Runoff and sediment yield from an Indian watershed during the monsoon period were forecasted for differ-ent time periods (daily and weekly) using the back propagation artificial neural network (BPANN) modeling techniq...Runoff and sediment yield from an Indian watershed during the monsoon period were forecasted for differ-ent time periods (daily and weekly) using the back propagation artificial neural network (BPANN) modeling technique. The results were compared with those of single- and multi-input linear transfer function models. In BPANN, the maximum value of variable was considered for normalization of input, and a pattern learning algorithm was developed. Input variables in the model were obtained by comparing the response with their respective standard error. The network parsimony was achieved by pruning the network using error sensitiv-ity - weight criterion, and model generalization by cross validation. The performance was evaluated using correlation coefficient (CC), coefficient of efficiency (CE), and root mean square error (RMSE). The single input linear transfer function (SI-LTF) runoff and sediment yield forecasting models were more efficacious than the multi input linear transfer function (MI-LTF) and ANN models.展开更多
Load forecasting is vitally important for electric industry in the deregulated economy. This paper aims to face the power crisis and to achieve energy security in Jordan. Our participation is localized in the southern...Load forecasting is vitally important for electric industry in the deregulated economy. This paper aims to face the power crisis and to achieve energy security in Jordan. Our participation is localized in the southern parts of Jordan including, Ma’an, Karak and Aqaba. The available statistical data about the load of southern part of Jordan are supplied by electricity Distribution Company. Mathematical and statistical methods attempted to forecast future demand by determining trends of past results and use the trends to extrapolate the curve demand in the future.展开更多
The main purpose of this study was to forecast the inflow to Hongze Lake using the Xin'anjiang rainfall-runoff model. The upper area of Hongze Lake in the Huaihe Basin was divided into 23 sub-basins, including the su...The main purpose of this study was to forecast the inflow to Hongze Lake using the Xin'anjiang rainfall-runoff model. The upper area of Hongze Lake in the Huaihe Basin was divided into 23 sub-basins, including the surface of Hongze Lake. The influence of reservoirs and gates on flood forecasting was considered in a practical and simple way. With a one-day time step, the linear and non-linear Muskingum method was used for channel flood routing, and the least-square regression model was used for real-time correction in flood forecasting. Representative historical data were collected for the model calibration. The hydrological model parameters for each sub-basin were calibrated individually, so the parameters of the Xin'anjiang model were different for different sub-basins. This flood forecasting system was used in the real-time simulation of the large flood in 2005 and the results are satisfactory when compared with measured data from the flood.展开更多
Forecasting of a nonlinear cascade was developed for modeling watershed runoff, and was tested by computing the direct runoff hydrograph for two rainfall- runoff events on a small watershed in China . The forecasting ...Forecasting of a nonlinear cascade was developed for modeling watershed runoff, and was tested by computing the direct runoff hydrograph for two rainfall- runoff events on a small watershed in China . The forecasting model was superior to Ding s variable unit hydrograph method and the method of limited differences for these two events.展开更多
Electricity demand is also known as load in electric power system.This article presents a Long-Term Load Forecasting(LTLF)approach for Malaysia.An Artificial Neural Network(ANN)of 5-layer Multi-Layered Perceptron(MLP)...Electricity demand is also known as load in electric power system.This article presents a Long-Term Load Forecasting(LTLF)approach for Malaysia.An Artificial Neural Network(ANN)of 5-layer Multi-Layered Perceptron(MLP)structure has been designed and tested for this purpose.Uncertainties of input variables and ANN model were introduced to obtain the prediction for years 2022 to 2030.Pearson correlation was used to examine the input variables for model construction.The analysis indicates that Primary Energy Supply(PES),population,Gross Domestic Product(GDP)and temperature are strongly correlated.The forecast results by the proposed method(henceforth referred to as UQ-SNN)were compared with the results obtained by a conventional Seasonal Auto-Regressive Integrated Moving Average(SARIMA)model.The R^(2)scores for UQ-SNN and SARIMA are 0.9994 and 0.9787,respectively,indicating that UQ-SNN is more accurate in capturing the non-linearity and the underlying relationships between the input and output variables.The proposed method can be easily extended to include other input variables to increase the model complexity and is suitable for LTLF.With the available input data,UQ-SNN predicts Malaysia will consume 207.22 TWh of electricity,with standard deviation(SD)of 6.10 TWh by 2030.展开更多
