Marine heatwaves(MHWs)can cause irreversible damage to marine ecosystems and livelihoods.Appropriate MHW characterization remains difficult,because the choice of a sea surface temperature(SST)temporal baseline strongl...Marine heatwaves(MHWs)can cause irreversible damage to marine ecosystems and livelihoods.Appropriate MHW characterization remains difficult,because the choice of a sea surface temperature(SST)temporal baseline strongly influences MHW identification.Following a recent work suggesting that there should be a communicating baseline for long-term ocean temperature trends(LTT)and MHWs,we provided an effective and quantitative solution to calculate LTT and MHWs simultaneously by using the ensemble empirical mode decomposition(EEMD)method.The long-term nonlinear trend of SST obtained by EEMD shows superiority over the traditional linear trend in that the data extension does not alter prior results.The MHWs identified from the detrended SST data exhibited low sensitivity to the baseline choice,demonstrating the robustness of our method.We also derived the total heat exposure(THE)by combining LTT and MHWs.The THE was sensitive to the fixed-period baseline choice,with a response to increasing SST that depended on the onset time of a perpetual MHW state(identified MHW days equal to the year length).Subtropical areas,the Indian Ocean,and part of the Southern Ocean were most sensitive to the long-term global warming trend.展开更多
Kawasaki disease(KD)is a significant pediatric vasculitis known for its potential to cause severe coronary artery complications.Despite the effectiveness of initial treatments,such as intravenous immunoglobulin,KD pat...Kawasaki disease(KD)is a significant pediatric vasculitis known for its potential to cause severe coronary artery complications.Despite the effectiveness of initial treatments,such as intravenous immunoglobulin,KD patients can experience long-term cardiovascular issues,as evidenced by a recent case report of an adult who suffered a ST-segment elevation myocardial infarction due to previous KD in the World Journal of Clinical Cases.This editorial emphasizes the critical need for long-term management and regular surveillance to prevent such complications.By drawing on recent research and case studies,we advocate for a structured approach to follow-up care that includes routine cardiac evaluations and preventive measures.展开更多
[Objective] This study aimed to investigate the effects of long-term differ- ent fertilization in three types of soils on wheat yield and soil nutrient variation in Shandong Province. [Method] A 30-year located experi...[Objective] This study aimed to investigate the effects of long-term differ- ent fertilization in three types of soils on wheat yield and soil nutrient variation in Shandong Province. [Method] A 30-year located experiment in Jinan of Shandong Province was selected and the results of soil nutrient and crop yield in 1984, 1987, 1988, 1989, 1990, 2001, 2005, 2006, 2007 and 2010 were measured and collected. In this study, five treatments: CK, NP, NK, PK and NPK of the located experiment were selected. [Result] The three types of soils in wheat yields decreased signifi- cantly in the first several years and in 2006. Wheat yields of the treatments with P fertilizers were obviously higher than those without P fertilizers; it was shown that phosphorus is the primary nutritional factor for high-yielding of wheat. The highest yield is from cinnamon soil, followed by that from brown soil, and the lowest pro- duction is from fluvo-aquic soil. Under the same fertilization, the influence of other factors on wheat yield of brown soil is the smallest, while cinnamon soil is vulnera- ble to the influence of external conditions, resulting in larger fluctuation of annual wheat yield. The alkali-hydro nitrogen contents of three kinds of soils first de- creased, then raised, and at last reduced apparently. Since 2007, the change of al- kali-hydro nitrogen content appeared rebounded. The available P contents of no- phosphorus treatments decreased over time while those of the treatments with P fertilizers increased at first, then decreased, and after that kept relatively stable. The available K contents of no K treatments decreased slowly. The treatments of PK and NK had higher available K content than NPK treatment. [Conclusion] Thus, it is an effective fertilization measure to improve the wheat yield by supplying reasonable phosphate fertilizer and nitrogen fertilizer and making up potassium fertilizer.展开更多
To provide a scientific basis for sustainable land management, a 20-year fertility experiment was conducted in Changwu County, Shaanxi Province, China to investigate the effects of long-term application of chemical fe...To provide a scientific basis for sustainable land management, a 20-year fertility experiment was conducted in Changwu County, Shaanxi Province, China to investigate the effects of long-term application of chemical fertilizers on wheat grain yield and yield stability on the Loess Plateau using regression and stability analysis. The experiment consisted of 17 fertilizer treatments, containing the combinations of different N and P levels, with three replications arranged in a randomized complete block design. Nitrogen fertilizer was applied as urea, and P was applied as calcium superphosphate. Fertilizer rates had a large effect on the response of wheat yield to fertilization. Phosphorus, combined with N, increased yield significantly (P 〈 0.01). In the unfertilized control and the N or P sole application treatments, wheat yield had a declining trend although it was not statistically significant. Stability analysis combined with the trend analysis indicated that integrated use of fertilizer N and P was better than their sole application in increasing and sustaining the productivity of rainfed winter wheat.展开更多
We investigated the soil microbiologic characteristics, and the yield and sustainable production of winter wheat, by conducting a long-term fertilization experiment. A single application of N, P and K (NPK) fertiliz...We investigated the soil microbiologic characteristics, and the yield and sustainable production of winter wheat, by conducting a long-term fertilization experiment. A single application of N, P and K (NPK) fertilizer was taken as the control (CK) and three organic fertilization treatments were used: NPK fertilizer+pig manure (T1), NPK fertilizer+straw return (T2), NPK fertilizer+pig manure+straw return (T3). The results showed that all three organic fertilization treatments (T1, T2 and T3) significantly increased both soil total N (STN) and soil organic carbon (SOC) from 2008 onwards. In 2016, the SOC content and soil C/N ratios for T1, T2 and T3 were significantly higher than those for CK. The three organic fertilization treatments increased soil microbial activity. In 2016, the activity of urease (sucrase) and the soil respiration rate (SRS) for T1, T2 and T3 were significantly higher than those under CK. The organic fertilization treatments also increased the content of soil microbial biomass carbon (SMBC) and microbial biomass nitrogen (SMBN), the SMBC/SMBN ratio and the microbial quotient (qMB). The yield for T1, T2 and T3 was significantly higher than that of CK, respectively. Over the nine years of the investigation, the average yield increased by 9.9, 13.2 and 17.4% for T1, T2 and T3, respectively, compared to the initial yield for each treatment, whereas the average yield of CK over the same period was reduced by 6.5%. T1, T2, and T3 lowered the coefficient of variation (CV) of wheat yield and increased the sustainable yield index (SYI). Wheat grain yield was significantly positively correlated with each of the soil microbial properties (P〈0.01). These results showed that the long-term application of combined organic and chemical fertilizers can stabilize crop yield and make it more sustainable by improving the properties of the soil.展开更多
