The thermal equilibrium state of the reference electrode was investigated. The results show that the temperature difference between the inside and the outside of zirconia tube was very small and the Seebeck effect can...The thermal equilibrium state of the reference electrode was investigated. The results show that the temperature difference between the inside and the outside of zirconia tube was very small and the Seebeck effect can be ignored after the sensor was dipped into liquid steel for more than 2 s. A special sensor was designed to test the relation between the EMF (electromotive force) of sensor and the thermal equilibrium state of the reference elec- trode. Based on these results, it is suggested that the peak in EMF curve was caused by the change of oxygen potential in reference electrode before the thermal equilibrium was reached. If NiO was added by 2 M- 5 M to the Cr/Cr2O3 reference electrode, the peak in EMF curve could be eliminated.展开更多
Reference electrodes are a key part for corrosion monitoring and measurement of rebars in concrete. A reference electrode that can be buried in concrete is fabricated by using Ag/Ag Cl electrode and methyl cellulose g...Reference electrodes are a key part for corrosion monitoring and measurement of rebars in concrete. A reference electrode that can be buried in concrete is fabricated by using Ag/Ag Cl electrode and methyl cellulose gelling electrolyte. The stability, repeatability and anti-polarization of the reference electrode are investigated; the influences of the inner electrolyte loss, exterior OH- contamination, and temperature on the potential of the reference electrode are also investigated in this paper. The results show that the reference electrode has good stability, repeatability, and antipolarization. The influences of inner electrolyte loss, exterior OH- contamination, and temperature on the potential of the reference electrode are minimal. Therefore, it can be used for corrosion monitoring and measurement of rebars in concrete.展开更多
The safety monitoring of lithium-ion batteries(LIBs) is of great significance for realizing all-climate and full-lifespan battery management. In-situ measurement of anode potential with implanted reference electrodes(...The safety monitoring of lithium-ion batteries(LIBs) is of great significance for realizing all-climate and full-lifespan battery management. In-situ measurement of anode potential with implanted reference electrodes(REs) has proven to be effective to monitor and avoid the occurrence of severe side reactions like Li plating to ensure the safe and fast charging. However, the intrinsic measurement errors caused by local blocking effects, which also can be referred to as potential artefacts, are seldom taken into consideration in existing studies, yet they highly dominate the correctness of conclusions inferred from REs. In this study, aiming at exploring the physical origin of the measurement errors and ensure reliable potential monitoring, electrochemical and post-mortem tests are conducted using commercial pouch cells with implanted REs. Corresponding electrochemical model which describes the blocking effects, is established to validate the abnormal absence of lithium plating that predicted by measured anode potentials under various charging rates. Theoretical derivation is further presented to explain the error sources, which can be attributed to increased local liquid potential of the RE position. Most importantly, with the guidance of error analysis, a novel parameter-independent error correction method for RE measurements is proposed for the first time, which is proven to be adequate to estimate the real anode potentials and deduce the critical C-rate of Li plating with extra safety margin. After error correction, the resulting critical C-rates are all within the range of 0.55 ± 0.03 C, which is close to the C-rate of 0.6–0.7 C obtained from experiments. In addition, this error correction method can be performed conveniently with only some simple RE measurements of polarization voltages, totally independent of battery electrochemical and geometric parameters. This study provides highly practical error correction method for RE measurements in real LIBs, substantially facilitating the fast diagnosis and safety evaluation of Li plating during charging of LIBs.展开更多
A Ag|AgCl reference electrode which can be used in molten carbonate media has been described in this paper.It consists of a silver wire immersed in a solution of AgCl(1mol%) in (Li 0.62 ,K 0.38 ) 2CO 3,with ...A Ag|AgCl reference electrode which can be used in molten carbonate media has been described in this paper.It consists of a silver wire immersed in a solution of AgCl(1mol%) in (Li 0.62 ,K 0.38 ) 2CO 3,with a zirconia junction.The main properties of reference electrode,such as reproducibility ,stability and reversibility, were checked.The results have demonstrated that the reference electrode is reliable.With such reference electrode catalysis of various electrode materials to oxygen reduction in molten alkali carbonate media was investigated.It is found that as catalysts for oxygen reduction oxidized nickel niobium alloy is superior to nickel oxide.展开更多