In this article we derive a general differential equation that describes long-term economic growth in terms of cyclical and trend components. Equation is based on the model of non-linear accelerator of induced investm...In this article we derive a general differential equation that describes long-term economic growth in terms of cyclical and trend components. Equation is based on the model of non-linear accelerator of induced investment. A scheme is proposed for obtaining approximate solutions of nonlinear differential equation by splitting solution into the rapidly oscillating business cycles and slowly varying trend using Krylov-Bogoliubov-Mitropolsky averaging. Simplest modes of the economic system are described. Characteristics of the bifurcation point are found and bifurcation phenomenon is interpreted as loss of stability making the economic system available to structural change and accepting innovations. System being in a nonequilibrium state has a dynamics with self-sustained undamped oscillations. The model is verified with economic development of the US during the fifth Kondratieff cycle (1982-2010). Model adequately describes real process of economic growth in both quantitative and qualitative aspects. It is one of major results that the model gives a rough estimation of critical points of system stability loss and falling into a crisis recession. The model is used to forecast the macroeconomic dynamics of the US during the sixth Kondratieff cycle (2018-2050). For this forecast we use fixed production capital functional dependence on a long-term Kondratieff cycle and medium-term Juglar and Kuznets cycles. More accurate estimations of the time of crisis and recession are based on the model of accelerating log-periodic oscillations. The explosive growth of the prices of highly liquid commodities such as gold and oil is taken as real predictors of the global financial crisis. The second wave of crisis is expected to come in June 2011.展开更多
Sea buckthorn market floated uncertainly within a narrow range. The market situation provided upward pressure on prices, and producer and consumer interest were poor, coupled with weak prices in the regional markets. ...Sea buckthorn market floated uncertainly within a narrow range. The market situation provided upward pressure on prices, and producer and consumer interest were poor, coupled with weak prices in the regional markets. The objectives of the study are: 1) to estimate the relationship between wild Sea buckthorn (SB) price and Supply, Demand, while some other factors of crude oil price and exchange rate by using simultaneous Supply-Demand and Price system equation and Vector Error Correction Method (VECM);2) to forecast the short-term and long-term SB price;3) to compare and evaluate the price forecasting models. Firstly, the data was analyzed by Ferris and Engle-Granger’s procedure;secondly, both price forecasting methodologies were tested by Pindyck-Rubinfeld and Makridakis’s procedure. The result shows that the VECM model is more efficient using yearly data;a short-term price forecast decreases, and a long-term price forecast is predicted to increase the Mongolian Sea buckthorn market.展开更多
In recent years, Rwanda’s rapid economic development has created the “Rwanda Africa Wonder”, but it has also led to a substantial increase in energy consumption with the ambitious goal of reaching universal access ...In recent years, Rwanda’s rapid economic development has created the “Rwanda Africa Wonder”, but it has also led to a substantial increase in energy consumption with the ambitious goal of reaching universal access by 2024. Meanwhile, on the basis of the rapid and dynamic connection of new households, there is uncertainty about generating, importing, and exporting energy whichever imposes a significant barrier. Long-Term Load Forecasting (LTLF) will be a key to the country’s utility plan to examine the dynamic electrical load demand growth patterns and facilitate long-term planning for better and more accurate power system master plan expansion. However, a Support Vector Machine (SVM) for long-term electric load forecasting is presented in this paper for accurate load mix planning. Considering that an individual forecasting model usually cannot work properly for LTLF, a hybrid Q-SVM will be introduced to improve forecasting accuracy. Finally, effectively assess model performance and efficiency, error metrics, and model benchmark parameters there assessed. The case study demonstrates that the new strategy is quite useful to improve LTLF accuracy. The historical electric load data of Rwanda Energy Group (REG), a national utility company from 1998 to 2020 was used to test the forecast model. The simulation results demonstrate the proposed algorithm enhanced better forecasting accuracy.展开更多
The influence of various factors, mechanisms, and principles affecting runoff are summarized as periodic law, random law, and basin-wide law. Periodic law is restricted by astronomical factors, random law is restricte...The influence of various factors, mechanisms, and principles affecting runoff are summarized as periodic law, random law, and basin-wide law. Periodic law is restricted by astronomical factors, random law is restricted by atmospheric circulation, and basin-wide law is restricted by underlying surface. The commensurability method was used to identify the almost period law, the wave method was applied to deducing the random law, and the precursor method was applied in order to forecast runoff magnitude for the current year. These three methods can be used to assess each other and to forecast runoff. The system can also be applied to forecasting wet years, normal years and dry years for a particular year as well as forecasting years when floods with similar characteristics of previous floods, can be expected. Based on hydrological climate data of Baishan (1933-2009) and Nierji (1886-2009) in