Long-term moderately high or low temperatures can damage economically important plants.In the present study,we treated Panax notoginseng,an important traditional Chinese medicine,with temperatures of 10,20,and 30℃for...Long-term moderately high or low temperatures can damage economically important plants.In the present study,we treated Panax notoginseng,an important traditional Chinese medicine,with temperatures of 10,20,and 30℃for 30 days.We then investigated P.notoginseng glycerolipidome responses to these moderate temperature stresses using an ESI/MS-MS-based lipidomic approach.Both long-term chilling(LTC,10℃)and long-term heat(LTH,30℃)decreased photo pigment levels and photosynthetic rate.LTH-induced degradation of photo pigments and glycerolipids may further cause the decline of photosynthesis and thereafter the senescence of leaves.LTC-induced photosynthesis decline is attributed to the degradation of photo synthetic pigments rather than the degradation of chloroplastidic lipids.P.notoginseng has an especially high level of lysophosphatidylglycerol,which may indicate that either P.notoginseng phospholipase A acts in a special manner on phosphatidylglycerol(PG),or that phospholipase B acts.The ratio of sulfoquinovosyldiacylglycerol(SQDG)to PG increased significantly after LTC treatment,which may indicate that SQDG partially substitutes for PG.After LTC treatment,the increase in the degree of unsaturation of plastidic lipids was less than that of extraplastidic lipids,and the increase in the unsaturation of PG was the largest among the ten lipid classes tested.These results indicate that increasing the level of unsaturated PG may play a special role in maintaining the function and stability of P.notoginseng photosystems after LTC treatment.展开更多
An understanding of wheat yield and yield stability response to fertilization is important for sustainable wheat production. A 36-year long-term fertilization experiment was employed to evaluate the yield and yield st...An understanding of wheat yield and yield stability response to fertilization is important for sustainable wheat production. A 36-year long-term fertilization experiment was employed to evaluate the yield and yield stability of winter wheat. Five fertilization regimes were compared,including(1) CK, no fertilizer;(2) NPK, inorganic fertilizer only;(3) O, organic fertilizer only;(4)NPKO, 50% of NPK plus 50% of O, and(5) HNPKO, 80% of NPK plus 80% of O. The greatest yield increase was recorded in HNPKO, followed by NPKO, with O producing the lowest mean yield increase. Over the 36 years, the rate of wheat yield increase in fertilized plots ranged from95.31 kg ha-1 year-1 in the HNPKO to 138.65 kg ha-1 year-1 in the O. Yield stability analysis using the additive main effects and multiplicative interactions(AMMI) method assigned 62.3%, 26.3%,and 11.4% of sums of squares to fertilization effect, environmental effect, and fertilization ×environment interaction effect, respectively. The combination of inorganic and organic fertilization(NPKO and HNPKO) appeared to produce more stable yields than O or NPK, with lower coefficients of variation and AMMI stability value. However, wheat grown with O seemed to be the most susceptible to climate change and the least productive among the fertilized plots.Significant correlations of grain yield with soil properties and with mean air temperature were observed. These findings suggest that inorganic + organic fertilizer can increase wheat yield and its stability by improvement in soil fertility and reduction in variability to climate change.展开更多
Straw incorporation is a global common practice to improve soil fertility and rice yield.However,the effect of straw incorporation on rice yield stability is still unknown,especially under high fertilization level con...Straw incorporation is a global common practice to improve soil fertility and rice yield.However,the effect of straw incorporation on rice yield stability is still unknown,especially under high fertilization level conditions.Here,we reported the effect of straw returning on rice yield and yield stability under high fertilization levels in the rice–wheat system over nine years.The results showed that straw incorporation did not significantly affect the average rice yield of nine years.Straw incorporation reduced the coefficient of variation of rice yield by 25.8%and increased the sustainable yield index by 8.2%.The rice yield positively correlated with mean photosynthetically active radiation (PAR) of rice growth season and the effects of straw incorporation on rice yield depended on the PAR.Straw incorporation increased the rice yield by 5.4%in the low PAR years,whereas it did not affect the rice yield in the high PAR years.Long-term straw incorporation lowered soil bulk density but improved the soil organic matter,total N,available N,available P,and available K more strongly than straw removal.Our findings suggest that straw incorporation can increase rice yield stability through improving the resistance of rice plant growth to low PAR.展开更多
Effect of application of K fertilizer and wheat straw to soil on crop yield and status of soil K in the plough layer under different planting systems was studied. The experiments on long-term application of K fertiliz...Effect of application of K fertilizer and wheat straw to soil on crop yield and status of soil K in the plough layer under different planting systems was studied. The experiments on long-term application of K fertilizer and wheat straw to soil in Hebei fluvo aquic soil and Shanxi brown soil in northern China were begun in 1992. The results showed that K fertilizer and straw could improve the yields of wheat and maize with the order of NPK + St 〉 NPK 〉 NP + St 〉 NP, and treatment of K fertilizer made a significant difference to NP, and the efficiency of K fertilizer in maize was higher than in wheat under rotation system of Hebei. In contrast with Shanxi, the wastage of soil potassium was a more serious issue in the rotation system in Hebei, only treatment of NPK + St showed a surplus of potassium and the others showed a wane. K fertilizer and straw could improve the content of water-soluble K, nonspecifically adsorbed K, non-exchangeable K, mineral K, and total K in contrast to NP; however, K fertilizer and straw reduce the proportion of mineral K and improve proportion of other forms of potassium in the two locating sites. Compared with the beginning of orientation, temporal variability character of soil K content and proportion showed a difference between the two soil types; furthermore, there was a decrease in the content of mineral K and total K simultaneously in the two locating sites. As a whole, the effect of K fertilizer applied to soil directly excelled to wheat straw to soil. Wheat straw to soil was an effective measure to complement potassium to increase crop yield and retard the decrease of soil K.展开更多
Soil organic carbon(SOC)and nitrogen(N)are two of the most important indicators for agricultural productivity.The primary objective of this study was to investigate the changes in SOC and N in the deep soil profile(up...Soil organic carbon(SOC)and nitrogen(N)are two of the most important indicators for agricultural productivity.The primary objective of this study was to investigate the changes in SOC and N in the deep soil profile(up to 100 cm)and their relationships with crop productivity under the influence of long-term(since 1990)fertilization in the wheat-maize cropping system.Treatments included CK(control),NP(inorganic N and phosphorus(P)fertilizers),NPK(inorganic N,P and potassium fertilizers),NPKM(NPK plus manure),and M(manure).Crop yield and the properties of topsoil were measured yearly from 2001 to 2009.C and N contents were measured at five different depths in 2001 and 2009.The results showed that wheat and maize yields decreased between 2001 and 2009 under the inorganic fertilizer(NP and NPK)treatments.The average yield between 2001 and 2009 under the NP,NPK,NPKM,and M treatments(compared with the CK treatment)increased by 38,115,383,and 381%,respectively,for wheat and 348,891,2738,and 1845%,respectively,for maize.Different long-term fertilization treatments significantly changed coarse free particulate(cf POC),fine free particulate(ff POC),intramicroaggregate particulate(i POC),and mineral-associated(m SOC)organic carbon fractions.In the experimental years of 2001 and 2009,soil fractions occurred in the following order for all treatments:m SOC>cf POC>i POC>ff POC.All fractions were higher under the manure application treatments than under the inorganic fertilization treatments.Compared to the inorganic fertilization treatments,manure input enhanced the stocks of SOC and total N in the surface layer(0–20 cm)but decreased SOC and N in the deep soil layer(80–100 cm).This reveals the efficiency of manure in increasing yield productivity and decreasing risk of vertical loss of nutrients,especially N,compared to inorganic fertilization treatments.The findings provide opportunities for understanding deep soil C and N dynamics,which could help mitigate climate change impact on agricultural production and maintain soil health.展开更多
