Atmospheric deposition of nitrogen(N)plays a significant role in shaping the structure and functioning of various terrestrial ecosystems worldwide.However,the magnitude of N deposition on grassland ecosystems in Centr...Atmospheric deposition of nitrogen(N)plays a significant role in shaping the structure and functioning of various terrestrial ecosystems worldwide.However,the magnitude of N deposition on grassland ecosystems in Central Asia still remains highly uncertain.In this study,a multi-data approach was adopted to analyze the distribution and amplitude of N deposition effects in Central Asia from 1979 to 2014 using a process-based denitrification decomposition(DNDC)model.Results showed that total vegetation carbon(C)in Central Asia was 0.35(±0.09)Pg C/a and the averaged water stress index(WSI)was 0.20(±0.02)for the whole area.Increasing N deposition led to an increase in the vegetation C of 65.56(±83.03)Tg C and slightly decreased water stress in Central Asia.Findings of this study will expand both our understanding and predictive capacity of C characteristics under future increases in N deposition,and also serve as a valuable reference for decision-making regarding water resources management and climate change mitigation in arid and semi-arid areas globally.展开更多
Atmospheric nitrogen(N)deposition is predicted to increase,especially in the subtropics.However,the responses of soil microorganisms to long-term N addition at the molecular level in N-rich subtropical forests have no...Atmospheric nitrogen(N)deposition is predicted to increase,especially in the subtropics.However,the responses of soil microorganisms to long-term N addition at the molecular level in N-rich subtropical forests have not been clarified.A long-term nutrient addition experiment was conducted in a subtropical evergreen old-growth forest in China.The four treatments were:control,low N(50 kg N ha^(-1)a^(-1)),high N(100 kg N ha^(-1)a^(-1)),and combined N and phosphorus(P)(100 kg N ha^(-1)a^(-1)+50 kg P ha^(-1)a^(-1)).Metagenomic sequencing characterized diversity and composition of soil microbial communities and used to construct bacterial/fungal co-occurrence networks.Nutrient-treated soils were more acidic and had higher levels of dissolved organic carbon than controls.There were no significant differences in microbial diversity and community composition across treatments.The addition of nutrients increased the abundance of copiotrophic bacteria and potentially beneficial microorganisms(e.g.,Gemmatimonadetes,Chaetomium,and Aureobasidium).Low N addition increased microbiome network connectivity.Three rare fungi were identified as module hubs under nutrient addition,indicating that low abundance fungi were more sensitive to increased nutrients.The results indicate that the overall composition of microbial communities was stable but not static to long-term N addition.Our findings provide new insights that can aid predictions of the response of soil microbial communities to long-term N addition.展开更多
Grazing exclusion is one of the primary management practices used to restore degraded grasslands on the Tibetan Plateau.However,to date,the effects of long-term grazing exclusion measures on the process of restoring d...Grazing exclusion is one of the primary management practices used to restore degraded grasslands on the Tibetan Plateau.However,to date,the effects of long-term grazing exclusion measures on the process of restoring degraded alpine meadows have not been evaluated.In this study,moderately degraded plots,in which the vegetation coverage was approximately 65%and the dominant plant species was Potentilla anserina L,with grazing exclusion for 2 to 23 years,were selected in alpine meadows of Haibei in Qinghai-Tibet Plateau.Plant coverage,plant height,biomass,soil bulk density,saturated water content,soil organic carbon(SOC)and total nitrogen(TN)were evaluated.The results were as follows:(1)With aboveground biomass and total saturated water content at 0-40 cm depth,the average SOC and TN contents in moderately degraded alpine meadows increased as a power function,and the plant height increased as a log function.(2)The average soil bulk density at 0-40 cm depth first decreased and then increased with increasing grazing exclusion duration,and the minimum value of 0.90 g·cm^(-3) was reached at 15.23 years.The plant coverage,total belowground biomass at 0-40 cm depth,total aboveground and belowground biomass first increased and then decreased,their maximum values(80.49%,2452.92g·m^(-2),2891.06 g·m^(-2))were reached at 9.41,9.46 and 10.25 years,respectively.Long-term grazing exclusion is apparently harmful for the sustainable restoration of degraded alpine meadows.The optimal duration of grazing exclusion for the restoration of moderately degraded alpine meadows was 10 years.This research suggests that moderate disturbance should be allowed in moderately degraded alpine meadows after 10years of grazing exclusion.展开更多
As an example of atmospheric nitrogen(N) deposition,the paper summarizes the definition,form and amount of nutrient from the environment(NFE) and the relationship between NFE and anthro-pogenic reactive N emission.Bas...As an example of atmospheric nitrogen(N) deposition,the paper summarizes the definition,form and amount of nutrient from the environment(NFE) and the relationship between NFE and anthro-pogenic reactive N emission.Based on our own study and published articles,we find that N wet and dry deposition has been an important nutrient resource in agricultural and natural ecosystems in China.The total amount of N deposition and other environment-derived N in China was up to 18 Tg N/a,equal to ap-proximately 60% of the national N fertilizer consumption.Nitrogen deposition is expected to contribute substantially to nutrient cycling and net primary productivity in various ecosystems.Therefore,it is crucial to utilize this environment-derived nutrient resource by integrated nutrient resource management in order to realize the sustainable development of both agricultural and non-agricultural ecosystems.展开更多
The continuing increase in human activities is causing global changes such as increased deposition of atmospheric nitrogen. There is considerable interest in understanding the effects of increasing atmospheric nitroge...The continuing increase in human activities is causing global changes such as increased deposition of atmospheric nitrogen. There is considerable interest in understanding the effects of increasing atmospheric nitrogen deposition on soil enzyme activities, specifically in terms of global nitrogen cycling and its potential future contribution to global climate change. This paper summarizes the ecological effects of atmospheric nitrogen deposition on soil enzyme activities, including size-effects, stage-effects, site-effects, and the effects of different levels and forms of atmospheric nitrogen deposition. We discuss needs for further research on the relationship between atmospheric nitrogen deposition and soil enzymes.展开更多
Climate warming and nitrogen (N) deposition change ecosystem processes, structure, and functioning whereas the phosphorus (P) composition and availability directly influence the ecosystem structure under condi- ti...Climate warming and nitrogen (N) deposition change ecosystem processes, structure, and functioning whereas the phosphorus (P) composition and availability directly influence the ecosystem structure under condi- tions of N deposition. In our study, four treatments were designed, including a control, diurnal warming (DW), N deposition (ND), and combined warming and N deposition (WN). The effects of DW, ND, and WN on P composition were studied by 3~p nuclear magnetic resonance (3~p NMR) spectroscopy in a temperate grassland region of China. The results showed that the N deposition decreased the soil pH and total N (TN) concentration but increased the soil OIsen-P concentration. The solution-state 31p NMR analysis showed that the DW, ND and WN treatments slightly decreased the proportion of orthophosphate and increased that of the monoesters. An absence of myo-inositol phosphate in the DW, ND and WN treatments was observed compared with the control. Furthermore, the DW, ND and WN treatments significantly decreased the recovery of soil P in the NaOH-EDTA solution by 17%-20%. The principal component analysis found that the soil pH was positively correlated with the P recovery in the NaOH-EDTA solution. Therefore, the decreased soil P recovery in the DW and ND treatments might be caused by an indirect influence on the soil pH. Additionally, the soil moisture content was the key factor limiting the available P. The positive correlation of total carbon (TC) and TN with the soil P composition indicated the influence of climate warming and N deposition on the biological processes in the soil P cycling.展开更多