the Songhua River Basin, the forecasting results for 2010 show that it was a wet year in the Baishan Reservoir, similar to the year of 1995; it was a secondary dry year in the Nierji Reservoir, similar to the year of 1980. The actual water inflow into the Baishan Reservoir was 1.178 × 10 10 m 3 in 2010, which was markedly higher than average inflows, ranking as the second highest in history since records began. The actual water inflow at the Nierji station in 2010 was 9.96 × 10 9 m 3 , which was lower than the average over a period of many years. These results indicate a preliminary conclusion that the methods proposed in this paper have been proved to be reasonable and reliable, which will encourage the application of the chief reporter release system for each basin. This system was also used to forecast inflows for 2011, indicating a secondary wet year for the Baishan Reservoir in 2011, similar to that experienced in 1991. A secondary wet year was also forecast for the Nierji station in 2011, similar to that experienced during 1983. According to the nature of influencing factors, mechanisms and forecasting methods and the service objects, mid-to long-term hydrological forecasting can be divided into two classes:mid-to long-term runoff forecasting, and severe floods and droughts forecasting. The former can be applied to quantitative forecasting of runoff, which has important applications for water release schedules. The latter, i.e., qualitative disaster forecasting, is important for flood control and drought relief. Practical methods for forecasting severe droughts and floods are discussed in this paper.展开更多
As the increasing demand for mobile communications and the shrinking of the coverage of cells, handover mechanism will play an important role in future wireless networks to provide users with seamless mobile communica...As the increasing demand for mobile communications and the shrinking of the coverage of cells, handover mechanism will play an important role in future wireless networks to provide users with seamless mobile communication services. In order to guarantee the user experience, the handover decision should be made timely and reasonably. To achieve this goal, this paper presents a hybrid handover forecasting mechanism, which contains long-term and short-term forecasting models. The proposed mechanism could cooperate with the standard mechanisms, and improve the performance of standard handover decision mechanisms. Since most of the parameters involved are imprecise, fuzzy forecasting model is applied for dealing with predictions of them. The numerical results indicate that the mechanism could significantly decrease the rate of ping-pong handover and the rate of handover failure.展开更多
The principle of middle and long-term earthquake forecast model of spatial and temporal synthesized probability gain and the evaluation of forecast efficiency (R-values) of various forecast methods are introduced in t...The principle of middle and long-term earthquake forecast model of spatial and temporal synthesized probability gain and the evaluation of forecast efficiency (R-values) of various forecast methods are introduced in this paper. The R-value method, developed by Xu (1989), is further developed here, and can be applied to more complicated cases. Probability gains in spatial and/or temporal domains and the R-values for different forecast methods are estimated in North China. The synthesized probability gain is then estimated as an example.展开更多
This article presents a summary of our studies of Holocene moraines and glaciers of the Tien-Shan, Pamir, and Himalaya moun- mills with the purpose of providing pattern regularity of the Holocene glaciation decomposit...This article presents a summary of our studies of Holocene moraines and glaciers of the Tien-Shan, Pamir, and Himalaya moun- mills with the purpose of providing pattern regularity of the Holocene glaciation decomposition. We developed a method for ob- taining reliable radiocarbon dating of moraines with the use of autochthonous organic matter dispersed in fine-grained morainic material, as well there were shown new possibilities of isotope-oxygen and isotope-uranium analysis for the Holocene glaciations dynamics. We found that Holocene glaciations disintegrate stadiaUy according to the decaying principle, and seven main stages may be distinguished. We achieved the absolute dating of the first three stages, identifying these periods as 8,000, 5,000, and 3,400 years ago. The application of the above-mentioned isotope methods of the Holocene glaciations and moraines study will allow re- searchers to improve the offered model of the Holocene glaciations disintegration; it will be great contribution to salvation of the problem of long-term climatic and glaciations forecast.展开更多
In this paper, the author proposed a methodology to reveal expected seismic activation places for coming years by a complex of forecasting parameters of a seismic mode. Areas in Uzbekistan where currently observed ano...In this paper, the author proposed a methodology to reveal expected seismic activation places for coming years by a complex of forecasting parameters of a seismic mode. Areas in Uzbekistan where currently observed anomalies in various parameters of a seismic mode has been revealed. By number of displayed abnormal signs the areas has been ranked based on probability of occurrence of strong earthquakes there. It has prepared schemes of the synoptic forecast of expected seismic activation places in case of occurrence of strong earthquakes in the Central-Asian region.展开更多