The long-term performance of moderate heat Portland cement with double-expansive sources (DE cement) in the system of high MgO clinker and gypsum was studied by XRD, SEM/EDAX and test methods for strength and expans...The long-term performance of moderate heat Portland cement with double-expansive sources (DE cement) in the system of high MgO clinker and gypsum was studied by XRD, SEM/EDAX and test methods for strength and expansion of cement. Results indicate that the periclase particle, whose size was 5-7.5μm in DE cement clinker containing 4.8 % MgO, existed individually. The periclase hydration in hardened DE cement paste started at about 60 days and completed up to 2 000 days, and ettringite in the paste was stable from 3 days to 2 000 days. Under the conditions of 4.5%-5.0 % MgO in clinker and 2.8%-3.4 %SO3 in cement, ettringite expansion and brucite expansion in DE cement paste had a continuity, entirety and stability. At the ages of 90, 365,730 and 2 000 days the expansion of the paste reached 0.07%-0.11%, 0.16%-0.21%, 0.21%-0.27 %, and 0.29%-0.38%, respectively. The results suggest that by using this cement in mass concrete it may compensate its temperature shrinkage and autogenous shrinkage to some extent.展开更多
Coral reefs are in terminal decline.For conservation to be effective,naturally depauperate reefs must be distinguished from those recently degraded by humans.Traditional reef monitoring is time consuming and lacks the...Coral reefs are in terminal decline.For conservation to be effective,naturally depauperate reefs must be distinguished from those recently degraded by humans.Traditional reef monitoring is time consuming and lacks the longevity to make this distinction.Success in using foraminifera as bioindicators for reef health has hitherto levered their response to nutrients.Because ocean heat waves are the dominant driver of coral bleaching and death,there is compelling motivation to develop new foraminiferal bioindicators that inform on temperature stress over meaningful timescales.This study focuses on identifying which foraminifera respond systematically to the temperature stress that kills corals.Statistical models were used to compare endosymbiont-bearing foraminiferal families,collected along a heat-stress gradient spanning the Solomon Islands and New Caledonia,to live coral cover at the same sites.Results indicate that Amphisteginidae foraminifera and coral cover show a significant decline in abundance as heat stress increases along the transect sites.Furthermore,ocean productivity and salinity,both recognized environmental influences on foraminifera,are shown to be subordinate to temperature in their sway of this ecological patterning.These findings indicate the potential for using foraminifera to develop new indices capable of quantifying long-term thermal impacts on reefs.展开更多
BACKGROUND Autoimmune enteropathy(AIE)is a rare disease whose diagnosis and long-term prognosis remain challenging,especially for adult AIE patients.AIM To improve overall understanding of this disease’s diagnosis an...BACKGROUND Autoimmune enteropathy(AIE)is a rare disease whose diagnosis and long-term prognosis remain challenging,especially for adult AIE patients.AIM To improve overall understanding of this disease’s diagnosis and prognosis.METHODS We retrospectively analyzed the clinical,endoscopic and histopathological characteristics and prognoses of 16 adult AIE patients in our tertiary medical center between 2011 and 2023,whose diagnosis was based on the 2007 diagnostic criteria.RESULTS Diarrhea in AIE patients was characterized by secretory diarrhea.The common endoscopic manifestations were edema,villous blunting and mucosal hyperemia in the duodenum and ileum.Villous blunting(100%),deep crypt lymphocytic infiltration(67%),apoptotic bodies(50%),and mild intraepithelial lymphocytosis(69%)were observed in the duodenal biopsies.Moreover,there were other remarkable abnormalities,including reduced or absent goblet cells(duodenum 94%,ileum 62%),reduced or absent Paneth cells(duodenum 94%,ileum 69%)and neutrophil infiltration(duodenum 100%,ileum 69%).Our patients also fulfilled the 2018 diagnostic criteria but did not match the 2022 diagnostic criteria due to undetectable anti-enterocyte antibodies.All patients received glucocorticoid therapy as the initial medication,of which 14/16 patients achieved a clinical response in 5(IQR:3-20)days.Immunosuppressants were administered to 9 patients with indications of steroid dependence(6/9),steroid refractory status(2/9),or intensified maintenance medication(1/9).During the median of 20.5 months of followup,2 patients died from multiple organ failure,and 1 was diagnosed with non-Hodgkin’s lymphoma.The cumulative relapse-free survival rates were 62.5%,55.6%and 37.0%at 6 months,12 months and 48 months,respectively.CONCLUSION Certain histopathological findings,including a decrease or disappearance of goblet and Paneth cells in intestinal biopsies,might be potential diagnostic criteria for adult AIE.The long-term prognosis is still unsatisfactory despite corticosteroid and immunosuppressant medications,which highlights the need for early diagnosis and novel medications.展开更多
Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.Howe...Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.However,the as-built part usually exhibits undesirable microstructure and unsatisfactory performance.In this work,WE43 parts were firstly fabricated by PBF-LB and then subjected to heat treatment.Although a high densification rate of 99.91%was achieved using suitable processes,the as-built parts exhibited anisotropic and layeredmicrostructure with heterogeneously precipitated Nd-rich intermetallic.After heat treatment,fine and nano-scaled Mg24Y5particles were precipitated.Meanwhile,theα-Mg grainsunderwent recrystallization and turned coarsened slightly,which effectively weakened thetexture intensity and reduced the anisotropy.As a consequence,the yield strength and ultimate tensile strength were significantly improved to(250.2±3.5)MPa and(312±3.7)MPa,respectively,while the elongation was still maintained at a high level of 15.2%.Furthermore,the homogenized microstructure reduced the tendency of localized corrosion and favoredthe development of uniform passivation film.Thus,the degradation rate of WE43 parts was decreased by an order of magnitude.Besides,in-vitro cell experiments proved their favorable biocompatibility.展开更多
Given the abundant solar light available on our planet,it is promising to develop an advanced fabric capable of simultaneously providing personal thermal management and facilitating clean water production in an energy...Given the abundant solar light available on our planet,it is promising to develop an advanced fabric capable of simultaneously providing personal thermal management and facilitating clean water production in an energy-efficient manner.In this study,we present the fabrication of a photothermally active,biodegradable composite cloth composed of titanium carbide MXene and cellulose,achieved through an electrospinning method.This composite cloth exhibits favorable attributes,including chemical stability,mechanical performance,structural flexibility,and wettability.Notably,our 0.1-mm-thick composite cloth(RC/MXene IV)raises the temperature of simulated skin by 5.6℃when compared to a commercially available cotton cloth,which is five times thicker under identical ambient conditions.Remarkably,the composite cloth(RC/MXene V)demonstrates heightened solar light capture efficiency(87.7%)when in a wet state instead of a dry state.Consequently,this cloth functions exceptionally well as a high-performance steam generator,boasting a superior water evaporation rate of 1.34 kg m^(-2)h^(-1)under one-sun irradiation(equivalent to 1000 W m^(-2)).Moreover,it maintains its performance excellence in solar desali-nation processes.The multifunctionality of these cloths opens doors to a diverse array of outdoor applications,including solar-driven water evaporation and personal heating,thereby enriching the scope of integrated functionalities for textiles.展开更多
The present status of NRIM Creep Data Sheet Project and the recent activities of long-term creep and rupture studies on heat resisting steels are described. The project has been continued to produce long-term data suc...The present status of NRIM Creep Data Sheet Project and the recent activities of long-term creep and rupture studies on heat resisting steels are described. The project has been continued to produce long-term data such as 100 000h-creep rupture strength for 47 kinds of principal heat resisting steels and alloys, including welded joints. The long-term creep deformation behavior and microstructural evolution during creep have been shown to be complicated.展开更多
