The data showed a notable gap in statistical significance(t=4.281,P<0.05).Conclusion:The AcrySof Toric IOL was a reliable solution for managing corneal astigmatism in cataract patients with myopia,demonstrating excellent long-term rotational stability. 展开更多
关键词 ASTIGMATISM long-term MYOPIA Rotational stability
下载PDF
Application of an amphipathic molecule at the NiO_(x)/perovskite interface for improving the efficiency and long-term stability of the inverted perovskite solar cells
14
作者 Guibin Shen Hongye Dong +4 位作者 Fan Yang Xin Ren Ng Xin Li Fen Lin Cheng Mu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期454-462,I0013,共10页
The presence of defects and detrimental reactions at NiO_(x)/perovskite interface extremely limit the efficiency performance and long-term stability of the perovskite solar cells(PSCs) based on NiO_(x).Herein,an amphi... The presence of defects and detrimental reactions at NiO_(x)/perovskite interface extremely limit the efficiency performance and long-term stability of the perovskite solar cells(PSCs) based on NiO_(x).Herein,an amphipathic molecule Triton X100(Triton) is modified on the NiO_(x)surface.The hydrophilic chain of Triton as a Lewis base additive can coordinate with the Ni3+on the NiO_(x)surface which can passivate the interfacial defects and hinder the detrimental reactions at the NiO_(x)/perovskite interface.Additionally,the hydrophobic chain of Triton protrudes from the NiO_(x)surface to prevent moisture from penetrating into the NiO_(x)/perovskite interface.Consequently,the NiO_(x)/Triton-based devices(MAPbI3as absorbing layer) show superior moisture and thermal stability,retaining 88.4% and 64.3% of the initial power conversion efficiency after storage in air(40%-50% relative humidity(RH)) at 25 ℃ for 1070 h and in N2at 85℃ for 800 h,respectively.Moreover,the efficiency increases from 17.59% to 19.89% because of the passivation defect and enhanced hole-extraction capability.Besides,the NiO_(x)/Triton-based PSCs with Cs_(0.05)(MA_(0.15)FA_(0.85))_(0.95)Pb(I_(0.85)Br_(0.15))3perovskite as the light-absorbing layer also exhibits better moisture and thermal stability compared to the control devices,indicating the viability of our strategies.Of particular note,a champion PCE of 22.35% and 20.46% was achieved for small-area(0.1 cm^(2)) and large-area(1.2 cm^(2)) NiO_(x)/Triton-based devices,respectively. 展开更多
关键词 Perovskite solar cells NiO_(x) Defect passivation long-term stability Amphipathic molecule
下载PDF
Non-Fullerene-Based Inverted Organic Photovoltaic Device with Long-Term Stability
15
作者 Do Hui Kim Febrian T.A.Wibowo +4 位作者 Dongchan Lee Narra V.Krishna Sujung Park Shinuk Cho Sung-Yeon Jang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期214-221,共8页
In this work,we developed the PM6:Y6-based inverted structure organic photovoltaic(i-OPV)with improved power conversion efficiency(PCE)and long-term stability by resolving the origins of the performance deterioration.... In this work,we developed the PM6:Y6-based inverted structure organic photovoltaic(i-OPV)with improved power conversion efficiency(PCE)and long-term stability by resolving the origins of the performance deterioration.The deep defects between the metal oxide-based electron transport layer and bulk-heterojunction photoactive layer interface were responsible for suboptimal PCE and facilitated degradation of devices.While the density of deep traps is increased during the storage of i-OPV,the penetrative oxygen-containing defects additionally generated shallow traps below the band-edge of Y6,causing an additional loss in the open-circuit voltage.The suppression of interfacial defects by chemical modification effectively improved the PCE and long-term stability of i-OPV.The modified i-OPV(mi-OPV)achieved a PCE of 17.42%,which is the highest value among the reported PM6:Y6-based i-OPV devices.Moreover,long-term stability was significantly improved:~90%and~80%retention of its initial PCE after 1200 h of air storage and illumination,respectively. 展开更多
关键词 deep trap inverted structure long-term stability organic photovoltaic power conversion efficiency
下载PDF
Fixed-Time Stabilization of a Class of Strict-Feedback Nonlinear Systems via Dynamic Gain Feedback Control
16
作者 Chenghui Zhang Le Chang +1 位作者 Lantao Xing Xianfu Zhang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第2期403-410,共8页