This paper describes the activities carried out by CETENA in collaboration with the Italian Navy to assess the behavior of new FREMM frigates by means of an automatic hull monitoring system and to predict the expected...This paper describes the activities carried out by CETENA in collaboration with the Italian Navy to assess the behavior of new FREMM frigates by means of an automatic hull monitoring system and to predict the expected fatigue life of ship structure by analyzing recorded data through a specifically developed post-processing tool.展开更多
The load growth is the most important uncertainties in power system planning process. The applications of the classical long-term load forecasting methods particularly applied to utilities in transition economy are in...The load growth is the most important uncertainties in power system planning process. The applications of the classical long-term load forecasting methods particularly applied to utilities in transition economy are insufficient and may produce incorrect decisions in power system planning process. This paper discusses using the method of analytic hierarchy process to calculate the probability distribution of load growth obtained previously by standard load forecasting methods.展开更多
This study maps the academic literature on Stock Price Forecasting with Long-Term Memory Artificial Neural Networks—RNA LSTM. The objective is to know if it is suitable for time series studies, especially for stock p...This study maps the academic literature on Stock Price Forecasting with Long-Term Memory Artificial Neural Networks—RNA LSTM. The objective is to know if it is suitable for time series studies, especially for stock price projection. Through bibliometric analysis and systematic literature review, it is observed that 333 authors wrote on the topic between 2018 and March 2022, and the journals Expert Systems with Applications, IEEE Access, Big Data Journal and Neural Computing and Applications, published the most relevant articles. Of the 99 articles published in this period, 43 are associated with Chinese institutions, the most cited being that of Kim and Won, who studies the volatility of returns and the market capitalization of South Korean stocks. The basis of 65% of the studies is the comparison between the RNN LSTM and other artificial neural networks. The daily closing price of shares is the most analyzed type of data, and the American (21%) and Chinese (20%) stock exchanges are the most studied. 57% of the studies include improvements to existing neural network models and 42% new projection models.展开更多
径流过程呈现出的强非线性,使得现有水文模型的预测性能受到制约,深度学习等人工智能方法具有较强的非线性拟合能力,一定程度上可以突破现有瓶颈。为有效提取径流序列的非线性时变特征信息,提高径流模拟精度和多步预测性能,以雅砻江上...径流过程呈现出的强非线性,使得现有水文模型的预测性能受到制约,深度学习等人工智能方法具有较强的非线性拟合能力,一定程度上可以突破现有瓶颈。为有效提取径流序列的非线性时变特征信息,提高径流模拟精度和多步预测性能,以雅砻江上游雅江流域为研究对象,建立了基于具有时变结构的ForecastNet径流预测模型,并与传统水文模型SWAT(Soil and Water Assessnent Teol)和神经网络模型RNN(Recurrent Neural Network)、LSTM(Long Short-Term Memory)及其组合进行对比分析。结果表明,ForcastNet模型在长预见期径流预测中有较强的适用性,能有效提高径流模拟及多步预测精度,为高精度实时径流预测提供了一种技术支撑。展开更多
Runoff and its evolution, based on hydrometeorological data from surface measurement stations, are analyzed for the upper reaches of the Yellow River above Tangnag. Some mathematical statistical models, for example, P...Runoff and its evolution, based on hydrometeorological data from surface measurement stations, are analyzed for the upper reaches of the Yellow River above Tangnag. Some mathematical statistical models, for example, Period Extrapolation-Gradual Regression Model, Grey Topology Forecast Model and Box-Jinkins Model, are applied in predicting changing trends on the runoff. The analysis indicates that the runoff volume in the upper Yellow River above Tangnag is ending a period of extended minimum flows. Increasing runoff is expected in the coming years.展开更多
Medium to long-term precipitation forecasting plays a pivotal role in water resource management and development of warning systems.Recently,the Copernicus Climate Change Service(C3S)database has been releasing monthly...Medium to long-term precipitation forecasting plays a pivotal role in water resource management and development of warning systems.Recently,the Copernicus Climate Change Service(C3S)database has been releasing monthly forecasts for lead times of up to three months for public use.This study evaluated the ensemble forecasts of three C3S models over the period 1993-2017 in Iran’s eight classified precipitation clusters for one-to three-month lead times.Probabilistic and non-probabilistic criteria were used for evaluation.Furthermore,the skill of selected models was analyzed in dry and wet periods in different precipitation clusters.The results indicated that the models performed best in western precipitation clusters,while in the northern humid cluster the models had negative skill scores.All models were better at forecasting upper-tercile events in dry seasons and lower-tercile events in wet seasons.Moreover,with increasing lead time,the forecast skill of the models worsened.In terms of forecasting in dry and wet years,the forecasts of the models were generally close to observations,albeit they underestimated several severe dry periods and overestimated a few wet periods.Moreover,the multi-model forecasts generated via multivariate regression of the forecasts of the three models yielded better results compared with those of individual models.In general,the ECMWF and UKMO models were found to be appropriate for one-month-ahead precipitation forecasting in most clusters of Iran.For the clusters considered in Iran and for the long-range system versions considered,the Météo France model had lower skill than the other models.展开更多