A one-year study in a typical red soil region of southern China was conducted to determine atmospheric nitrogen (N) fluxes of typical N compounds (NH3, NH4-N, NO3-N, and NO2) and contribution of three sources (gas, ra...A one-year study in a typical red soil region of southern China was conducted to determine atmospheric nitrogen (N) fluxes of typical N compounds (NH3, NH4-N, NO3-N, and NO2) and contribution of three sources (gas, rainwater, and particles) to N deposition. From July 2003 to June 2004, the total atmospheric N deposition was 70.7 kg N ha-1, with dry deposition accounting for 75% of the total deposition. Dry NH3 deposition accounted for 73% of the dry deposition and 55% of the total deposition. Moreover, NO2 contributed 11% of the dry deposition and 8% of the total deposition. Reduced N compounds (NH4+ and NH3) were the predominate contributors, accounting for 66% of the total deposition. Therefore, atmospheric N deposition should be considered when soil acidification and critical loads of atmospheric deposition on soils are estimated.展开更多
A continuous three-year observation(from May 2008 to April 2011)was conducted to characterize the spatial variation of dissolved inorganic nitrogen(DIN)deposition at eight main forest ecosystems along the north-south ...A continuous three-year observation(from May 2008 to April 2011)was conducted to characterize the spatial variation of dissolved inorganic nitrogen(DIN)deposition at eight main forest ecosystems along the north-south transect of eastern China(NSTEC).The results show that both throughfall DIN deposition and bulk DIN deposition increase from north to south along the NSTEC.Throughfall DIN deposition varies greatly from 2.7 kg N/(ha·yr)to 33.0 kg N/(ha·yr),with an average of 10.6 kg N/(ha·yr),and bulk DIN deposition ranges from 4.1 kg N/(ha·yr)to 25.4 kg N/(ha·yr),with an average of 9.8 kg N/(ha·yr).NH4+-N is the dominant form of DIN deposition at most sampling sites.Additionally,the spatial variation of DIN deposition is controlled mainly by precipitation.Moreover,in the northern part of the NSTEC,bulk DIN deposition is 17%higher than throughfall DIN deposition,whereas the trend is opposite in the southern part of the NSTEC.The results demonstrate that DIN deposition would likely threaten the forest ecosystems along the NSTEC,compared with the critical loads(CL)of N deposition,and DIN deposition in this region is mostly controlled by agricultural activities rather than industrial activities or transportation.展开更多
Excess nitrogen deposition has significant impacts on water eutrophication,soil acidification,eleveted greenhouse gas emissions,and biodiversity loss.These impacts mostly derive from conventional manipulative experime...Excess nitrogen deposition has significant impacts on water eutrophication,soil acidification,eleveted greenhouse gas emissions,and biodiversity loss.These impacts mostly derive from conventional manipulative experiments in the field by adding nitrogen solution directly onto grassland or forest floors.For forest ecosystems,previous field experiments have usually ignored the nitrogen cycles in the canopy,which are important in responses to airborne nitrogen input.Although whole-forest canopy nitrogen fertilization has recently been conducted to promote our understanding of nitrogen deposition processes,spraying nitrogen solution onto plants still largely ignores the dry deposition of ammonia(as well as other gaseous reactive nitrogen species).To date,there have been a limited number of field studies that have investigated the bi-directional exchange of ammonia between the atmosphere and plants,not to mention the impacts of ammonia on natural ecosystems.Due to the increasing trend of atmospheric ammonia concentrations worldwide and its dominant role in nitrogen deposition and haze pollution,the next generation of experiments should mimick nitrogen deposition on natural ecosystems by further considering the dry deposition of ammonia.展开更多
In recent years, herbaceous species such as Deyeuxia angustifolia (Kom.) Y. L. Chang has invaded alpine tundra regions of the western slope of the Changbai Mountains. Because atmospheric nitrogen deposition is predi...In recent years, herbaceous species such as Deyeuxia angustifolia (Kom.) Y. L. Chang has invaded alpine tundra regions of the western slope of the Changbai Mountains. Because atmospheric nitrogen deposition is predicted to increase under a warming climate and D. angustifolia is sensitive to nitrogen addition, field experiments were conducted from 2010 to 2013 to determine the effect of increased nitrogen deposition on the mechanisms of D. angustifolia invasion. The goal of this study is to evaluate the impact of increased nitrogen deposition on the changes in alpine tundra vegetation (consisting mostly of Rhododendron chrysanthum Pall. and Vaccinium uliginosum Linn.). The results showed that: 1) simulated nitrogen deposition affected overall characteristics and structure of R. chrysanthum and E uliginosum communities and had a positive impact on the growth of tundra vegetation invaded by 1). angustifolia; 2) R. chrysanthum was more resistant to invasion by D. angustifolia than V.. uliginosum; 3) simulated nitrogen deposition could improve the growth and enhance the competitiveness of D. angustifolia, which was gradually replacing R. chrysanthum and V. uliginosum and might become the dominant species in the system in future, transforming alpine tundra into alpine meadow in the Chanebai Mountains.展开更多
The Soil and Water Assessment Tool (SWAT) nitrogen (N) water quality model considers the artificial inputs associated with human activities, including point and nonpoint source pollution loads. Although SWAT has the a...The Soil and Water Assessment Tool (SWAT) nitrogen (N) water quality model considers the artificial inputs associated with human activities, including point and nonpoint source pollution loads. Although SWAT has the ability to simulate atmospheric N deposition and fixation, they were not considered in the modeling research. N deposition from the air is an important and considerable pathway for the input of N species into watersheds and water bodies, causing soil and water body acidification and the leaching of N into surface and groundwater, resulting in eutrophication and degraded water quality. The goal of this study is to assess the effects of atmospheric and agricultural N loads on stream water quality at the watershed scale. For a 6642 km2 Chungju dam watershed, SWAT was calibrated for 4 years (2003-2006) and validated for another 4 years (2007-2010) using daily anthropogenic N data (sewage discharge pollutants and fertilizer) and monthly measured atmospheric deposition data for NO3ˉ, NH4+, and dissolved organic N (DON). At the watershed outlet, the Nash-Sutcliffe (1970) efficiency (NSE) of daily streamflow during the validation period was 0.74. The coefficient of determination (R2) of total N was 0.69 considering atmospheric deposition, whereas it was 0.33 when removing the deposition effect. The results of this study demonstrate the potential for using the N dynamics between the atmosphere and land for SWAT assessments of nonpoint source pollution and for modeling stream water quality.展开更多
