Long-term storage(LTS)can provide various services to address seasonal fluctuations in variable renewable energy by reducing energy curtailment.However,long-term unit commitment(UC)with LTS involves mixed-integer prog...Long-term storage(LTS)can provide various services to address seasonal fluctuations in variable renewable energy by reducing energy curtailment.However,long-term unit commitment(UC)with LTS involves mixed-integer programming with large-scale coupling constraints between consecutive intervals(state-of-charge(SOC)constraint of LTS,ramping rate,and minimum up/down time constraints of thermal units),resulting in a significant computational burden.Herein,an iterative-based fast solution method is proposed to solve the long-term UC with LTS.First,the UC with coupling constraints is split into several sub problems that can be solved in parallel.Second,the solutions of the sub problems are adjusted to obtain a feasible solution that satisfies the coupling constraints.Third,a decoupling method for long-term time-series coupling constraints is proposed to determine the global optimization of the SOC of the LTS.The price-arbitrage model of the LTS determines the SOC boundary of the LTS for each sub problem.Finally,the sub problem with the SOC boundary of the LTS is iteratively solved independently.The proposed method was verified using a modified IEEE 24-bus system.The results showed that the computation time of the unit combination problem can be reduced by 97.8%,with a relative error of 3.62%.展开更多
With the increase in the penetration rate of renewable energy, the planning and operation of power systems will face huge challenges. To ensure the sufficient utilization of renewable energy, the reasonable arrangemen...With the increase in the penetration rate of renewable energy, the planning and operation of power systems will face huge challenges. To ensure the sufficient utilization of renewable energy, the reasonable arrangement for the long-term power generation plan has become more crucial. Security-constrained unit commitment(SCUC) is a critical technical means to optimize the long-term power generation plan. However, the plentiful power sources and the complex grid structure in largescale power systems will bring great difficulties to long-term SCUC. In this paper, we propose a fast calculation method for long-term SCUC of large-scale power systems with renewable energy. First, a method for unit status reduction based on temporal decomposition is proposed, which will reduce plenty of binary variables and intertemporal constraints in SCUC. Then,an efficient redundant constraint identification(RCI) method is developed to reduce the number of network constraints. Furthermore, a joint accelerated calculation framework for status reduction and RCI is formed, which can reduce the complexity of long-term SCUC while ensuring a high-precision feasible solution. In case studies, numerical results based on two test systems ROTS2017 and NREL-118 are analyzed, which verify the effectiveness and scalability of the proposed calculation method.展开更多
基金Supported by the Specific Research Project of Guangxi for Research Bases and Talents (2022AC21257)。
文摘Long-term storage(LTS)can provide various services to address seasonal fluctuations in variable renewable energy by reducing energy curtailment.However,long-term unit commitment(UC)with LTS involves mixed-integer programming with large-scale coupling constraints between consecutive intervals(state-of-charge(SOC)constraint of LTS,ramping rate,and minimum up/down time constraints of thermal units),resulting in a significant computational burden.Herein,an iterative-based fast solution method is proposed to solve the long-term UC with LTS.First,the UC with coupling constraints is split into several sub problems that can be solved in parallel.Second,the solutions of the sub problems are adjusted to obtain a feasible solution that satisfies the coupling constraints.Third,a decoupling method for long-term time-series coupling constraints is proposed to determine the global optimization of the SOC of the LTS.The price-arbitrage model of the LTS determines the SOC boundary of the LTS for each sub problem.Finally,the sub problem with the SOC boundary of the LTS is iteratively solved independently.The proposed method was verified using a modified IEEE 24-bus system.The results showed that the computation time of the unit combination problem can be reduced by 97.8%,with a relative error of 3.62%.
基金supported by the National Key R&D Program of China (No.2017YFB0902200)。
文摘With the increase in the penetration rate of renewable energy, the planning and operation of power systems will face huge challenges. To ensure the sufficient utilization of renewable energy, the reasonable arrangement for the long-term power generation plan has become more crucial. Security-constrained unit commitment(SCUC) is a critical technical means to optimize the long-term power generation plan. However, the plentiful power sources and the complex grid structure in largescale power systems will bring great difficulties to long-term SCUC. In this paper, we propose a fast calculation method for long-term SCUC of large-scale power systems with renewable energy. First, a method for unit status reduction based on temporal decomposition is proposed, which will reduce plenty of binary variables and intertemporal constraints in SCUC. Then,an efficient redundant constraint identification(RCI) method is developed to reduce the number of network constraints. Furthermore, a joint accelerated calculation framework for status reduction and RCI is formed, which can reduce the complexity of long-term SCUC while ensuring a high-precision feasible solution. In case studies, numerical results based on two test systems ROTS2017 and NREL-118 are analyzed, which verify the effectiveness and scalability of the proposed calculation method.