Taking the nonlinear nature of runoff system into account,and combining auto-regression method and multi-regression method,a Nonlinear Mixed Regression Model (NMR) was established to analyze the impact of temperature ...Taking the nonlinear nature of runoff system into account,and combining auto-regression method and multi-regression method,a Nonlinear Mixed Regression Model (NMR) was established to analyze the impact of temperature and precipitation changes on annual river runoff process. The model was calibrated and verified by using BP neural network with observed meteorological and runoff data from Daiying Hydrological Station in the Chaohe River of Hebei Province in 1956–2000. Compared with auto-regression model,linear multi-regression model and linear mixed regression model,NMR can improve forecasting precision remarkably. Therefore,the simulation of climate change scenarios was carried out by NMR. The results show that the nonlinear mixed regression model can simulate annual river runoff well.展开更多
文摘Runoff and sediment yield from an Indian watershed during the monsoon period were forecasted for differ-ent time periods (daily and weekly) using the back propagation artificial neural network (BPANN) modeling technique. The results were compared with those of single- and multi-input linear transfer function models. In BPANN, the maximum value of variable was considered for normalization of input, and a pattern learning algorithm was developed. Input variables in the model were obtained by comparing the response with their respective standard error. The network parsimony was achieved by pruning the network using error sensitiv-ity - weight criterion, and model generalization by cross validation. The performance was evaluated using correlation coefficient (CC), coefficient of efficiency (CE), and root mean square error (RMSE). The single input linear transfer function (SI-LTF) runoff and sediment yield forecasting models were more efficacious than the multi input linear transfer function (MI-LTF) and ANN models.
文摘Load forecasting is vitally important for electric industry in the deregulated economy. This paper aims to face the power crisis and to achieve energy security in Jordan. Our participation is localized in the southern parts of Jordan including, Ma’an, Karak and Aqaba. The available statistical data about the load of southern part of Jordan are supplied by electricity Distribution Company. Mathematical and statistical methods attempted to forecast future demand by determining trends of past results and use the trends to extrapolate the curve demand in the future.
基金supported by the National Natural Science Foundation of China (Grant No. 50479017)the Program for Changjiang Scholars and Innovative Research Teams in Universities (Grant No. IRT071)
文摘The main purpose of this study was to forecast the inflow to Hongze Lake using the Xin'anjiang rainfall-runoff model. The upper area of Hongze Lake in the Huaihe Basin was divided into 23 sub-basins, including the surface of Hongze Lake. The influence of reservoirs and gates on flood forecasting was considered in a practical and simple way. With a one-day time step, the linear and non-linear Muskingum method was used for channel flood routing, and the least-square regression model was used for real-time correction in flood forecasting. Representative historical data were collected for the model calibration. The hydrological model parameters for each sub-basin were calibrated individually, so the parameters of the Xin'anjiang model were different for different sub-basins. This flood forecasting system was used in the real-time simulation of the large flood in 2005 and the results are satisfactory when compared with measured data from the flood.
文摘Forecasting of a nonlinear cascade was developed for modeling watershed runoff, and was tested by computing the direct runoff hydrograph for two rainfall- runoff events on a small watershed in China . The forecasting model was superior to Ding s variable unit hydrograph method and the method of limited differences for these two events.
基金the Ministry of Higher Education Malaysia,under the Fundamental Research Grant Scheme(FRGS Grant No.FRGS/1/2016/TK07/SEGI/02/1).
文摘Electricity demand is also known as load in electric power system.This article presents a Long-Term Load Forecasting(LTLF)approach for Malaysia.An Artificial Neural Network(ANN)of 5-layer Multi-Layered Perceptron(MLP)structure has been designed and tested for this purpose.Uncertainties of input variables and ANN model were introduced to obtain the prediction for years 2022 to 2030.Pearson correlation was used to examine the input variables for model construction.The analysis indicates that Primary Energy Supply(PES),population,Gross Domestic Product(GDP)and temperature are strongly correlated.The forecast results by the proposed method(henceforth referred to as UQ-SNN)were compared with the results obtained by a conventional Seasonal Auto-Regressive Integrated Moving Average(SARIMA)model.The R^(2)scores for UQ-SNN and SARIMA are 0.9994 and 0.9787,respectively,indicating that UQ-SNN is more accurate in capturing the non-linearity and the underlying relationships between the input and output variables.The proposed method can be easily extended to include other input variables to increase the model complexity and is suitable for LTLF.With the available input data,UQ-SNN predicts Malaysia will consume 207.22 TWh of electricity,with standard deviation(SD)of 6.10 TWh by 2030.