Simple and inexpensive estimation of the rates and sources of atmospheric nitrogen(N)deposition is critical for its effective mitigation in a region with different land-use types.In this study,the N content and N isot...Simple and inexpensive estimation of the rates and sources of atmospheric nitrogen(N)deposition is critical for its effective mitigation in a region with different land-use types.In this study,the N content and N isotopic composition(δ15N)of moss(Haplocladium microphyllum)tissues and precipitation at six sites with three land-use types(urban,suburban,and rural)were measured in the Yangtze River Delta.A significant linear relationship between moss N content and wet N deposition,and a consistent decrease trend for moss N content and wet N deposition from urban to suburban to rural areas were observed.More negativeδ15N of suburban and rural mosses indicated N mainly released from agriculture and effluent,while the less negativeδ15N of urban mosses were mainly influenced by fossil fuel combustion and traffic emissions.Although the negative mossδ15N indicates that reduced N dominates wet N deposition,there was no significant correlation between mossδ15N and the ratio of ammonium to nitrate(NH4+/NO3−).These results reveal that the moss N content andδ15N can be used as a complementary tool for estimating the rates and sources of wet N deposition in a region with different land-use types.展开更多
Due to increasing global demand for crop production and energy use, more and more reactive nitrogen(Nr) has been generated and emitted to the environment. As a result, global atmospheric nitrogen(N) deposition has...Due to increasing global demand for crop production and energy use, more and more reactive nitrogen(Nr) has been generated and emitted to the environment. As a result, global atmospheric nitrogen(N) deposition has tripled since the industrial revolution and the ecological environment and human health have been harmed. In this study, we measured dry and wet/bulk N deposition from July 2013 to December 2015 in a semi-arid grassland of Duolun County, Inner Mongolia, China. The samples of dry and wet/bulk N deposition were collected monthly with a DELTA(DEnuder for Long Term Atmospheric sampling) system and with Gradko passive samplers and a precipitation gauge. The measured results show that the annual mean concentrations of NH_3, NO_2, HNO_3, particulate NH_4~+(pNH_4~+) and particulate NO_3^-(pNO_3^-) in atmosphere were 2.33, 1.90, 0.18, 1.42 and 0.42 μg N/m3, respectively, and that the annual mean volume-weighted concentrations of NH_4~+-N and NO_3^--N in precipitation were 2.71 and 1.99 mg N/L, respectively. The concentrations of Nr components(including NH_3, NO_2, HNO_3, p NH_4~+, pNO_3^-, NH_4~+-N and NO_3^--N) exhibited different seasonal variations. Specifically, NO_2 and HNO_3 exhibited higher concentrations in autumn than in summer, while the other Nr components(NH_3, pNH_4~+, pNO_3^-, NH_4~+-N and NO_3^--N) showed the highest values in summer. Based on measured concentrations of Nr components and their deposition velocities estimated using the GEOS-Chem global atmospheric chemical transport model, the calculated annual mean dry deposition fluxes were 3.17, 1.13, 0.63, 0.91 and 0.36 kg N/(hm^2·a) for NH_3, NO_2, HNO_3, p NH_4~+ and pNO_3^-, respectively, and the calculated annual mean wet/bulk deposition fluxes were 5.37 and 3.15 kg N/(hm^2·a) for NH_4~+-N and NO_3^--N, respectively. The estimated annual N deposition(including dry N deposition and wet/bulk N deposition) reached 14.7 kg N/(hm^2·a) in grassland of Duolun County, approaching to the upper limit of the N critical load(10–15 kg N/(hm^2·a)). Dry and wet/bulk deposition fluxes of all Nr components(with an exception of HNO_3) showed similar seasonal variations with the maximum deposition flux in summer and the minimum in winter. Reduced Nr components(e.g., gaseous NH_3 and p NH_4~+ in atmosphere and NH_4~+-N in precipitation) dominated the total N deposition at the sampling site(accounted for 64% of the total N deposition), suggesting that the deposited atmospheric Nr mainly originated from agricultural activities. Considering the projected future increases in crop and livestock production in Inner Mongolia, the ecological and human risks to the negative effects of increased N deposition could be increased if no mitigation measures are taken.展开更多
The hypothesis that the product of discharge and concentration of nitrogen (N) in river water is equal to the atmospheric deposition was verified in the mountainous basin of the Tedori River in Japan. To verify this r...The hypothesis that the product of discharge and concentration of nitrogen (N) in river water is equal to the atmospheric deposition was verified in the mountainous basin of the Tedori River in Japan. To verify this relationship, long-term data?are required to eliminate the effect of short-term variation of the N components. The basin has very high mountains, including Mount Hakusan (2702 maltitude), which is covered with deep snow in winter. Therefore, limited data were used for the estimation of the deposition of the entire basin by assuming a linear relationship of altitude. As a result, it was found that the estimated N concentration coincided well with observed concentrations at six sites—the Shiramine and Kuwajima (upper stream), Nakajima (lower stream) and Dainichi dam, Tedori dam and Senami sites (middle stream). The seasonal variation of N concentrations was low in the snowmelt period and high in autumn through to winter. This was not due to the larger discharge in snowmelt season as it was also found that N deposition was high in winter and low in spring, which indicated a clear relationship between N concentration and monthly atmospheric deposition including N storage in snow pack.展开更多
In this paper,we report the effect of nitrogen on the deposition and properties of boron doped diamond films synthesized by hot filament chemical vapor deposition.The diamond films consisting of micro-grains(nano-grai...In this paper,we report the effect of nitrogen on the deposition and properties of boron doped diamond films synthesized by hot filament chemical vapor deposition.The diamond films consisting of micro-grains(nano-grains) were realized with low(high) boron source flow rate during the growth processes.The transition of micro-grains to nano-grains is speculated to be strongly(weekly) related with the boron(nitrogen) flow rate.The grain size and Raman spectral feature vary insignificantly as a function of the nitrogen introduction at a certain boron flow rate.The variation of electron field emission characteristics dependent on nitrogen is different between microcrystalline and nanocrystalline boron doped diamond samples,which are related to the combined phase composition,boron doping level and texture structure.There is an optimum nitrogen proportion to improve the field emission properties of the boron-doped films.展开更多
The regional air quality modeling system Regional Atmospheric Modeling System–Community Multiscale Air Quality was applied to estimate the spatial distribution and seasonal variation in nitrogen wet deposition over E...The regional air quality modeling system Regional Atmospheric Modeling System–Community Multiscale Air Quality was applied to estimate the spatial distribution and seasonal variation in nitrogen wet deposition over East Asia in 2010. The simulated results were evaluated by comparing modeled precipitation rates and ion concentrations, such as ammonium(NH_4~+), nitrate(NO_3^-), and sulfate, in rainwater, against observations obtained from Acid Deposition Monitoring Network in East Asia and meteorological stations in China. Comparison of simulated and observed precipitation showed that the modeling system can reproduce seasonal precipitation patterns reasonably well. For major ion species, the simulated results in most cases were in good agreement with those observed. Analysis of the modeled wet deposition distributions indicated that China experiences noticeable variation in wet deposition patterns throughout the year. Nitrogen wet deposition(NH_4~+ + NO_3^-) during summer and spring accounted for 71% of the annual total(3.9 Tg N yr^(-1)), including 42.7% in summer. Precipitation plays a larger role in the seasonal variation of wet deposition; whereas, aerosol concentrations affect its distribution patterns. In China, the amount of annual nitrogen wet deposition ranged from 1 to 18 kg N ha^(-1). Nitrogen in wet deposition was mainly in the form of NH_4~+, accounting for 65.76% of the total amount, and the molar ratio of NH_4~+∕NO_3^- was mostly more than 1, indicating a relatively larger effect from agricultural activities.展开更多