GTs(Glycosyltransferases)are important in plant growth and abiotic stresses.However,its role in maize heat response is far from clear.Here,we describe the constitutively expressed UDP-glycosyltransferase ZmUGT92A1,whi...GTs(Glycosyltransferases)are important in plant growth and abiotic stresses.However,its role in maize heat response is far from clear.Here,we describe the constitutively expressed UDP-glycosyltransferase ZmUGT92A1,which has a highly conserved PSPG box and is localized in chloroplasts,is induced under heat stress.Functional disruption of ZmUGT92A1 leads to heat sensitivity and reactive oxygen species accumulation in maize.Metabolomics analysis revealed that ZmUGT92A1 affected multiple metabolic pathways and altered the metabolic homeostasis of flavonoids under heat stress.In vitro assay showed ZmUGT92A1 exhibits glycosyltransferase activity on flavonoids and hormones.Additionally,we identified a rapidly heat-induced transcription factor,ZmHSF08,which can directly bind and repress the promoter region of ZmUGT92A1.The ZmHSF08 overexpression line exhibits heat sensitivity and reactive oxygen species accumulation.These findings reveal that the ZmHSF08-ZmUGT92A1 module plays a role in heat tolerance in maize and provide candidate strategies for the development of heat-tolerant varieties.展开更多
Maintaining thermal comfort within the human body is crucial for optimal health and overall well-being.By merely broadening the setpoint of indoor temperatures,we could significantly slash energy usage in building hea...Maintaining thermal comfort within the human body is crucial for optimal health and overall well-being.By merely broadening the setpoint of indoor temperatures,we could significantly slash energy usage in building heating,ventilation,and air-conditioning systems.In recent years,there has been a surge in advancements in personal thermal management(PTM),aiming to regulate heat and moisture transfer within our immediate surroundings,clothing,and skin.The advent of PTM is driven by the rapid development in nano/micro-materials and energy science and engineering.An emerging research area in PTM is personal radiative thermal management(PRTM),which demonstrates immense potential with its high radiative heat transfer efficiency and ease of regulation.However,it is less taken into account in traditional textiles,and there currently lies a gap in our knowledge and understanding of PRTM.In this review,we aim to present a thorough analysis of advanced textile materials and technologies for PRTM.Specifically,we will introduce and discuss the underlying radiation heat transfer mechanisms,fabrication methods of textiles,and various indoor/outdoor applications in light of their different regulation functionalities,including radiative cooling,radiative heating,and dual-mode thermoregulation.Furthermore,we will shine a light on the current hurdles,propose potential strategies,and delve into future technology trends for PRTM with an emphasis on functionalities and applications.展开更多
BACKGROUND Transjugular intrahepatic portosystemic shunt(TIPS)placement is a procedure that can effectively treat complications of portal hypertension,such as variceal bleeding and refractory ascites.However,there hav...BACKGROUND Transjugular intrahepatic portosystemic shunt(TIPS)placement is a procedure that can effectively treat complications of portal hypertension,such as variceal bleeding and refractory ascites.However,there have been no specific studies on predicting long-term survival after TIPS placement.AIM To establish a model to predict long-term survival in patients with hepatitis cirrhosis after TIPS.METHODS A retrospective analysis was conducted on a cohort of 224 patients who un-derwent TIPS implantation.Through univariate and multivariate Cox regression analyses,various factors were examined for their ability to predict survival at 6 years after TIPS.Consequently,a composite score was formulated,encompassing the indication,shunt reasonability,portal venous pressure gradient(PPG)after TIPS,percentage decrease in portal venous pressure(PVP),indocyanine green retention rate at 15 min(ICGR15)and total bilirubin(Tbil)level.Furthermore,the performance of the newly developed Cox(NDC)model was evaluated in an in-ternal validation cohort and compared with that of a series of existing models.RESULTS The indication(variceal bleeding or ascites),shunt reasonability(reasonable or unreasonable),ICGR15,post-operative PPG,percentage of PVP decrease and Tbil were found to be independent factors affecting long-term survival after TIPS placement.The NDC model incorporated these parameters and successfully identified patients at high risk,exhibiting a notably elevated mortality rate following the TIPS procedure,as observed in both the training and validation cohorts.Additionally,in terms of predicting the long-term survival rate,the performance of the NDC model was significantly better than that of the other four models[Child-Pugh,model for end-stage liver disease(MELD),MELD-sodium and the Freiburg index of post-TIPS survival].CONCLUSION The NDC model can accurately predict long-term survival after the TIPS procedure in patients with hepatitis cirrhosis,help identify high-risk patients and guide follow-up management after TIPS implantation.展开更多
Background High environmental temperatures induce heat stress in broiler chickens,affecting their health and pro-duction performance.Several dietary,managerial,and genetics strategies have been tested with some succes...Background High environmental temperatures induce heat stress in broiler chickens,affecting their health and pro-duction performance.Several dietary,managerial,and genetics strategies have been tested with some success in mitigating heat stress(HS)in broilers.Developing novel HS mitigation strategies for sustaining broiler production is critically needed.This study investigated the effects of pre-hatch thermal manipulation(TM)and post-hatch baica-lein supplementation on growth performance and health parameters in heat-stressed broilers.Results Six hundred fertile Cobb 500 eggs were incubated for 21 d.After candling on embryonic day(ED)10,238 eggs were thermally manipulated at 38.5℃ with 55%relative humidity(RH)from ED 12 to 18,then transferred to the hatcher(ED 19 to 21,standard temperature)and 236 eggs were incubated at a controlled temperature(37.5℃)till hatch.After hatch,180-day-old chicks from both groups were raised in 36 pens(n=10 birds/pen,6 replicates per treatment).The treatments were:1)Control,2)TM,3)control heat stress(CHS),4)thermal manipulation heat stress(TMHS),5)control heat stress supplement(CHSS),and 6)thermal manipulation heat stress supplement(TMHSS).All birds were raised under the standard environment for 21 d,followed by chronic heat stress from d 22 to 35(32–33℃ for 8 h)in the CHS,TMHS,CHSS,and TMHSS groups.A thermoneutral(22–24℃)environment was maintained in the Control and TM groups.RH was constant(50%±5%)throughout the trial.All the data were analyzed using one-way ANOVA in R and GraphPad software at P<0.05 and are presented as mean±SEM.Heat stress significantly decreased(P<0.05)the final body weight and ADG in CHS and TMHS groups compared to the other groups.Embryonic TM significantly increased(P<0.05)the expression of heat shock protein-related genes(HSP70,HSP90,and HSPH1)and antioxidant-related genes(GPX1 and TXN).TMHS birds showed a significant increment(P<0.05)in total cecal volatile fatty acid(VFA)concentration compared to the CHS birds.The cecal microbial analysis showed significant enrichment(P<0.05)in alpha and beta diversity and Coprococcus in the TMHSS group.Conclusions Pre-hatch TM and post-hatch baicalein supplementation in heat-stressed birds mitigate the detrimental effects of heat stress on chickens’growth performance,upregulate favorable gene expression,increase VFA produc-tion,and promote gut health by increasing beneficial microbial communities.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.41821004,42276025)the Natural Science Foundation of Shandong Province(No.ZR2021MD027)+1 种基金the National Key Research and Development Program of China(No.2022YFE0140500)the Project of“Development of China-ASEAN blue partnership”started in 2021.