This paper presents a novel fixed-time stabilization control(FSC)method for a class of strict-feedback nonlinear systems involving unmodelled system dynamics.The key feature of the proposed method is the design of two... This paper presents a novel fixed-time stabilization control(FSC)method for a class of strict-feedback nonlinear systems involving unmodelled system dynamics.The key feature of the proposed method is the design of two dynamic parameters.Specifically,a set of auxiliary variables is first introduced through state transformation.These variables combine the original system states and the two introduced dynamic parameters,facilitating the closed-loop system stability analyses.Then,the two dynamic parameters are delicately designed by utilizing the Lyapunov method,ensuring that all the closed-loop system states are globally fixed-time stable.Compared with existing results,the“explosion of complexity”problem of backstepping control is avoided.Moreover,the two designed dynamic parameters are dependent on system states rather than a time-varying function,thus the proposed controller is still valid beyond the given fixedtime convergence instant.The effectiveness of the proposed method is demonstrated through two practical systems. 展开更多
关键词 dynamic gain feedback control fixed-time stabilization strict-feedback nonlinear system
下载PDF
Could Long-Term Stability Last Forever?
17
作者 Maria K. Koleva 《Journal of Modern Physics》 CAS 2023年第4期450-460,共11页
The subject of the present paper is to prove that the recently introduced conjecture of boundedness puts a ban over the view of stability as asymptotic property. This result comes in sharp contrast with the prescripti... The subject of the present paper is to prove that the recently introduced conjecture of boundedness puts a ban over the view of stability as asymptotic property. This result comes in sharp contrast with the prescription of the traditional thermodynamics and statistical physics which consider the existence of equilibrium as asymptotic property of all systems. The difference commences from the use of infinitesimal calculus as the basic implement for modelling by the latter while the primary premise of the conjecture of boundedness is sustaining the energy/matter/information permanently bounded and finite. The latter property overrules the infinitesimal calculus as the major implement of modelling because, among all, it is proven that the traditional one suffers unsoluble difficulties. 展开更多
关键词 long-term stability Equilibrium Infinitesimal Calculus BOUNDEDNESS Decomposition Theorem Certain Information Universal Mechanism for Collapse
下载PDF
Dynamic flight stability of hovering insects 被引量:28
18
作者 Mao Sun Jikang Wang Yan Xiong 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2007年第3期231-246,共16页
The equations of motion of an insect with flapping wings are derived and then simplified to that of a flying body using the "rigid body" assumption. On the basis of the simplified equations of motion, the longitudin... The equations of motion of an insect with flapping wings are derived and then simplified to that of a flying body using the "rigid body" assumption. On the basis of the simplified equations of motion, the longitudinal dynamic flight stability of four insects (hoverfly, cranefly, dronefly and hawkmoth) in hovering flight is studied (the mass of the insects ranging from 11 to 1,648 mg and wingbeat frequency from 26 to 157Hz). The method of computational fluid dynamics is used to compute the aerodynamic derivatives and the techniques of eigenvalue and eigenvector analysis are used to solve the equations of motion. The validity of the "rigid body" assumption is tested and how differences in size and wing kinematics influence the applicability of the "rigid body" assumption is investigated. The primary findings are: (1) For insects considered in the present study and those with relatively high wingbeat frequency (hoverfly, drone fly and bumblebee), the "rigid body" assumption is reasonable, and for those with relatively low wingbeat frequency (cranefly and howkmoth), the applicability of the "rigid body" assumption is questionable. (2) The same three natural modes of motion as those reported recently for a bumblebee are identified, i.e., one unstable oscillatory mode, one stable fast subsidence mode and one stable slow subsidence mode. (3) Approximate analytical expressions of the eigenvalues, which give physical insight into the genesis of the natural modes of motion, are derived. The expressions identify the speed derivative Mu (pitching moment produced by unit horizontal speed) as the primary source of the unstable oscillatory mode and the stable fast subsidence mode and Zw (vertical force produced by unit vertical speed) as the primary source of the stable slow subsidence mode. 展开更多