The polypyrrole is the high conductive polymer which was coated onto indium tin oxide (ITO) glass substrate by electroplated technique to fabricate a miniaturized reference electrode.Besides,the morphology of the ITO...The polypyrrole is the high conductive polymer which was coated onto indium tin oxide (ITO) glass substrate by electroplated technique to fabricate a miniaturized reference electrode.Besides,the morphology of the ITO glass reference electrode electroplated with pyrrole has been studied through the instrumental analysis utilizing cyclic voltammetry (CV). Furthermore,the sensing characteristics of the reference electrode have been measured by using commercial instrumental amplifier as the readout circuit.Using the high conductive polymer as miniaturized reference electrode has many advantages such as easy fabrication of coating polymer,without any expensive fabricating equipment,easy carry by the miniaturized technique.Hence,it is suitable for the reference electrode production.展开更多
A novel Ti/MnO2 reference electrode (TMRE) used for concrete environment was fabricated by the electro-deposition method and encapsulated carefully.The properties of the electrode were characterized by open-circuit po...A novel Ti/MnO2 reference electrode (TMRE) used for concrete environment was fabricated by the electro-deposition method and encapsulated carefully.The properties of the electrode were characterized by open-circuit potential,potentiodynamic polarization behavior in synthetic concrete pore solutions and electrochemical performance in cement mortar.The experimental results indicate that the TMRE shows good stability with and without the addition of Cl-ions and desirable polarization behavior in synthetic pore solution.Results of tests in cement mortar indicate that the potential of TMRE will be stable after about 7 days.The stability and desirable polarization behavior make it a promising reference electrode for concrete environment.展开更多
The thermodynamic and dynamic behaviour of Ni^(2+)|Ni couple in FLINAK melt is investigated by us- ing EMF measurement and micropolarization method.The couple shows the Nernstian reversibility and a large exchange cur...The thermodynamic and dynamic behaviour of Ni^(2+)|Ni couple in FLINAK melt is investigated by us- ing EMF measurement and micropolarization method.The couple shows the Nernstian reversibility and a large exchange current density(6 mA·cm^(-2)).A single crystal LaF_3 which is a fluoride ion conductor used as a membrane of the Ni^(2+)|Ni couple reference electrode is reliable in FLINAK melts at 973 K.The poten- tial of LaF_3 membrane reference electrode is constant within±2 mV.The boron nitride used as a salt bridge was not good in FLINAK melts.The platinum electrode is studied by using micropolarization.The equilibrium potential of Pt electrode is dependent on the absorption and the electrochemical reaction.The potential is stable for a constant composition at constant temperature.展开更多
The preparation,principle and measurement results of the complex ISFET withAg-AgCl reference electrode are presented in this paper.Through experiment and theory weendeavor to show the feasibility of using the Ag-AgCl ...The preparation,principle and measurement results of the complex ISFET withAg-AgCl reference electrode are presented in this paper.Through experiment and theory weendeavor to show the feasibility of using the Ag-AgCl electrode which is without solution contactas reference electrode and the way of overcoming its instability;it gives a rational explanationfor phenomenon of the ion sensitive field effect transistor which does not conform to Nernstianresponse,when we measured cations of Na<sup>+</sup>, Ca<sup>++</sup>,etc.with the Ag-AgCl reference electrode.展开更多
Fabrication of stable,reproducible and reusable reference electrodes for low energy and high-temperature steam splitting is of great interest for hydrogen fuel production without anthropogenic carbon dioxide(CO2)emiss...Fabrication of stable,reproducible and reusable reference electrodes for low energy and high-temperature steam splitting is of great interest for hydrogen fuel production without anthropogenic carbon dioxide(CO2)emission.This study has been conducted for the detection of suitable material for the fabrication of novel reference electrode.In the present scenario,this research is designed to fabricate a novel nickel reference electrode by using operating conditions of eutectic molten hydroxide(NaOH-KOH,49-51 mol%)at temperature 300℃in an ion-conducting membrane of alumina and mullite tube.Afterwards,the designed nickel reference electrode has been examined for its reusability and stability by using electrochemical technique and cyclic voltammetry.Five scans of cyclic voltammetry are performed for both membrane fabricated reference electrode.A slight positive shift in oxidation peaks is observed for mullite membrane electrode(64 mV from scan 1 to 5).The stability measurements are noted by changing the scan rate between 50 and 150 mV s−1.Furthermore,the results show that the Ni/Ni(OH)2 reference electrode covered with a mullite membrane is stable and reusable at 300℃temperature without any deterioration.The stability and reusability of prepared nickel reference electrode covered by mullite tube in the eutectic molten hydroxide were up to 9 days to carry out an electrochemical investigation,while for alumina tube reference electrode the stability and reliability were up to 3 days.The internal electrolytic material and ionic conductance can play an important role for future studies with this reference electrode along with optimisation of temperature and scan rate parameters.展开更多