文摘In this article we derive a general differential equation that describes long-term economic growth in terms of cyclical and trend components. Equation is based on the model of non-linear accelerator of induced investment. A scheme is proposed for obtaining approximate solutions of nonlinear differential equation by splitting solution into the rapidly oscillating business cycles and slowly varying trend using Krylov-Bogoliubov-Mitropolsky averaging. Simplest modes of the economic system are described. Characteristics of the bifurcation point are found and bifurcation phenomenon is interpreted as loss of stability making the economic system available to structural change and accepting innovations. System being in a nonequilibrium state has a dynamics with self-sustained undamped oscillations. The model is verified with economic development of the US during the fifth Kondratieff cycle (1982-2010). Model adequately describes real process of economic growth in both quantitative and qualitative aspects. It is one of major results that the model gives a rough estimation of critical points of system stability loss and falling into a crisis recession. The model is used to forecast the macroeconomic dynamics of the US during the sixth Kondratieff cycle (2018-2050). For this forecast we use fixed production capital functional dependence on a long-term Kondratieff cycle and medium-term Juglar and Kuznets cycles. More accurate estimations of the time of crisis and recession are based on the model of accelerating log-periodic oscillations. The explosive growth of the prices of highly liquid commodities such as gold and oil is taken as real predictors of the global financial crisis. The second wave of crisis is expected to come in June 2011.
文摘Sea buckthorn market floated uncertainly within a narrow range. The market situation provided upward pressure on prices, and producer and consumer interest were poor, coupled with weak prices in the regional markets. The objectives of the study are: 1) to estimate the relationship between wild Sea buckthorn (SB) price and Supply, Demand, while some other factors of crude oil price and exchange rate by using simultaneous Supply-Demand and Price system equation and Vector Error Correction Method (VECM);2) to forecast the short-term and long-term SB price;3) to compare and evaluate the price forecasting models. Firstly, the data was analyzed by Ferris and Engle-Granger’s procedure;secondly, both price forecasting methodologies were tested by Pindyck-Rubinfeld and Makridakis’s procedure. The result shows that the VECM model is more efficient using yearly data;a short-term price forecast decreases, and a long-term price forecast is predicted to increase the Mongolian Sea buckthorn market.
文摘In recent years, Rwanda’s rapid economic development has created the “Rwanda Africa Wonder”, but it has also led to a substantial increase in energy consumption with the ambitious goal of reaching universal access by 2024. Meanwhile, on the basis of the rapid and dynamic connection of new households, there is uncertainty about generating, importing, and exporting energy whichever imposes a significant barrier. Long-Term Load Forecasting (LTLF) will be a key to the country’s utility plan to examine the dynamic electrical load demand growth patterns and facilitate long-term planning for better and more accurate power system master plan expansion. However, a Support Vector Machine (SVM) for long-term electric load forecasting is presented in this paper for accurate load mix planning. Considering that an individual forecasting model usually cannot work properly for LTLF, a hybrid Q-SVM will be introduced to improve forecasting accuracy. Finally, effectively assess model performance and efficiency, error metrics, and model benchmark parameters there assessed. The case study demonstrates that the new strategy is quite useful to improve LTLF accuracy. The historical electric load data of Rwanda Energy Group (REG), a national utility company from 1998 to 2020 was used to test the forecast model. The simulation results demonstrate the proposed algorithm enhanced better forecasting accuracy.