文摘Marine heatwaves(MHWs)can cause irreversible damage to marine ecosystems and livelihoods.Appropriate MHW characterization remains difficult,because the choice of a sea surface temperature(SST)temporal baseline strongly influences MHW identification.Following a recent work suggesting that there should be a communicating baseline for long-term ocean temperature trends(LTT)and MHWs,we provided an effective and quantitative solution to calculate LTT and MHWs simultaneously by using the ensemble empirical mode decomposition(EEMD)method.The long-term nonlinear trend of SST obtained by EEMD shows superiority over the traditional linear trend in that the data extension does not alter prior results.The MHWs identified from the detrended SST data exhibited low sensitivity to the baseline choice,demonstrating the robustness of our method.We also derived the total heat exposure(THE)by combining LTT and MHWs.The THE was sensitive to the fixed-period baseline choice,with a response to increasing SST that depended on the onset time of a perpetual MHW state(identified MHW days equal to the year length).Subtropical areas,the Indian Ocean,and part of the Southern Ocean were most sensitive to the long-term global warming trend.
文摘Kawasaki disease(KD)is a significant pediatric vasculitis known for its potential to cause severe coronary artery complications.Despite the effectiveness of initial treatments,such as intravenous immunoglobulin,KD patients can experience long-term cardiovascular issues,as evidenced by a recent case report of an adult who suffered a ST-segment elevation myocardial infarction due to previous KD in the World Journal of Clinical Cases.This editorial emphasizes the critical need for long-term management and regular surveillance to prevent such complications.By drawing on recent research and case studies,we advocate for a structured approach to follow-up care that includes routine cardiac evaluations and preventive measures.
基金Supported by the Special Fund for Agro-scientific Research in the Public Interest of China(201203030,201203050)Special Fund for "Taishan Scholar" Construction Engineering "Agricultural Nonpoint Source Pollution Prevention and Control"~~
文摘[Objective] This study aimed to investigate the effects of long-term differ- ent fertilization in three types of soils on wheat yield and soil nutrient variation in Shandong Province. [Method] A 30-year located experiment in Jinan of Shandong Province was selected and the results of soil nutrient and crop yield in 1984, 1987, 1988, 1989, 1990, 2001, 2005, 2006, 2007 and 2010 were measured and collected. In this study, five treatments: CK, NP, NK, PK and NPK of the located experiment were selected. [Result] The three types of soils in wheat yields decreased signifi- cantly in the first several years and in 2006. Wheat yields of the treatments with P fertilizers were obviously higher than those without P fertilizers; it was shown that phosphorus is the primary nutritional factor for high-yielding of wheat. The highest yield is from cinnamon soil, followed by that from brown soil, and the lowest pro- duction is from fluvo-aquic soil. Under the same fertilization, the influence of other factors on wheat yield of brown soil is the smallest, while cinnamon soil is vulnera- ble to the influence of external conditions, resulting in larger fluctuation of annual wheat yield. The alkali-hydro nitrogen contents of three kinds of soils first de- creased, then raised, and at last reduced apparently. Since 2007, the change of al- kali-hydro nitrogen content appeared rebounded. The available P contents of no- phosphorus treatments decreased over time while those of the treatments with P fertilizers increased at first, then decreased, and after that kept relatively stable. The available K contents of no K treatments decreased slowly. The treatments of PK and NK had higher available K content than NPK treatment. [Conclusion] Thus, it is an effective fertilization measure to improve the wheat yield by supplying reasonable phosphate fertilizer and nitrogen fertilizer and making up potassium fertilizer.
基金Project supported by the Agricultural Development Program of the Chinese Academy of Sciences (No. KSCX1-YWN1504)the West Light Foundation of the Chinese Academy of Sciences (No. 2005404)the National Natural Science Foundation of China (Nos. 50479065 and 40601041).
文摘To provide a scientific basis for sustainable land management, a 20-year fertility experiment was conducted in Changwu County, Shaanxi Province, China to investigate the effects of long-term application of chemical fertilizers on wheat grain yield and yield stability on the Loess Plateau using regression and stability analysis. The experiment consisted of 17 fertilizer treatments, containing the combinations of different N and P levels, with three replications arranged in a randomized complete block design. Nitrogen fertilizer was applied as urea, and P was applied as calcium superphosphate. Fertilizer rates had a large effect on the response of wheat yield to fertilization. Phosphorus, combined with N, increased yield significantly (P 〈 0.01). In the unfertilized control and the N or P sole application treatments, wheat yield had a declining trend although it was not statistically significant. Stability analysis combined with the trend analysis indicated that integrated use of fertilizer N and P was better than their sole application in increasing and sustaining the productivity of rainfed winter wheat.
基金financial support from the National Key Research and Development Program of China (2017YFD0301106,2016YFD0300203-3)the Science and Technology Innovation Team Support Plan of Universities in Hennan Province,China (18IRTSTHN008)
文摘We investigated the soil microbiologic characteristics, and the yield and sustainable production of winter wheat, by conducting a long-term fertilization experiment. A single application of N, P and K (NPK) fertilizer was taken as the control (CK) and three organic fertilization treatments were used: NPK fertilizer+pig manure (T1), NPK fertilizer+straw return (T2), NPK fertilizer+pig manure+straw return (T3). The results showed that all three organic fertilization treatments (T1, T2 and T3) significantly increased both soil total N (STN) and soil organic carbon (SOC) from 2008 onwards. In 2016, the SOC content and soil C/N ratios for T1, T2 and T3 were significantly higher than those for CK. The three organic fertilization treatments increased soil microbial activity. In 2016, the activity of urease (sucrase) and the soil respiration rate (SRS) for T1, T2 and T3 were significantly higher than those under CK. The organic fertilization treatments also increased the content of soil microbial biomass carbon (SMBC) and microbial biomass nitrogen (SMBN), the SMBC/SMBN ratio and the microbial quotient (qMB). The yield for T1, T2 and T3 was significantly higher than that of CK, respectively. Over the nine years of the investigation, the average yield increased by 9.9, 13.2 and 17.4% for T1, T2 and T3, respectively, compared to the initial yield for each treatment, whereas the average yield of CK over the same period was reduced by 6.5%. T1, T2, and T3 lowered the coefficient of variation (CV) of wheat yield and increased the sustainable yield index (SYI). Wheat grain yield was significantly positively correlated with each of the soil microbial properties (P〈0.01). These results showed that the long-term application of combined organic and chemical fertilizers can stabilize crop yield and make it more sustainable by improving the properties of the soil.
基金grants from National Natural Science Foundation of China(31560085,81460581 and 31600215)High Level Talents Project of Yunnan University of Chinese Medicine(2019YZG07)+2 种基金Natural Science Fund of Yunnan Province(2017FG001)Yunnan Applied Basic Research Project(2016FA042,2017FB057 and 2015FB171)Innovation Guidance and Scientific and Technological Enterprise Cultivation Plan in Yunnan Province(2017RA001)。
文摘Long-term moderately high or low temperatures can damage economically important plants.In the present study,we treated Panax notoginseng,an important traditional Chinese medicine,with temperatures of 10,20,and 30℃for 30 days.We then investigated P.notoginseng glycerolipidome responses to these moderate temperature stresses using an ESI/MS-MS-based lipidomic approach.Both long-term chilling(LTC,10℃)and long-term heat(LTH,30℃)decreased photo pigment levels and photosynthetic rate.LTH-induced degradation of photo pigments and glycerolipids may further cause the decline of photosynthesis and thereafter the senescence of leaves.LTC-induced photosynthesis decline is attributed to the degradation of photo synthetic pigments rather than the degradation of chloroplastidic lipids.P.notoginseng has an especially high level of lysophosphatidylglycerol,which may indicate that either P.notoginseng phospholipase A acts in a special manner on phosphatidylglycerol(PG),or that phospholipase B acts.The ratio of sulfoquinovosyldiacylglycerol(SQDG)to PG increased significantly after LTC treatment,which may indicate that SQDG partially substitutes for PG.After LTC treatment,the increase in the degree of unsaturation of plastidic lipids was less than that of extraplastidic lipids,and the increase in the unsaturation of PG was the largest among the ten lipid classes tested.These results indicate that increasing the level of unsaturated PG may play a special role in maintaining the function and stability of P.notoginseng photosystems after LTC treatment.