The most common reference electrode (RE) which is used in electrochemical measurements is the Ag/AgCl electrode. In this study, we present a novel solid-state Ag/AgCl planar electrode that was coated with a thin layer...The most common reference electrode (RE) which is used in electrochemical measurements is the Ag/AgCl electrode. In this study, we present a novel solid-state Ag/AgCl planar electrode that was coated with a thin layer of Graphite Oxide (GO) as a protective layer. The Ag/AgCl planar electrode was fabricated by using the photolithography and lift-off method combined with the Ag[NH3]2Cl complex. The GO was produced by Hummer’s method and was deposited on top of the Ag/AgCl layer by drop-casting method. The layers of the fabricated reference electrode were characterized by micro Raman spectroscopy, Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDX). The responding time of the planar electrode was short and the signal was more stable in comparison to the plainAg/AgCl electrode. The Open Circuit Potential (OCP) measurement with the fabricated electrode as the RE and the platinum electrode as the working electrode in electrolyte solutions which had various pH values was performed with a linear response in pH ranges from pH 5 to pH 8 and the linear correlation coefficient (R^2 = 0.9899). Moreover, the coating of the GO layers also enhanced the durability of the modified electrode. The results showed that the modified Ag/AgCl electrode with a thin layer GO as the protective layer could be used as plana REs for the potentiometric sensors.展开更多
Drift phenomenon has been known as the drawback of sensors and causes inaccuracy on the long-term measurement. In general,there are two methods to reduce the drift problem.One is to tune the parameters of the fabricat...Drift phenomenon has been known as the drawback of sensors and causes inaccuracy on the long-term measurement. In general,there are two methods to reduce the drift problem.One is to tune the parameters of the fabrication process to improve the properties of the front-ended device.Another is to compensate the drift phenomenon by adding extra drift compensation circuit or software in the back-ended readout circuit.In this study,a drift calibration method for the potentiometric sensor was presented and the drift calibration method was performed by using the circuit.According to experimental results,the drift phenomenon of the SnO_2 pH electrode was reduced by the drift calibration device.展开更多
The effects of Cl-concentration,temperature,pH,flow velocity,soluble oxygen content of seawater and anodic current on the potential of high purity zinc and Zn-Al-Cd reference electrodes were investigated. The results ...The effects of Cl-concentration,temperature,pH,flow velocity,soluble oxygen content of seawater and anodic current on the potential of high purity zinc and Zn-Al-Cd reference electrodes were investigated. The results show that the investigated metal materials are liable to establish stable potential and act as reference electrodes in seawater,diluted seawater and urban tap water. Cl-concentration,temperature,seawater flow velocity and anodic current have an obvious effect on zinc potentials. However,seawater pH has no obvious effect on zinc potentials.展开更多
文摘The thermal equilibrium state of the reference electrode was investigated. The results show that the temperature difference between the inside and the outside of zirconia tube was very small and the Seebeck effect can be ignored after the sensor was dipped into liquid steel for more than 2 s. A special sensor was designed to test the relation between the EMF (electromotive force) of sensor and the thermal equilibrium state of the reference elec- trode. Based on these results, it is suggested that the peak in EMF curve was caused by the change of oxygen potential in reference electrode before the thermal equilibrium was reached. If NiO was added by 2 M- 5 M to the Cr/Cr2O3 reference electrode, the peak in EMF curve could be eliminated.
基金financially supported by the National Science and Technology Support Program of China(Grant No.2011BAG07B04)
文摘Reference electrodes are a key part for corrosion monitoring and measurement of rebars in concrete. A reference electrode that can be buried in concrete is fabricated by using Ag/Ag Cl electrode and methyl cellulose gelling electrolyte. The stability, repeatability and anti-polarization of the reference electrode are investigated; the influences of the inner electrolyte loss, exterior OH- contamination, and temperature on the potential of the reference electrode are also investigated in this paper. The results show that the reference electrode has good stability, repeatability, and antipolarization. The influences of inner electrolyte loss, exterior OH- contamination, and temperature on the potential of the reference electrode are minimal. Therefore, it can be used for corrosion monitoring and measurement of rebars in concrete.