A WRF-Chem model including a comprehensive gas-phase nitrogen chemistry module was used to simulate a severe dust event appearing in the eastern China on 19-25 March, 2002. The modeling result well reproduced PM10 con...A WRF-Chem model including a comprehensive gas-phase nitrogen chemistry module was used to simulate a severe dust event appearing in the eastern China on 19-25 March, 2002. The modeling result well reproduced PM10 concentrations in various distances from the dust sources and the transport pathway of the dust strom. The results showed that both the concentrations and the dry deposition fluxes of PM10 increased over the China seas during the dust event following the passage of a cold front system. The maximum fluxes of PM10 in the Yellow Sea and the East China Sea during the dust event were 5.5 and 8.4 times of those before the event, respectively. However, the temporal variations of the dry deposition fluxes of particulate inorganic nitrogen differed over the Yellow Sea from those over the East China Sea. Nitrate and ammonium in the whole northern China rapidly decreased because of the intrusion of dust-loaded air on 19 March. The dust plume arrived in the Yellow Sea on 20 March, decreasing the particulate inorganic nitrogen in mass concentration accordingly. The minimum dry deposition fluxes of nitrate and ammonium in the Yellow Sea were about 3/5 and 1/6 of those before the dust arrival, respectively. In contrast, when the dust plume crossed over the Yangtze Delta area, it became abundant in nitrate and ammonium and increased the concentrations and dry deposition fluxes of particulate inorganic nitrogen over the East China Sea, where the maximum dry deposition fluxes of nitrate and ammonium increased approximately by 4.1 and 2.6 times of those prior to the dust arrival.展开更多
[Objective] The paper was to study the effects of nitrogen deposition on soil nutrients and soil dissolved organic carbon in forest-grassland landscape in Linzhi, Tibet, and to provide scientific basis and basic data ...[Objective] The paper was to study the effects of nitrogen deposition on soil nutrients and soil dissolved organic carbon in forest-grassland landscape in Linzhi, Tibet, and to provide scientific basis and basic data for understanding and assessing the effect of atmospheric nitrogen deposition on soil nutrients and soil dissolved organic carbon. [Method] From July 2014 to August 2015, in situ nitrogen deposition (CK0 kg· hm^2/a, LN25 kg·hm^2/a, MN 50 kg·hm^2/a, HN 150 kg· hm^2/a) was simulated in the forestgrassland boundary of Zhuqudeng village, Bujiu Township, LinzhiCounty, Tibet. The soil samples were collected for analyzing nutrient and dissolved contents in the soil layer of 0-20 and 20-40 cm. The effects ofdifferent nitrogen deposition levels on soil nutrients and dissolved organic carbon (DOC) were studied. [Result] Nitrogen deposition had significantimpacts on soil organic matter, total N, total P, total K, available N, available P, available K, exchangeable Ca, exchangeable Mg, pH, and DOC(P〈0.05). (2) With the deepening of nitrogen deposition from CK, LN, MN to HN in the 0-20 cm boundary soil, the contents of organic matter, total N,total P, available P, exchangeable Ca, exchangeable Mg and DOC kept decreasing, and the content of total K and available N increased continuously. The pH increased in LN treatment and decreased in HN treatment, while the available K content was decreased in LN and HN treatment, butincreased in MN treatment. (3) The contents of organic matter, total N, total P, available N, available P, exchangeable Ca, exchangeable Mg andDOC all decreased at the soil layer of 20-40 cm under the same nitrogen deposition. The pH increased in LN treatment, but decreased in HN treatment; the content of total K decreased in LN treatment and increased in MN and HN treatments; the content of available K decreased in LN andHN treatments, but increased in MN treatment. (4) With the deepening of boundary soil layer (0-20 to 20-40 cm), the organic matter, total N, totalP, available P, available K, exchangeable Ca, exchangeable Mg, DOC showed the same response to simulated nitrogen deposition, while the available N and total K responded differently. [Conclusion] Different levels of N deposition had certain impact on soil nutrient, and the variation of soilnutrients was not the same at different levels.展开更多
Nitrogen deposition was simulated from July 2014 to August 2015 in the grassland, woodland, and woodland-grassland border in Zhuqudeng Village, Bujiu Township, Linzhi County,(CK, 0 kg·hm^2·a^(-1); LN, 25 kg&...Nitrogen deposition was simulated from July 2014 to August 2015 in the grassland, woodland, and woodland-grassland border in Zhuqudeng Village, Bujiu Township, Linzhi County,(CK, 0 kg·hm^2·a^(-1); LN, 25 kg·hm^2·a^(-1), MN, 50 kg·hm^2·a^(-1); HN, 150 kg·hm^2·a^(-1)). NH_4NO_3 was used as nitrogen source to analyze the number of microorganisms in soil layers of 0–20 cm and 20–40 cm and explore the effect of different degrees of nitrogen deposition on soil microorganisms in grassland, woodland, and woodlandgrassland border. The results showed that: the number of bacteria in the grassland increased significantly under the treatment of LN, and the number of bacteria in the woodland-grassland border and woodland had a rising response under the influence of nitrogen deposition; the number of actinomycetes in the grassland increased in MN and HN treatment, and significantly increased in the border and woodland under LN treatment; the number of molds decreased sharply in the grassland, woodland, and woodland-grassland border.展开更多
Nitrogen(N)deposition is a significant aspect of global change and poses a threat to terrestrial biodiversity.The impact of plant-soil microbe relationships to N deposition has recently attracted considerable attentio...Nitrogen(N)deposition is a significant aspect of global change and poses a threat to terrestrial biodiversity.The impact of plant-soil microbe relationships to N deposition has recently attracted considerable attention.Soil microorganisms have been proven to provide nutrients for specific plant growth,especially in nutrient-poor desert steppe ecosystems.However,the effects of N deposition on plant-soil microbial community interactions in such ecosystems remain poorly understood.To investigate these effects,we conducted a 6-year N-addition field experiment in a Stipa breviflora Griseb.desert steppe in Inner Mongolia Autonomous Region,China.Four N treatment levels(N0,N30,N50,and N100,corresponding to 0,30,50,and 100 kg N/(hm2•a),respectively)were applied to simulate atmospheric N deposition.The results showed that N deposition did not significantly affect the aboveground biomass of desert steppe plants.N deposition did not significantly reduce the alfa-diversity of plant and microbial communities in the desert steppe,and low and mediate N additions(N30 and N50)had a promoting effect on them.The variation pattern of plant Shannon index was consistent with that of the soil bacterial Chao1 index.N deposition significantly affected the beta-diversity of plants and soil bacteria,but did not significantly affect fungal communities.In conclusion,N deposition led to co-evolution between desert steppe plants and soil bacterial communities,while fungal communities exhibited strong stability and did not undergo significant changes.These findings help clarify atmospheric N deposition effects on the ecological health and function of the desert steppe.展开更多
基金funded by the National Key Research and Development Program of China (2023YFC3206803)the National Natural Science Foundation of China (42271493)
文摘Atmospheric deposition of nitrogen(N)plays a significant role in shaping the structure and functioning of various terrestrial ecosystems worldwide.However,the magnitude of N deposition on grassland ecosystems in Central Asia still remains highly uncertain.In this study,a multi-data approach was adopted to analyze the distribution and amplitude of N deposition effects in Central Asia from 1979 to 2014 using a process-based denitrification decomposition(DNDC)model.Results showed that total vegetation carbon(C)in Central Asia was 0.35(±0.09)Pg C/a and the averaged water stress index(WSI)was 0.20(±0.02)for the whole area.Increasing N deposition led to an increase in the vegetation C of 65.56(±83.03)Tg C and slightly decreased water stress in Central Asia.Findings of this study will expand both our understanding and predictive capacity of C characteristics under future increases in N deposition,and also serve as a valuable reference for decision-making regarding water resources management and climate change mitigation in arid and semi-arid areas globally.