关键词 INSECT dynamic stability Equations of motion Navier-Stokes simulation Natural modes of motion
下载PDF
Dynamic flight stability of a hovering model insect:lateral motion 被引量:17
19
作者 Yanlai Zhang Mao Sun 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第2期175-190,共16页
The lateral dynamic flight stability of a hovering model insect (dronefly) was studied using the method of computational fluid dynamics to compute the stability derivatives and the techniques of eigenvalue and eigen... The lateral dynamic flight stability of a hovering model insect (dronefly) was studied using the method of computational fluid dynamics to compute the stability derivatives and the techniques of eigenvalue and eigenvector analysis for solving the equations of motion. The main results are as following. (i) Three natural modes of motion were identified: one unstable slow divergence mode (mode 1), one stable slow oscillatory mode (mode 2), and one stable fast subsidence mode (mode 3). Modes 1 and 2 mainly consist of a rotation about the horizontal longitudinal axis (x-axis) and a side translation; mode 3 mainly consists of a rotation about the x-axis and a rotation about the vertical axis. (ii) Approximate analytical expressions of the eigenvalues are derived, which give physical insight into the genesis of the natural modes of motion. (iii) For the unstable divergence mode, td, the time for initial disturbances to double, is about 9 times the wingbeat period (the longitudinal motion of the model insect was shown to be also unstable and td of the longitudinal unstable mode is about 14 times the wingbeat period). Thus, although the flight is not dynamically stable, the instability does not grow very fast and the insect has enough time to control its wing motion to suppress the disturbances. 展开更多
关键词 INSECT dynamic flight stability Hovering ·Lateral motion Natural modes of motion
下载PDF
Real-time Tire Parameters Observer for Vehicle Dynamics Stability Control 被引量:10
20
作者 LI Liang LI Hongzhi ZHANG Xiaolong HE Lin SONG Jian 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第5期620-626,共7页
The performance of the vehicle dynamics stability control system(DSC) is dominated by the accurate estimation of tire forces in real-time.The characteristics of tire forces are determined by tire dynamic states and ... The performance of the vehicle dynamics stability control system(DSC) is dominated by the accurate estimation of tire forces in real-time.The characteristics of tire forces are determined by tire dynamic states and parameters,which vary in an obviously large scope along with different working conditions.Currently,there have been many methods based on the nonlinear observer to estimate the tire force and dynamic parameters,but they were only used in off-line analysis because of the computation complexity and the dynamics differences of four tires in the steering maneuver conditions were not considered properly.This paper develops a novel algorithm to observe tire parameters in real-time controller for DSC.The algorithm is based on the sensor-fusion technology with the signals of DSC sensors,and the tire parameters are estimated during a set of maneuver courses.The calibrated tire parameters in the control cycle are treated as the elementary states for vehicle dynamics observation,in which the errors between the calculated and the measured vehicle dynamics are used as the correcting factors for the tire parameter observing process.The test process with a given acceleration following a straight line is used to validate the estimation method of the longitudinal stiffness;while the test process with a given steering angle is used to validate the estimated value of the cornering stiffness.The ground test result shows that the proposed algorithm can estimate the tire stiffness accurately with an acceptable computation cost for real-time controller only using DSC sensor signal.The proposed algorithm can be an efficient algorithm for estimating the tire dynamic parameters in vehicle dynamics stability control system,and can be used to improve the robustness of the DSC controller. 展开更多
关键词 TIRE longitudinal stiffness cornering stiffness vehicle dynamics stability
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部