基金Under the auspices of National Natural Science Foundation(No.50879028)Open Fund of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering of Nanjing Hydraulic Research institute(No.2009491311)+1 种基金Open Research Fund Program of State key Laboratory of Hydroscience and Engineering,Tsinghua University(No.sklhse-2010-A-02)Application Foundation Items of Science and Technology Department of Jilin Province(No.2011-05013)
文摘The influence of various factors, mechanisms, and principles affecting runoff are summarized as periodic law, random law, and basin-wide law. Periodic law is restricted by astronomical factors, random law is restricted by atmospheric circulation, and basin-wide law is restricted by underlying surface. The commensurability method was used to identify the almost period law, the wave method was applied to deducing the random law, and the precursor method was applied in order to forecast runoff magnitude for the current year. These three methods can be used to assess each other and to forecast runoff. The system can also be applied to forecasting wet years, normal years and dry years for a particular year as well as forecasting years when floods with similar characteristics of previous floods, can be expected. Based on hydrological climate data of Baishan (1933-2009) and Nierji (1886-2009) in the Songhua River Basin, the forecasting results for 2010 show that it was a wet year in the Baishan Reservoir, similar to the year of 1995; it was a secondary dry year in the Nierji Reservoir, similar to the year of 1980. The actual water inflow into the Baishan Reservoir was 1.178 × 10 10 m 3 in 2010, which was markedly higher than average inflows, ranking as the second highest in history since records began. The actual water inflow at the Nierji station in 2010 was 9.96 × 10 9 m 3 , which was lower than the average over a period of many years. These results indicate a preliminary conclusion that the methods proposed in this paper have been proved to be reasonable and reliable, which will encourage the application of the chief reporter release system for each basin. This system was also used to forecast inflows for 2011, indicating a secondary wet year for the Baishan Reservoir in 2011, similar to that experienced in 1991. A secondary wet year was also forecast for the Nierji station in 2011, similar to that experienced during 1983. According to the nature of influencing factors, mechanisms and forecasting methods and the service objects, mid-to long-term hydrological forecasting can be divided into two classes:mid-to long-term runoff forecasting, and severe floods and droughts forecasting. The former can be applied to quantitative forecasting of runoff, which has important applications for water release schedules. The latter, i.e., qualitative disaster forecasting, is important for flood control and drought relief. Practical methods for forecasting severe droughts and floods are discussed in this paper.
基金supported in part by the National Major Project under Grant No.2018ZX030001016the National Natural Science Foundation of China under Grant No.61371092the China Mobile Program of Ministry of Education under Grants No.MCM20150102
文摘As the increasing demand for mobile communications and the shrinking of the coverage of cells, handover mechanism will play an important role in future wireless networks to provide users with seamless mobile communication services. In order to guarantee the user experience, the handover decision should be made timely and reasonably. To achieve this goal, this paper presents a hybrid handover forecasting mechanism, which contains long-term and short-term forecasting models. The proposed mechanism could cooperate with the standard mechanisms, and improve the performance of standard handover decision mechanisms. Since most of the parameters involved are imprecise, fuzzy forecasting model is applied for dealing with predictions of them. The numerical results indicate that the mechanism could significantly decrease the rate of ping-pong handover and the rate of handover failure.
文摘The principle of middle and long-term earthquake forecast model of spatial and temporal synthesized probability gain and the evaluation of forecast efficiency (R-values) of various forecast methods are introduced in this paper. The R-value method, developed by Xu (1989), is further developed here, and can be applied to more complicated cases. Probability gains in spatial and/or temporal domains and the R-values for different forecast methods are estimated in North China. The synthesized probability gain is then estimated as an example.
基金the program of the Institute of Water Problems and Hydro Power of National Academy of Sciences of the Kyrgyz Republic
文摘This article presents a summary of our studies of Holocene moraines and glaciers of the Tien-Shan, Pamir, and Himalaya moun- mills with the purpose of providing pattern regularity of the Holocene glaciation decomposition. We developed a method for ob- taining reliable radiocarbon dating of moraines with the use of autochthonous organic matter dispersed in fine-grained morainic material, as well there were shown new possibilities of isotope-oxygen and isotope-uranium analysis for the Holocene glaciations dynamics. We found that Holocene glaciations disintegrate stadiaUy according to the decaying principle, and seven main stages may be distinguished. We achieved the absolute dating of the first three stages, identifying these periods as 8,000, 5,000, and 3,400 years ago. The application of the above-mentioned isotope methods of the Holocene glaciations and moraines study will allow re- searchers to improve the offered model of the Holocene glaciations disintegration; it will be great contribution to salvation of the problem of long-term climatic and glaciations forecast.
文摘In this paper, the author proposed a methodology to reveal expected seismic activation places for coming years by a complex of forecasting parameters of a seismic mode. Areas in Uzbekistan where currently observed anomalies in various parameters of a seismic mode has been revealed. By number of displayed abnormal signs the areas has been ranked based on probability of occurrence of strong earthquakes there. It has prepared schemes of the synoptic forecast of expected seismic activation places in case of occurrence of strong earthquakes in the Central-Asian region.
文摘This paper describes the activities carried out by CETENA in collaboration with the Italian Navy to assess the behavior of new FREMM frigates by means of an automatic hull monitoring system and to predict the expected fatigue life of ship structure by analyzing recorded data through a specifically developed post-processing tool.