基金supported by the National Science Foundation of China(No.31770672 and 3137062)the National Basic Research Program of China(No.2010CB950602)。
文摘Atmospheric nitrogen(N)deposition is predicted to increase,especially in the subtropics.However,the responses of soil microorganisms to long-term N addition at the molecular level in N-rich subtropical forests have not been clarified.A long-term nutrient addition experiment was conducted in a subtropical evergreen old-growth forest in China.The four treatments were:control,low N(50 kg N ha^(-1)a^(-1)),high N(100 kg N ha^(-1)a^(-1)),and combined N and phosphorus(P)(100 kg N ha^(-1)a^(-1)+50 kg P ha^(-1)a^(-1)).Metagenomic sequencing characterized diversity and composition of soil microbial communities and used to construct bacterial/fungal co-occurrence networks.Nutrient-treated soils were more acidic and had higher levels of dissolved organic carbon than controls.There were no significant differences in microbial diversity and community composition across treatments.The addition of nutrients increased the abundance of copiotrophic bacteria and potentially beneficial microorganisms(e.g.,Gemmatimonadetes,Chaetomium,and Aureobasidium).Low N addition increased microbiome network connectivity.Three rare fungi were identified as module hubs under nutrient addition,indicating that low abundance fungi were more sensitive to increased nutrients.The results indicate that the overall composition of microbial communities was stable but not static to long-term N addition.Our findings provide new insights that can aid predictions of the response of soil microbial communities to long-term N addition.
基金funded by the National Natural Science Foundation of China(32001149,U20A2006,31971507)Applied Basic Research Project of Qinghai Province(2022-ZJ-716)+3 种基金Youth Innovation Promotion Association CAS(2022436)Joint Grant from Chinese Academy of Sciences-People’s Government of Qinghai Province on Sanjiangyuan National Park(LHZX-2020-07)Chinese Academy of Science(CAS)"Light of West China"Program(2018)"The effect of grazing on grassland productivity in the basin of Qinghai Lake"。
文摘Grazing exclusion is one of the primary management practices used to restore degraded grasslands on the Tibetan Plateau.However,to date,the effects of long-term grazing exclusion measures on the process of restoring degraded alpine meadows have not been evaluated.In this study,moderately degraded plots,in which the vegetation coverage was approximately 65%and the dominant plant species was Potentilla anserina L,with grazing exclusion for 2 to 23 years,were selected in alpine meadows of Haibei in Qinghai-Tibet Plateau.Plant coverage,plant height,biomass,soil bulk density,saturated water content,soil organic carbon(SOC)and total nitrogen(TN)were evaluated.The results were as follows:(1)With aboveground biomass and total saturated water content at 0-40 cm depth,the average SOC and TN contents in moderately degraded alpine meadows increased as a power function,and the plant height increased as a log function.(2)The average soil bulk density at 0-40 cm depth first decreased and then increased with increasing grazing exclusion duration,and the minimum value of 0.90 g·cm^(-3) was reached at 15.23 years.The plant coverage,total belowground biomass at 0-40 cm depth,total aboveground and belowground biomass first increased and then decreased,their maximum values(80.49%,2452.92g·m^(-2),2891.06 g·m^(-2))were reached at 9.41,9.46 and 10.25 years,respectively.Long-term grazing exclusion is apparently harmful for the sustainable restoration of degraded alpine meadows.The optimal duration of grazing exclusion for the restoration of moderately degraded alpine meadows was 10 years.This research suggests that moderate disturbance should be allowed in moderately degraded alpine meadows after 10years of grazing exclusion.
基金funded by the One-hundred Talents Program of CAS,the Special Fund for Agricultural Profession (200803030)the Sino-German project (DFG Training Group,GK1070)
文摘As an example of atmospheric nitrogen(N) deposition,the paper summarizes the definition,form and amount of nutrient from the environment(NFE) and the relationship between NFE and anthro-pogenic reactive N emission.Based on our own study and published articles,we find that N wet and dry deposition has been an important nutrient resource in agricultural and natural ecosystems in China.The total amount of N deposition and other environment-derived N in China was up to 18 Tg N/a,equal to ap-proximately 60% of the national N fertilizer consumption.Nitrogen deposition is expected to contribute substantially to nutrient cycling and net primary productivity in various ecosystems.Therefore,it is crucial to utilize this environment-derived nutrient resource by integrated nutrient resource management in order to realize the sustainable development of both agricultural and non-agricultural ecosystems.
基金supported by the National Natural Science Foundation of China (30970556, 31170386)Research Foundation for Advanced Talents, Jiangsu University (12JDG086)
文摘The continuing increase in human activities is causing global changes such as increased deposition of atmospheric nitrogen. There is considerable interest in understanding the effects of increasing atmospheric nitrogen deposition on soil enzyme activities, specifically in terms of global nitrogen cycling and its potential future contribution to global climate change. This paper summarizes the ecological effects of atmospheric nitrogen deposition on soil enzyme activities, including size-effects, stage-effects, site-effects, and the effects of different levels and forms of atmospheric nitrogen deposition. We discuss needs for further research on the relationship between atmospheric nitrogen deposition and soil enzymes.
基金National Natural Science Foundation of China(41171241)the National Basic Research Program of China(2011CB403204)
文摘Climate warming and nitrogen (N) deposition change ecosystem processes, structure, and functioning whereas the phosphorus (P) composition and availability directly influence the ecosystem structure under condi- tions of N deposition. In our study, four treatments were designed, including a control, diurnal warming (DW), N deposition (ND), and combined warming and N deposition (WN). The effects of DW, ND, and WN on P composition were studied by 3~p nuclear magnetic resonance (3~p NMR) spectroscopy in a temperate grassland region of China. The results showed that the N deposition decreased the soil pH and total N (TN) concentration but increased the soil OIsen-P concentration. The solution-state 31p NMR analysis showed that the DW, ND and WN treatments slightly decreased the proportion of orthophosphate and increased that of the monoesters. An absence of myo-inositol phosphate in the DW, ND and WN treatments was observed compared with the control. Furthermore, the DW, ND and WN treatments significantly decreased the recovery of soil P in the NaOH-EDTA solution by 17%-20%. The principal component analysis found that the soil pH was positively correlated with the P recovery in the NaOH-EDTA solution. Therefore, the decreased soil P recovery in the DW and ND treatments might be caused by an indirect influence on the soil pH. Additionally, the soil moisture content was the key factor limiting the available P. The positive correlation of total carbon (TC) and TN with the soil P composition indicated the influence of climate warming and N deposition on the biological processes in the soil P cycling.