基金supported by the National Key Research and Development Program of China(2016YFD0300803)the Special Fund for Agro-scientific Research in the Public Interest(201503116-10)+1 种基金the Agricultural Science and Technology Innovation Program(CAAS-XTCX2016019-03 and Y2016XT01-03)the Science and Technology Major Project of Anhui Province(16030701099)
文摘An understanding of wheat yield and yield stability response to fertilization is important for sustainable wheat production. A 36-year long-term fertilization experiment was employed to evaluate the yield and yield stability of winter wheat. Five fertilization regimes were compared,including(1) CK, no fertilizer;(2) NPK, inorganic fertilizer only;(3) O, organic fertilizer only;(4)NPKO, 50% of NPK plus 50% of O, and(5) HNPKO, 80% of NPK plus 80% of O. The greatest yield increase was recorded in HNPKO, followed by NPKO, with O producing the lowest mean yield increase. Over the 36 years, the rate of wheat yield increase in fertilized plots ranged from95.31 kg ha-1 year-1 in the HNPKO to 138.65 kg ha-1 year-1 in the O. Yield stability analysis using the additive main effects and multiplicative interactions(AMMI) method assigned 62.3%, 26.3%,and 11.4% of sums of squares to fertilization effect, environmental effect, and fertilization ×environment interaction effect, respectively. The combination of inorganic and organic fertilization(NPKO and HNPKO) appeared to produce more stable yields than O or NPK, with lower coefficients of variation and AMMI stability value. However, wheat grown with O seemed to be the most susceptible to climate change and the least productive among the fertilized plots.Significant correlations of grain yield with soil properties and with mean air temperature were observed. These findings suggest that inorganic + organic fertilizer can increase wheat yield and its stability by improvement in soil fertility and reduction in variability to climate change.
基金the National Key Research and Development Program of China (2017YFD0301203, 2017YFD0300100, and 2018YFD0300803)Jiangsu Agriculture Science and Technology Innovation Fund (CX(18)1002)。
文摘Straw incorporation is a global common practice to improve soil fertility and rice yield.However,the effect of straw incorporation on rice yield stability is still unknown,especially under high fertilization level conditions.Here,we reported the effect of straw returning on rice yield and yield stability under high fertilization levels in the rice–wheat system over nine years.The results showed that straw incorporation did not significantly affect the average rice yield of nine years.Straw incorporation reduced the coefficient of variation of rice yield by 25.8%and increased the sustainable yield index by 8.2%.The rice yield positively correlated with mean photosynthetically active radiation (PAR) of rice growth season and the effects of straw incorporation on rice yield depended on the PAR.Straw incorporation increased the rice yield by 5.4%in the low PAR years,whereas it did not affect the rice yield in the high PAR years.Long-term straw incorporation lowered soil bulk density but improved the soil organic matter,total N,available N,available P,and available K more strongly than straw removal.Our findings suggest that straw incorporation can increase rice yield stability through improving the resistance of rice plant growth to low PAR.
文摘Effect of application of K fertilizer and wheat straw to soil on crop yield and status of soil K in the plough layer under different planting systems was studied. The experiments on long-term application of K fertilizer and wheat straw to soil in Hebei fluvo aquic soil and Shanxi brown soil in northern China were begun in 1992. The results showed that K fertilizer and straw could improve the yields of wheat and maize with the order of NPK + St 〉 NPK 〉 NP + St 〉 NP, and treatment of K fertilizer made a significant difference to NP, and the efficiency of K fertilizer in maize was higher than in wheat under rotation system of Hebei. In contrast with Shanxi, the wastage of soil potassium was a more serious issue in the rotation system in Hebei, only treatment of NPK + St showed a surplus of potassium and the others showed a wane. K fertilizer and straw could improve the content of water-soluble K, nonspecifically adsorbed K, non-exchangeable K, mineral K, and total K in contrast to NP; however, K fertilizer and straw reduce the proportion of mineral K and improve proportion of other forms of potassium in the two locating sites. Compared with the beginning of orientation, temporal variability character of soil K content and proportion showed a difference between the two soil types; furthermore, there was a decrease in the content of mineral K and total K simultaneously in the two locating sites. As a whole, the effect of K fertilizer applied to soil directly excelled to wheat straw to soil. Wheat straw to soil was an effective measure to complement potassium to increase crop yield and retard the decrease of soil K.
基金financially supported by the National Key Research and Development Program of China(2016YFD0300901 and 2017YFD0800101)the Fundamental Research Funds for Central Non-profit Scientific Institution,China(161032019035,1610132020022 and 1610132020023)。
文摘Soil organic carbon(SOC)and nitrogen(N)are two of the most important indicators for agricultural productivity.The primary objective of this study was to investigate the changes in SOC and N in the deep soil profile(up to 100 cm)and their relationships with crop productivity under the influence of long-term(since 1990)fertilization in the wheat-maize cropping system.Treatments included CK(control),NP(inorganic N and phosphorus(P)fertilizers),NPK(inorganic N,P and potassium fertilizers),NPKM(NPK plus manure),and M(manure).Crop yield and the properties of topsoil were measured yearly from 2001 to 2009.C and N contents were measured at five different depths in 2001 and 2009.The results showed that wheat and maize yields decreased between 2001 and 2009 under the inorganic fertilizer(NP and NPK)treatments.The average yield between 2001 and 2009 under the NP,NPK,NPKM,and M treatments(compared with the CK treatment)increased by 38,115,383,and 381%,respectively,for wheat and 348,891,2738,and 1845%,respectively,for maize.Different long-term fertilization treatments significantly changed coarse free particulate(cf POC),fine free particulate(ff POC),intramicroaggregate particulate(i POC),and mineral-associated(m SOC)organic carbon fractions.In the experimental years of 2001 and 2009,soil fractions occurred in the following order for all treatments:m SOC>cf POC>i POC>ff POC.All fractions were higher under the manure application treatments than under the inorganic fertilization treatments.Compared to the inorganic fertilization treatments,manure input enhanced the stocks of SOC and total N in the surface layer(0–20 cm)but decreased SOC and N in the deep soil layer(80–100 cm).This reveals the efficiency of manure in increasing yield productivity and decreasing risk of vertical loss of nutrients,especially N,compared to inorganic fertilization treatments.The findings provide opportunities for understanding deep soil C and N dynamics,which could help mitigate climate change impact on agricultural production and maintain soil health.