基金supported by the Ministry of Science and Technology of China(2019YFE0100200)funded by the National Natural Science Foundation of China(51807108,51877121,52037006)。
文摘The safety monitoring of lithium-ion batteries(LIBs) is of great significance for realizing all-climate and full-lifespan battery management. In-situ measurement of anode potential with implanted reference electrodes(REs) has proven to be effective to monitor and avoid the occurrence of severe side reactions like Li plating to ensure the safe and fast charging. However, the intrinsic measurement errors caused by local blocking effects, which also can be referred to as potential artefacts, are seldom taken into consideration in existing studies, yet they highly dominate the correctness of conclusions inferred from REs. In this study, aiming at exploring the physical origin of the measurement errors and ensure reliable potential monitoring, electrochemical and post-mortem tests are conducted using commercial pouch cells with implanted REs. Corresponding electrochemical model which describes the blocking effects, is established to validate the abnormal absence of lithium plating that predicted by measured anode potentials under various charging rates. Theoretical derivation is further presented to explain the error sources, which can be attributed to increased local liquid potential of the RE position. Most importantly, with the guidance of error analysis, a novel parameter-independent error correction method for RE measurements is proposed for the first time, which is proven to be adequate to estimate the real anode potentials and deduce the critical C-rate of Li plating with extra safety margin. After error correction, the resulting critical C-rates are all within the range of 0.55 ± 0.03 C, which is close to the C-rate of 0.6–0.7 C obtained from experiments. In addition, this error correction method can be performed conveniently with only some simple RE measurements of polarization voltages, totally independent of battery electrochemical and geometric parameters. This study provides highly practical error correction method for RE measurements in real LIBs, substantially facilitating the fast diagnosis and safety evaluation of Li plating during charging of LIBs.
文摘A Ag|AgCl reference electrode which can be used in molten carbonate media has been described in this paper.It consists of a silver wire immersed in a solution of AgCl(1mol%) in (Li 0.62 ,K 0.38 ) 2CO 3,with a zirconia junction.The main properties of reference electrode,such as reproducibility ,stability and reversibility, were checked.The results have demonstrated that the reference electrode is reliable.With such reference electrode catalysis of various electrode materials to oxygen reduction in molten alkali carbonate media was investigated.It is found that as catalysts for oxygen reduction oxidized nickel niobium alloy is superior to nickel oxide.
文摘The polypyrrole is the high conductive polymer which was coated onto indium tin oxide (ITO) glass substrate by electroplated technique to fabricate a miniaturized reference electrode.Besides,the morphology of the ITO glass reference electrode electroplated with pyrrole has been studied through the instrumental analysis utilizing cyclic voltammetry (CV). Furthermore,the sensing characteristics of the reference electrode have been measured by using commercial instrumental amplifier as the readout circuit.Using the high conductive polymer as miniaturized reference electrode has many advantages such as easy fabrication of coating polymer,without any expensive fabricating equipment,easy carry by the miniaturized technique.Hence,it is suitable for the reference electrode production.
文摘A novel Ti/MnO2 reference electrode (TMRE) used for concrete environment was fabricated by the electro-deposition method and encapsulated carefully.The properties of the electrode were characterized by open-circuit potential,potentiodynamic polarization behavior in synthetic concrete pore solutions and electrochemical performance in cement mortar.The experimental results indicate that the TMRE shows good stability with and without the addition of Cl-ions and desirable polarization behavior in synthetic pore solution.Results of tests in cement mortar indicate that the potential of TMRE will be stable after about 7 days.The stability and desirable polarization behavior make it a promising reference electrode for concrete environment.
文摘The thermodynamic and dynamic behaviour of Ni^(2+)|Ni couple in FLINAK melt is investigated by us- ing EMF measurement and micropolarization method.The couple shows the Nernstian reversibility and a large exchange current density(6 mA·cm^(-2)).A single crystal LaF_3 which is a fluoride ion conductor used as a membrane of the Ni^(2+)|Ni couple reference electrode is reliable in FLINAK melts at 973 K.The poten- tial of LaF_3 membrane reference electrode is constant within±2 mV.The boron nitride used as a salt bridge was not good in FLINAK melts.The platinum electrode is studied by using micropolarization.The equilibrium potential of Pt electrode is dependent on the absorption and the electrochemical reaction.The potential is stable for a constant composition at constant temperature.