基金Project supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No. ISSASIP0205)the National Key Basic Research Support Foundation of China (No. 1999011805)+3 种基金the State Key Laboratory of Soil and Sustainable Agriculture, Chinathe Scientific Research Foundation for Returned Overseas Chinese Scholarsthe State Education Ministry of Chinaand the National Natural Science foundation of China (No. 40305019)
文摘A one-year study in a typical red soil region of southern China was conducted to determine atmospheric nitrogen (N) fluxes of typical N compounds (NH3, NH4-N, NO3-N, and NO2) and contribution of three sources (gas, rainwater, and particles) to N deposition. From July 2003 to June 2004, the total atmospheric N deposition was 70.7 kg N ha-1, with dry deposition accounting for 75% of the total deposition. Dry NH3 deposition accounted for 73% of the dry deposition and 55% of the total deposition. Moreover, NO2 contributed 11% of the dry deposition and 8% of the total deposition. Reduced N compounds (NH4+ and NH3) were the predominate contributors, accounting for 66% of the total deposition. Therefore, atmospheric N deposition should be considered when soil acidification and critical loads of atmospheric deposition on soils are estimated.
基金Under the auspices of Major State Basic Research Development Program of China(No.2010CB833504)Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA05050601)
文摘A continuous three-year observation(from May 2008 to April 2011)was conducted to characterize the spatial variation of dissolved inorganic nitrogen(DIN)deposition at eight main forest ecosystems along the north-south transect of eastern China(NSTEC).The results show that both throughfall DIN deposition and bulk DIN deposition increase from north to south along the NSTEC.Throughfall DIN deposition varies greatly from 2.7 kg N/(ha·yr)to 33.0 kg N/(ha·yr),with an average of 10.6 kg N/(ha·yr),and bulk DIN deposition ranges from 4.1 kg N/(ha·yr)to 25.4 kg N/(ha·yr),with an average of 9.8 kg N/(ha·yr).NH4+-N is the dominant form of DIN deposition at most sampling sites.Additionally,the spatial variation of DIN deposition is controlled mainly by precipitation.Moreover,in the northern part of the NSTEC,bulk DIN deposition is 17%higher than throughfall DIN deposition,whereas the trend is opposite in the southern part of the NSTEC.The results demonstrate that DIN deposition would likely threaten the forest ecosystems along the NSTEC,compared with the critical loads(CL)of N deposition,and DIN deposition in this region is mostly controlled by agricultural activities rather than industrial activities or transportation.
基金This study was supported by the Major State Research Development Program of China[grant number 2017YFC-0210103]and the National Natural Science Foundation of China[grant numbers 41405144,41425007,and 41807449].Dianming WU was sponsored by the Shanghai Pujiang Program[grant number 18PJ1403500]and‘the Fundamental Research Funds for the Central Universities’.
文摘Excess nitrogen deposition has significant impacts on water eutrophication,soil acidification,eleveted greenhouse gas emissions,and biodiversity loss.These impacts mostly derive from conventional manipulative experiments in the field by adding nitrogen solution directly onto grassland or forest floors.For forest ecosystems,previous field experiments have usually ignored the nitrogen cycles in the canopy,which are important in responses to airborne nitrogen input.Although whole-forest canopy nitrogen fertilization has recently been conducted to promote our understanding of nitrogen deposition processes,spraying nitrogen solution onto plants still largely ignores the dry deposition of ammonia(as well as other gaseous reactive nitrogen species).To date,there have been a limited number of field studies that have investigated the bi-directional exchange of ammonia between the atmosphere and plants,not to mention the impacts of ammonia on natural ecosystems.Due to the increasing trend of atmospheric ammonia concentrations worldwide and its dominant role in nitrogen deposition and haze pollution,the next generation of experiments should mimick nitrogen deposition on natural ecosystems by further considering the dry deposition of ammonia.
基金Special Fund of National Seismological Bureau,China(No.201208005)National Natural Science Foundation of China(No.41171072,41101523)
文摘In recent years, herbaceous species such as Deyeuxia angustifolia (Kom.) Y. L. Chang has invaded alpine tundra regions of the western slope of the Changbai Mountains. Because atmospheric nitrogen deposition is predicted to increase under a warming climate and D. angustifolia is sensitive to nitrogen addition, field experiments were conducted from 2010 to 2013 to determine the effect of increased nitrogen deposition on the mechanisms of D. angustifolia invasion. The goal of this study is to evaluate the impact of increased nitrogen deposition on the changes in alpine tundra vegetation (consisting mostly of Rhododendron chrysanthum Pall. and Vaccinium uliginosum Linn.). The results showed that: 1) simulated nitrogen deposition affected overall characteristics and structure of R. chrysanthum and E uliginosum communities and had a positive impact on the growth of tundra vegetation invaded by 1). angustifolia; 2) R. chrysanthum was more resistant to invasion by D. angustifolia than V.. uliginosum; 3) simulated nitrogen deposition could improve the growth and enhance the competitiveness of D. angustifolia, which was gradually replacing R. chrysanthum and V. uliginosum and might become the dominant species in the system in future, transforming alpine tundra into alpine meadow in the Chanebai Mountains.
文摘The Soil and Water Assessment Tool (SWAT) nitrogen (N) water quality model considers the artificial inputs associated with human activities, including point and nonpoint source pollution loads. Although SWAT has the ability to simulate atmospheric N deposition and fixation, they were not considered in the modeling research. N deposition from the air is an important and considerable pathway for the input of N species into watersheds and water bodies, causing soil and water body acidification and the leaching of N into surface and groundwater, resulting in eutrophication and degraded water quality. The goal of this study is to assess the effects of atmospheric and agricultural N loads on stream water quality at the watershed scale. For a 6642 km2 Chungju dam watershed, SWAT was calibrated for 4 years (2003-2006) and validated for another 4 years (2007-2010) using daily anthropogenic N data (sewage discharge pollutants and fertilizer) and monthly measured atmospheric deposition data for NO3ˉ, NH4+, and dissolved organic N (DON). At the watershed outlet, the Nash-Sutcliffe (1970) efficiency (NSE) of daily streamflow during the validation period was 0.74. The coefficient of determination (R2) of total N was 0.69 considering atmospheric deposition, whereas it was 0.33 when removing the deposition effect. The results of this study demonstrate the potential for using the N dynamics between the atmosphere and land for SWAT assessments of nonpoint source pollution and for modeling stream water quality.
基金This study was funded by the National Natural Science Foundation of China[grant numbers 41571324,41673108,41701329,and 41771380]the National Program on Key Basic Research Project(973 Program)[grant number 2014CB953800]+2 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China[grant number 16KJD170001]the Natural Science Foundation of Hainan Province,China[grant number 317190]the CAGS Research Fund[grant numbers YYWF201637,201724].