文摘The load growth is the most important uncertainties in power system planning process. The applications of the classical long-term load forecasting methods particularly applied to utilities in transition economy are insufficient and may produce incorrect decisions in power system planning process. This paper discusses using the method of analytic hierarchy process to calculate the probability distribution of load growth obtained previously by standard load forecasting methods.
文摘This study maps the academic literature on Stock Price Forecasting with Long-Term Memory Artificial Neural Networks—RNA LSTM. The objective is to know if it is suitable for time series studies, especially for stock price projection. Through bibliometric analysis and systematic literature review, it is observed that 333 authors wrote on the topic between 2018 and March 2022, and the journals Expert Systems with Applications, IEEE Access, Big Data Journal and Neural Computing and Applications, published the most relevant articles. Of the 99 articles published in this period, 43 are associated with Chinese institutions, the most cited being that of Kim and Won, who studies the volatility of returns and the market capitalization of South Korean stocks. The basis of 65% of the studies is the comparison between the RNN LSTM and other artificial neural networks. The daily closing price of shares is the most analyzed type of data, and the American (21%) and Chinese (20%) stock exchanges are the most studied. 57% of the studies include improvements to existing neural network models and 42% new projection models.
文摘径流过程呈现出的强非线性,使得现有水文模型的预测性能受到制约,深度学习等人工智能方法具有较强的非线性拟合能力,一定程度上可以突破现有瓶颈。为有效提取径流序列的非线性时变特征信息,提高径流模拟精度和多步预测性能,以雅砻江上游雅江流域为研究对象,建立了基于具有时变结构的ForecastNet径流预测模型,并与传统水文模型SWAT(Soil and Water Assessnent Teol)和神经网络模型RNN(Recurrent Neural Network)、LSTM(Long Short-Term Memory)及其组合进行对比分析。结果表明,ForcastNet模型在长预见期径流预测中有较强的适用性,能有效提高径流模拟及多步预测精度,为高精度实时径流预测提供了一种技术支撑。
基金National Natural Science Foundation of China, No. 49731030 Knowledge Innovation Project of CAS, No. 210016
文摘Runoff and its evolution, based on hydrometeorological data from surface measurement stations, are analyzed for the upper reaches of the Yellow River above Tangnag. Some mathematical statistical models, for example, Period Extrapolation-Gradual Regression Model, Grey Topology Forecast Model and Box-Jinkins Model, are applied in predicting changing trends on the runoff. The analysis indicates that the runoff volume in the upper Yellow River above Tangnag is ending a period of extended minimum flows. Increasing runoff is expected in the coming years.
文摘Medium to long-term precipitation forecasting plays a pivotal role in water resource management and development of warning systems.Recently,the Copernicus Climate Change Service(C3S)database has been releasing monthly forecasts for lead times of up to three months for public use.This study evaluated the ensemble forecasts of three C3S models over the period 1993-2017 in Iran’s eight classified precipitation clusters for one-to three-month lead times.Probabilistic and non-probabilistic criteria were used for evaluation.Furthermore,the skill of selected models was analyzed in dry and wet periods in different precipitation clusters.The results indicated that the models performed best in western precipitation clusters,while in the northern humid cluster the models had negative skill scores.All models were better at forecasting upper-tercile events in dry seasons and lower-tercile events in wet seasons.Moreover,with increasing lead time,the forecast skill of the models worsened.In terms of forecasting in dry and wet years,the forecasts of the models were generally close to observations,albeit they underestimated several severe dry periods and overestimated a few wet periods.Moreover,the multi-model forecasts generated via multivariate regression of the forecasts of the three models yielded better results compared with those of individual models.In general,the ECMWF and UKMO models were found to be appropriate for one-month-ahead precipitation forecasting in most clusters of Iran.For the clusters considered in Iran and for the long-range system versions considered,the Météo France model had lower skill than the other models.
基金Under the auspices of National Natural Science Foundation of China (No. 50809004)
文摘Taking the nonlinear nature of runoff system into account,and combining auto-regression method and multi-regression method,a Nonlinear Mixed Regression Model (NMR) was established to analyze the impact of temperature and precipitation changes on annual river runoff process. The model was calibrated and verified by using BP neural network with observed meteorological and runoff data from Daiying Hydrological Station in the Chaohe River of Hebei Province in 1956–2000. Compared with auto-regression model,linear multi-regression model and linear mixed regression model,NMR can improve forecasting precision remarkably. Therefore,the simulation of climate change scenarios was carried out by NMR. The results show that the nonlinear mixed regression model can simulate annual river runoff well.