基金Funded by National Natural Science Foundation of China (No.59493604)Zhejiang Provincial Natural Science Foundation of China (No.597082)China Yangtze River Three Gorges General
文摘The long-term performance of moderate heat Portland cement with double-expansive sources (DE cement) in the system of high MgO clinker and gypsum was studied by XRD, SEM/EDAX and test methods for strength and expansion of cement. Results indicate that the periclase particle, whose size was 5-7.5μm in DE cement clinker containing 4.8 % MgO, existed individually. The periclase hydration in hardened DE cement paste started at about 60 days and completed up to 2 000 days, and ettringite in the paste was stable from 3 days to 2 000 days. Under the conditions of 4.5%-5.0 % MgO in clinker and 2.8%-3.4 %SO3 in cement, ettringite expansion and brucite expansion in DE cement paste had a continuity, entirety and stability. At the ages of 90, 365,730 and 2 000 days the expansion of the paste reached 0.07%-0.11%, 0.16%-0.21%, 0.21%-0.27 %, and 0.29%-0.38%, respectively. The results suggest that by using this cement in mass concrete it may compensate its temperature shrinkage and autogenous shrinkage to some extent.
基金supported by the National Science Foundation(NSF)(No.EAR-2035135)。
文摘Coral reefs are in terminal decline.For conservation to be effective,naturally depauperate reefs must be distinguished from those recently degraded by humans.Traditional reef monitoring is time consuming and lacks the longevity to make this distinction.Success in using foraminifera as bioindicators for reef health has hitherto levered their response to nutrients.Because ocean heat waves are the dominant driver of coral bleaching and death,there is compelling motivation to develop new foraminiferal bioindicators that inform on temperature stress over meaningful timescales.This study focuses on identifying which foraminifera respond systematically to the temperature stress that kills corals.Statistical models were used to compare endosymbiont-bearing foraminiferal families,collected along a heat-stress gradient spanning the Solomon Islands and New Caledonia,to live coral cover at the same sites.Results indicate that Amphisteginidae foraminifera and coral cover show a significant decline in abundance as heat stress increases along the transect sites.Furthermore,ocean productivity and salinity,both recognized environmental influences on foraminifera,are shown to be subordinate to temperature in their sway of this ecological patterning.These findings indicate the potential for using foraminifera to develop new indices capable of quantifying long-term thermal impacts on reefs.
基金Supported by National High Level Hospital Clinical Research Funding,No.2022-PUMCH-B-022 and No.2022-PUMCH-D-002CAMS Innovation Fund for Medical Sciences,No.2021-1-I2M-003+1 种基金Undergraduate Innovation Program,No.2023-zglc-06034National Key Clinical Specialty Construction Project,No.ZK108000。
文摘BACKGROUND Autoimmune enteropathy(AIE)is a rare disease whose diagnosis and long-term prognosis remain challenging,especially for adult AIE patients.AIM To improve overall understanding of this disease’s diagnosis and prognosis.METHODS We retrospectively analyzed the clinical,endoscopic and histopathological characteristics and prognoses of 16 adult AIE patients in our tertiary medical center between 2011 and 2023,whose diagnosis was based on the 2007 diagnostic criteria.RESULTS Diarrhea in AIE patients was characterized by secretory diarrhea.The common endoscopic manifestations were edema,villous blunting and mucosal hyperemia in the duodenum and ileum.Villous blunting(100%),deep crypt lymphocytic infiltration(67%),apoptotic bodies(50%),and mild intraepithelial lymphocytosis(69%)were observed in the duodenal biopsies.Moreover,there were other remarkable abnormalities,including reduced or absent goblet cells(duodenum 94%,ileum 62%),reduced or absent Paneth cells(duodenum 94%,ileum 69%)and neutrophil infiltration(duodenum 100%,ileum 69%).Our patients also fulfilled the 2018 diagnostic criteria but did not match the 2022 diagnostic criteria due to undetectable anti-enterocyte antibodies.All patients received glucocorticoid therapy as the initial medication,of which 14/16 patients achieved a clinical response in 5(IQR:3-20)days.Immunosuppressants were administered to 9 patients with indications of steroid dependence(6/9),steroid refractory status(2/9),or intensified maintenance medication(1/9).During the median of 20.5 months of followup,2 patients died from multiple organ failure,and 1 was diagnosed with non-Hodgkin’s lymphoma.The cumulative relapse-free survival rates were 62.5%,55.6%and 37.0%at 6 months,12 months and 48 months,respectively.CONCLUSION Certain histopathological findings,including a decrease or disappearance of goblet and Paneth cells in intestinal biopsies,might be potential diagnostic criteria for adult AIE.The long-term prognosis is still unsatisfactory despite corticosteroid and immunosuppressant medications,which highlights the need for early diagnosis and novel medications.
基金supported by the following funds:National Natural Science Foundation of China(51935014,52165043)Jiangxi Provincial Cultivation Program for Academic and Technical Leaders of Major Subjects(20225BCJ23008)+1 种基金Jiangxi Provincial Natural Science Foundation(20224ACB204013,20224ACB214008)Scientific Research Project of Anhui Universities(KJ2021A1106)。
文摘Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.However,the as-built part usually exhibits undesirable microstructure and unsatisfactory performance.In this work,WE43 parts were firstly fabricated by PBF-LB and then subjected to heat treatment.Although a high densification rate of 99.91%was achieved using suitable processes,the as-built parts exhibited anisotropic and layeredmicrostructure with heterogeneously precipitated Nd-rich intermetallic.After heat treatment,fine and nano-scaled Mg24Y5particles were precipitated.Meanwhile,theα-Mg grainsunderwent recrystallization and turned coarsened slightly,which effectively weakened thetexture intensity and reduced the anisotropy.As a consequence,the yield strength and ultimate tensile strength were significantly improved to(250.2±3.5)MPa and(312±3.7)MPa,respectively,while the elongation was still maintained at a high level of 15.2%.Furthermore,the homogenized microstructure reduced the tendency of localized corrosion and favoredthe development of uniform passivation film.Thus,the degradation rate of WE43 parts was decreased by an order of magnitude.Besides,in-vitro cell experiments proved their favorable biocompatibility.
基金support from ERC Consolidator Grant PARIS-101043485 from the European Research Council,Swedish Research Council Grant 2018-05351the Wallenberg Academy Fellow program(Grant KAW 2017.0166)in Sweden and the Wallenberg Initiative Materials Science for Sustainability(WISE)funded by the Knut and Alice Wallenberg Foundation(project number:WISE-AP01-D197)support from the Swedish Research Council(2021-05839)and Aforsk Foundation(22-274).
文摘Given the abundant solar light available on our planet,it is promising to develop an advanced fabric capable of simultaneously providing personal thermal management and facilitating clean water production in an energy-efficient manner.In this study,we present the fabrication of a photothermally active,biodegradable composite cloth composed of titanium carbide MXene and cellulose,achieved through an electrospinning method.This composite cloth exhibits favorable attributes,including chemical stability,mechanical performance,structural flexibility,and wettability.Notably,our 0.1-mm-thick composite cloth(RC/MXene IV)raises the temperature of simulated skin by 5.6℃when compared to a commercially available cotton cloth,which is five times thicker under identical ambient conditions.Remarkably,the composite cloth(RC/MXene V)demonstrates heightened solar light capture efficiency(87.7%)when in a wet state instead of a dry state.Consequently,this cloth functions exceptionally well as a high-performance steam generator,boasting a superior water evaporation rate of 1.34 kg m^(-2)h^(-1)under one-sun irradiation(equivalent to 1000 W m^(-2)).Moreover,it maintains its performance excellence in solar desali-nation processes.The multifunctionality of these cloths opens doors to a diverse array of outdoor applications,including solar-driven water evaporation and personal heating,thereby enriching the scope of integrated functionalities for textiles.