文摘Simple and inexpensive estimation of the rates and sources of atmospheric nitrogen(N)deposition is critical for its effective mitigation in a region with different land-use types.In this study,the N content and N isotopic composition(δ15N)of moss(Haplocladium microphyllum)tissues and precipitation at six sites with three land-use types(urban,suburban,and rural)were measured in the Yangtze River Delta.A significant linear relationship between moss N content and wet N deposition,and a consistent decrease trend for moss N content and wet N deposition from urban to suburban to rural areas were observed.More negativeδ15N of suburban and rural mosses indicated N mainly released from agriculture and effluent,while the less negativeδ15N of urban mosses were mainly influenced by fossil fuel combustion and traffic emissions.Although the negative mossδ15N indicates that reduced N dominates wet N deposition,there was no significant correlation between mossδ15N and the ratio of ammonium to nitrate(NH4+/NO3−).These results reveal that the moss N content andδ15N can be used as a complementary tool for estimating the rates and sources of wet N deposition in a region with different land-use types.
基金financially supported by the National Key R&D Program of China (2017YFC0210101, 2014CB954202)the National Natural Science Foundation of China (41425007)
文摘Due to increasing global demand for crop production and energy use, more and more reactive nitrogen(Nr) has been generated and emitted to the environment. As a result, global atmospheric nitrogen(N) deposition has tripled since the industrial revolution and the ecological environment and human health have been harmed. In this study, we measured dry and wet/bulk N deposition from July 2013 to December 2015 in a semi-arid grassland of Duolun County, Inner Mongolia, China. The samples of dry and wet/bulk N deposition were collected monthly with a DELTA(DEnuder for Long Term Atmospheric sampling) system and with Gradko passive samplers and a precipitation gauge. The measured results show that the annual mean concentrations of NH_3, NO_2, HNO_3, particulate NH_4~+(pNH_4~+) and particulate NO_3^-(pNO_3^-) in atmosphere were 2.33, 1.90, 0.18, 1.42 and 0.42 μg N/m3, respectively, and that the annual mean volume-weighted concentrations of NH_4~+-N and NO_3^--N in precipitation were 2.71 and 1.99 mg N/L, respectively. The concentrations of Nr components(including NH_3, NO_2, HNO_3, p NH_4~+, pNO_3^-, NH_4~+-N and NO_3^--N) exhibited different seasonal variations. Specifically, NO_2 and HNO_3 exhibited higher concentrations in autumn than in summer, while the other Nr components(NH_3, pNH_4~+, pNO_3^-, NH_4~+-N and NO_3^--N) showed the highest values in summer. Based on measured concentrations of Nr components and their deposition velocities estimated using the GEOS-Chem global atmospheric chemical transport model, the calculated annual mean dry deposition fluxes were 3.17, 1.13, 0.63, 0.91 and 0.36 kg N/(hm^2·a) for NH_3, NO_2, HNO_3, p NH_4~+ and pNO_3^-, respectively, and the calculated annual mean wet/bulk deposition fluxes were 5.37 and 3.15 kg N/(hm^2·a) for NH_4~+-N and NO_3^--N, respectively. The estimated annual N deposition(including dry N deposition and wet/bulk N deposition) reached 14.7 kg N/(hm^2·a) in grassland of Duolun County, approaching to the upper limit of the N critical load(10–15 kg N/(hm^2·a)). Dry and wet/bulk deposition fluxes of all Nr components(with an exception of HNO_3) showed similar seasonal variations with the maximum deposition flux in summer and the minimum in winter. Reduced Nr components(e.g., gaseous NH_3 and p NH_4~+ in atmosphere and NH_4~+-N in precipitation) dominated the total N deposition at the sampling site(accounted for 64% of the total N deposition), suggesting that the deposited atmospheric Nr mainly originated from agricultural activities. Considering the projected future increases in crop and livestock production in Inner Mongolia, the ecological and human risks to the negative effects of increased N deposition could be increased if no mitigation measures are taken.
文摘The hypothesis that the product of discharge and concentration of nitrogen (N) in river water is equal to the atmospheric deposition was verified in the mountainous basin of the Tedori River in Japan. To verify this relationship, long-term data?are required to eliminate the effect of short-term variation of the N components. The basin has very high mountains, including Mount Hakusan (2702 maltitude), which is covered with deep snow in winter. Therefore, limited data were used for the estimation of the deposition of the entire basin by assuming a linear relationship of altitude. As a result, it was found that the estimated N concentration coincided well with observed concentrations at six sites—the Shiramine and Kuwajima (upper stream), Nakajima (lower stream) and Dainichi dam, Tedori dam and Senami sites (middle stream). The seasonal variation of N concentrations was low in the snowmelt period and high in autumn through to winter. This was not due to the larger discharge in snowmelt season as it was also found that N deposition was high in winter and low in spring, which indicated a clear relationship between N concentration and monthly atmospheric deposition including N storage in snow pack.
基金financially supported by The Program for New Century Excellent Talents in University (NCET)the National Natural Science Foundation of China (NSFC) under Grant No.50772041
文摘In this paper,we report the effect of nitrogen on the deposition and properties of boron doped diamond films synthesized by hot filament chemical vapor deposition.The diamond films consisting of micro-grains(nano-grains) were realized with low(high) boron source flow rate during the growth processes.The transition of micro-grains to nano-grains is speculated to be strongly(weekly) related with the boron(nitrogen) flow rate.The grain size and Raman spectral feature vary insignificantly as a function of the nitrogen introduction at a certain boron flow rate.The variation of electron field emission characteristics dependent on nitrogen is different between microcrystalline and nanocrystalline boron doped diamond samples,which are related to the combined phase composition,boron doping level and texture structure.There is an optimum nitrogen proportion to improve the field emission properties of the boron-doped films.
基金supported by the National Basic Research Program of China[grant number 2014CB953802]the "Strategic Priority Research Program(B)" of the Chinese Academy of Sciences[grant numbers XDB05030105,XDB05030102,and XDB05030103]
文摘The regional air quality modeling system Regional Atmospheric Modeling System–Community Multiscale Air Quality was applied to estimate the spatial distribution and seasonal variation in nitrogen wet deposition over East Asia in 2010. The simulated results were evaluated by comparing modeled precipitation rates and ion concentrations, such as ammonium(NH_4~+), nitrate(NO_3^-), and sulfate, in rainwater, against observations obtained from Acid Deposition Monitoring Network in East Asia and meteorological stations in China. Comparison of simulated and observed precipitation showed that the modeling system can reproduce seasonal precipitation patterns reasonably well. For major ion species, the simulated results in most cases were in good agreement with those observed. Analysis of the modeled wet deposition distributions indicated that China experiences noticeable variation in wet deposition patterns throughout the year. Nitrogen wet deposition(NH_4~+ + NO_3^-) during summer and spring accounted for 71% of the annual total(3.9 Tg N yr^(-1)), including 42.7% in summer. Precipitation plays a larger role in the seasonal variation of wet deposition; whereas, aerosol concentrations affect its distribution patterns. In China, the amount of annual nitrogen wet deposition ranged from 1 to 18 kg N ha^(-1). Nitrogen in wet deposition was mainly in the form of NH_4~+, accounting for 65.76% of the total amount, and the molar ratio of NH_4~+∕NO_3^- was mostly more than 1, indicating a relatively larger effect from agricultural activities.