文摘The preparation,principle and measurement results of the complex ISFET withAg-AgCl reference electrode are presented in this paper.Through experiment and theory weendeavor to show the feasibility of using the Ag-AgCl electrode which is without solution contactas reference electrode and the way of overcoming its instability;it gives a rational explanationfor phenomenon of the ion sensitive field effect transistor which does not conform to Nernstianresponse,when we measured cations of Na<sup>+</sup>, Ca<sup>++</sup>,etc.with the Ag-AgCl reference electrode.
文摘Fabrication of stable,reproducible and reusable reference electrodes for low energy and high-temperature steam splitting is of great interest for hydrogen fuel production without anthropogenic carbon dioxide(CO2)emission.This study has been conducted for the detection of suitable material for the fabrication of novel reference electrode.In the present scenario,this research is designed to fabricate a novel nickel reference electrode by using operating conditions of eutectic molten hydroxide(NaOH-KOH,49-51 mol%)at temperature 300℃in an ion-conducting membrane of alumina and mullite tube.Afterwards,the designed nickel reference electrode has been examined for its reusability and stability by using electrochemical technique and cyclic voltammetry.Five scans of cyclic voltammetry are performed for both membrane fabricated reference electrode.A slight positive shift in oxidation peaks is observed for mullite membrane electrode(64 mV from scan 1 to 5).The stability measurements are noted by changing the scan rate between 50 and 150 mV s−1.Furthermore,the results show that the Ni/Ni(OH)2 reference electrode covered with a mullite membrane is stable and reusable at 300℃temperature without any deterioration.The stability and reusability of prepared nickel reference electrode covered by mullite tube in the eutectic molten hydroxide were up to 9 days to carry out an electrochemical investigation,while for alumina tube reference electrode the stability and reliability were up to 3 days.The internal electrolytic material and ionic conductance can play an important role for future studies with this reference electrode along with optimisation of temperature and scan rate parameters.
文摘The most common reference electrode (RE) which is used in electrochemical measurements is the Ag/AgCl electrode. In this study, we present a novel solid-state Ag/AgCl planar electrode that was coated with a thin layer of Graphite Oxide (GO) as a protective layer. The Ag/AgCl planar electrode was fabricated by using the photolithography and lift-off method combined with the Ag[NH3]2Cl complex. The GO was produced by Hummer’s method and was deposited on top of the Ag/AgCl layer by drop-casting method. The layers of the fabricated reference electrode were characterized by micro Raman spectroscopy, Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDX). The responding time of the planar electrode was short and the signal was more stable in comparison to the plainAg/AgCl electrode. The Open Circuit Potential (OCP) measurement with the fabricated electrode as the RE and the platinum electrode as the working electrode in electrolyte solutions which had various pH values was performed with a linear response in pH ranges from pH 5 to pH 8 and the linear correlation coefficient (R^2 = 0.9899). Moreover, the coating of the GO layers also enhanced the durability of the modified electrode. The results showed that the modified Ag/AgCl electrode with a thin layer GO as the protective layer could be used as plana REs for the potentiometric sensors.
文摘Drift phenomenon has been known as the drawback of sensors and causes inaccuracy on the long-term measurement. In general,there are two methods to reduce the drift problem.One is to tune the parameters of the fabrication process to improve the properties of the front-ended device.Another is to compensate the drift phenomenon by adding extra drift compensation circuit or software in the back-ended readout circuit.In this study,a drift calibration method for the potentiometric sensor was presented and the drift calibration method was performed by using the circuit.According to experimental results,the drift phenomenon of the SnO_2 pH electrode was reduced by the drift calibration device.
文摘The effects of Cl-concentration,temperature,pH,flow velocity,soluble oxygen content of seawater and anodic current on the potential of high purity zinc and Zn-Al-Cd reference electrodes were investigated. The results show that the investigated metal materials are liable to establish stable potential and act as reference electrodes in seawater,diluted seawater and urban tap water. Cl-concentration,temperature,seawater flow velocity and anodic current have an obvious effect on zinc potentials. However,seawater pH has no obvious effect on zinc potentials.