文摘The present status of NRIM Creep Data Sheet Project and the recent activities of long-term creep and rupture studies on heat resisting steels are described. The project has been continued to produce long-term data such as 100 000h-creep rupture strength for 47 kinds of principal heat resisting steels and alloys, including welded joints. The long-term creep deformation behavior and microstructural evolution during creep have been shown to be complicated.
基金supported by the National Key Research and Development Program of China (2021YFF1000301)the National Natural Science Foundation of China (31771805)。
文摘GTs(Glycosyltransferases)are important in plant growth and abiotic stresses.However,its role in maize heat response is far from clear.Here,we describe the constitutively expressed UDP-glycosyltransferase ZmUGT92A1,which has a highly conserved PSPG box and is localized in chloroplasts,is induced under heat stress.Functional disruption of ZmUGT92A1 leads to heat sensitivity and reactive oxygen species accumulation in maize.Metabolomics analysis revealed that ZmUGT92A1 affected multiple metabolic pathways and altered the metabolic homeostasis of flavonoids under heat stress.In vitro assay showed ZmUGT92A1 exhibits glycosyltransferase activity on flavonoids and hormones.Additionally,we identified a rapidly heat-induced transcription factor,ZmHSF08,which can directly bind and repress the promoter region of ZmUGT92A1.The ZmHSF08 overexpression line exhibits heat sensitivity and reactive oxygen species accumulation.These findings reveal that the ZmHSF08-ZmUGT92A1 module plays a role in heat tolerance in maize and provide candidate strategies for the development of heat-tolerant varieties.
基金support from the Research Grants Council of the Hong Kong Special Administrative Region,China(PolyU152052/21E)Green Tech Fund of Hong Kong(Project No.:GTF202220106)+1 种基金Innovation and Technology Fund of the Hong Kong Special Administrative Region,China(ITP/018/21TP)PolyU Endowed Young Scholars Scheme(Project No.:84CC).
文摘Maintaining thermal comfort within the human body is crucial for optimal health and overall well-being.By merely broadening the setpoint of indoor temperatures,we could significantly slash energy usage in building heating,ventilation,and air-conditioning systems.In recent years,there has been a surge in advancements in personal thermal management(PTM),aiming to regulate heat and moisture transfer within our immediate surroundings,clothing,and skin.The advent of PTM is driven by the rapid development in nano/micro-materials and energy science and engineering.An emerging research area in PTM is personal radiative thermal management(PRTM),which demonstrates immense potential with its high radiative heat transfer efficiency and ease of regulation.However,it is less taken into account in traditional textiles,and there currently lies a gap in our knowledge and understanding of PRTM.In this review,we aim to present a thorough analysis of advanced textile materials and technologies for PRTM.Specifically,we will introduce and discuss the underlying radiation heat transfer mechanisms,fabrication methods of textiles,and various indoor/outdoor applications in light of their different regulation functionalities,including radiative cooling,radiative heating,and dual-mode thermoregulation.Furthermore,we will shine a light on the current hurdles,propose potential strategies,and delve into future technology trends for PRTM with an emphasis on functionalities and applications.
基金Supported by the Talent Training Plan during the"14th Five-Year Plan"period of Beijing Shijitan Hospital Affiliated to Capital Medical University,No.2023LJRCLFQ.
文摘BACKGROUND Transjugular intrahepatic portosystemic shunt(TIPS)placement is a procedure that can effectively treat complications of portal hypertension,such as variceal bleeding and refractory ascites.However,there have been no specific studies on predicting long-term survival after TIPS placement.AIM To establish a model to predict long-term survival in patients with hepatitis cirrhosis after TIPS.METHODS A retrospective analysis was conducted on a cohort of 224 patients who un-derwent TIPS implantation.Through univariate and multivariate Cox regression analyses,various factors were examined for their ability to predict survival at 6 years after TIPS.Consequently,a composite score was formulated,encompassing the indication,shunt reasonability,portal venous pressure gradient(PPG)after TIPS,percentage decrease in portal venous pressure(PVP),indocyanine green retention rate at 15 min(ICGR15)and total bilirubin(Tbil)level.Furthermore,the performance of the newly developed Cox(NDC)model was evaluated in an in-ternal validation cohort and compared with that of a series of existing models.RESULTS The indication(variceal bleeding or ascites),shunt reasonability(reasonable or unreasonable),ICGR15,post-operative PPG,percentage of PVP decrease and Tbil were found to be independent factors affecting long-term survival after TIPS placement.The NDC model incorporated these parameters and successfully identified patients at high risk,exhibiting a notably elevated mortality rate following the TIPS procedure,as observed in both the training and validation cohorts.Additionally,in terms of predicting the long-term survival rate,the performance of the NDC model was significantly better than that of the other four models[Child-Pugh,model for end-stage liver disease(MELD),MELD-sodium and the Freiburg index of post-TIPS survival].CONCLUSION The NDC model can accurately predict long-term survival after the TIPS procedure in patients with hepatitis cirrhosis,help identify high-risk patients and guide follow-up management after TIPS implantation.
基金The research was funded by a USDA Multistate(2052R)grant from the CTAHR University of Hawaii at Manoa to B.M.
文摘Background High environmental temperatures induce heat stress in broiler chickens,affecting their health and pro-duction performance.Several dietary,managerial,and genetics strategies have been tested with some success in mitigating heat stress(HS)in broilers.Developing novel HS mitigation strategies for sustaining broiler production is critically needed.This study investigated the effects of pre-hatch thermal manipulation(TM)and post-hatch baica-lein supplementation on growth performance and health parameters in heat-stressed broilers.Results Six hundred fertile Cobb 500 eggs were incubated for 21 d.After candling on embryonic day(ED)10,238 eggs were thermally manipulated at 38.5℃ with 55%relative humidity(RH)from ED 12 to 18,then transferred to the hatcher(ED 19 to 21,standard temperature)and 236 eggs were incubated at a controlled temperature(37.5℃)till hatch.After hatch,180-day-old chicks from both groups were raised in 36 pens(n=10 birds/pen,6 replicates per treatment).The treatments were:1)Control,2)TM,3)control heat stress(CHS),4)thermal manipulation heat stress(TMHS),5)control heat stress supplement(CHSS),and 6)thermal manipulation heat stress supplement(TMHSS).All birds were raised under the standard environment for 21 d,followed by chronic heat stress from d 22 to 35(32–33℃ for 8 h)in the CHS,TMHS,CHSS,and TMHSS groups.A thermoneutral(22–24℃)environment was maintained in the Control and TM groups.RH was constant(50%±5%)throughout the trial.All the data were analyzed using one-way ANOVA in R and GraphPad software at P<0.05 and are presented as mean±SEM.Heat stress significantly decreased(P<0.05)the final body weight and ADG in CHS and TMHS groups compared to the other groups.Embryonic TM significantly increased(P<0.05)the expression of heat shock protein-related genes(HSP70,HSP90,and HSPH1)and antioxidant-related genes(GPX1 and TXN).TMHS birds showed a significant increment(P<0.05)in total cecal volatile fatty acid(VFA)concentration compared to the CHS birds.The cecal microbial analysis showed significant enrichment(P<0.05)in alpha and beta diversity and Coprococcus in the TMHSS group.Conclusions Pre-hatch TM and post-hatch baicalein supplementation in heat-stressed birds mitigate the detrimental effects of heat stress on chickens’growth performance,upregulate favorable gene expression,increase VFA produc-tion,and promote gut health by increasing beneficial microbial communities.