基金supported by the National Science Foundation of China (No.40976063)International Cooperative Projects of MOST (No.2010DFA91350)
文摘A WRF-Chem model including a comprehensive gas-phase nitrogen chemistry module was used to simulate a severe dust event appearing in the eastern China on 19-25 March, 2002. The modeling result well reproduced PM10 concentrations in various distances from the dust sources and the transport pathway of the dust strom. The results showed that both the concentrations and the dry deposition fluxes of PM10 increased over the China seas during the dust event following the passage of a cold front system. The maximum fluxes of PM10 in the Yellow Sea and the East China Sea during the dust event were 5.5 and 8.4 times of those before the event, respectively. However, the temporal variations of the dry deposition fluxes of particulate inorganic nitrogen differed over the Yellow Sea from those over the East China Sea. Nitrate and ammonium in the whole northern China rapidly decreased because of the intrusion of dust-loaded air on 19 March. The dust plume arrived in the Yellow Sea on 20 March, decreasing the particulate inorganic nitrogen in mass concentration accordingly. The minimum dry deposition fluxes of nitrate and ammonium in the Yellow Sea were about 3/5 and 1/6 of those before the dust arrival, respectively. In contrast, when the dust plume crossed over the Yangtze Delta area, it became abundant in nitrate and ammonium and increased the concentrations and dry deposition fluxes of particulate inorganic nitrogen over the East China Sea, where the maximum dry deposition fluxes of nitrate and ammonium increased approximately by 4.1 and 2.6 times of those prior to the dust arrival.
基金Supported by National Natural Science Foundation of China(31360119,31460112)Innovative Experimental Project for College Students of Tibet Agriculture & Animal Husbandry University(2015)+1 种基金Pilot Project of Forest Education and Training Plan for Outstanding Talents in Agriculture and Forestry(2016)Key Laboratory of Tibet Plateau Forestry Ecological Engineering
文摘[Objective] The paper was to study the effects of nitrogen deposition on soil nutrients and soil dissolved organic carbon in forest-grassland landscape in Linzhi, Tibet, and to provide scientific basis and basic data for understanding and assessing the effect of atmospheric nitrogen deposition on soil nutrients and soil dissolved organic carbon. [Method] From July 2014 to August 2015, in situ nitrogen deposition (CK0 kg· hm^2/a, LN25 kg·hm^2/a, MN 50 kg·hm^2/a, HN 150 kg· hm^2/a) was simulated in the forestgrassland boundary of Zhuqudeng village, Bujiu Township, LinzhiCounty, Tibet. The soil samples were collected for analyzing nutrient and dissolved contents in the soil layer of 0-20 and 20-40 cm. The effects ofdifferent nitrogen deposition levels on soil nutrients and dissolved organic carbon (DOC) were studied. [Result] Nitrogen deposition had significantimpacts on soil organic matter, total N, total P, total K, available N, available P, available K, exchangeable Ca, exchangeable Mg, pH, and DOC(P〈0.05). (2) With the deepening of nitrogen deposition from CK, LN, MN to HN in the 0-20 cm boundary soil, the contents of organic matter, total N,total P, available P, exchangeable Ca, exchangeable Mg and DOC kept decreasing, and the content of total K and available N increased continuously. The pH increased in LN treatment and decreased in HN treatment, while the available K content was decreased in LN and HN treatment, butincreased in MN treatment. (3) The contents of organic matter, total N, total P, available N, available P, exchangeable Ca, exchangeable Mg andDOC all decreased at the soil layer of 20-40 cm under the same nitrogen deposition. The pH increased in LN treatment, but decreased in HN treatment; the content of total K decreased in LN treatment and increased in MN and HN treatments; the content of available K decreased in LN andHN treatments, but increased in MN treatment. (4) With the deepening of boundary soil layer (0-20 to 20-40 cm), the organic matter, total N, totalP, available P, available K, exchangeable Ca, exchangeable Mg, DOC showed the same response to simulated nitrogen deposition, while the available N and total K responded differently. [Conclusion] Different levels of N deposition had certain impact on soil nutrient, and the variation of soilnutrients was not the same at different levels.
基金Sponsored by National Natural Science Foundation of China(31360119,31460112)2015 Innovative Experimental Project for Students in Tibet Agriculture&Animal Husbandry University2015 Pilot Project of Excellent Agriculture and Forestry Talents Cultivation Program Reform
文摘Nitrogen deposition was simulated from July 2014 to August 2015 in the grassland, woodland, and woodland-grassland border in Zhuqudeng Village, Bujiu Township, Linzhi County,(CK, 0 kg·hm^2·a^(-1); LN, 25 kg·hm^2·a^(-1), MN, 50 kg·hm^2·a^(-1); HN, 150 kg·hm^2·a^(-1)). NH_4NO_3 was used as nitrogen source to analyze the number of microorganisms in soil layers of 0–20 cm and 20–40 cm and explore the effect of different degrees of nitrogen deposition on soil microorganisms in grassland, woodland, and woodlandgrassland border. The results showed that: the number of bacteria in the grassland increased significantly under the treatment of LN, and the number of bacteria in the woodland-grassland border and woodland had a rising response under the influence of nitrogen deposition; the number of actinomycetes in the grassland increased in MN and HN treatment, and significantly increased in the border and woodland under LN treatment; the number of molds decreased sharply in the grassland, woodland, and woodland-grassland border.
基金the National Natural Science Foundation of China(31860136,31560156)the Basic Scientific Research Service Fee Project of Colleges and Universities of Inner Mongolia Autonomous Regionthe Graduate Scientific Research Innovation Project of Inner Mongolia Autonomous Region(B20210158Z).
文摘Nitrogen(N)deposition is a significant aspect of global change and poses a threat to terrestrial biodiversity.The impact of plant-soil microbe relationships to N deposition has recently attracted considerable attention.Soil microorganisms have been proven to provide nutrients for specific plant growth,especially in nutrient-poor desert steppe ecosystems.However,the effects of N deposition on plant-soil microbial community interactions in such ecosystems remain poorly understood.To investigate these effects,we conducted a 6-year N-addition field experiment in a Stipa breviflora Griseb.desert steppe in Inner Mongolia Autonomous Region,China.Four N treatment levels(N0,N30,N50,and N100,corresponding to 0,30,50,and 100 kg N/(hm2•a),respectively)were applied to simulate atmospheric N deposition.The results showed that N deposition did not significantly affect the aboveground biomass of desert steppe plants.N deposition did not significantly reduce the alfa-diversity of plant and microbial communities in the desert steppe,and low and mediate N additions(N30 and N50)had a promoting effect on them.The variation pattern of plant Shannon index was consistent with that of the soil bacterial Chao1 index.N deposition significantly affected the beta-diversity of plants and soil bacteria,but did not significantly affect fungal communities.In conclusion,N deposition led to co-evolution between desert steppe plants and soil bacterial communities,while fungal communities exhibited strong stability and did not undergo significant changes.These findings help clarify atmospheric N deposition effects on the ecological health and function of the desert steppe.