Kawasaki disease(KD)is a significant pediatric vasculitis known for its potential to cause severe coronary artery complications.Despite the effectiveness of initial treatments,such as intravenous immunoglobulin,KD pat...Kawasaki disease(KD)is a significant pediatric vasculitis known for its potential to cause severe coronary artery complications.Despite the effectiveness of initial treatments,such as intravenous immunoglobulin,KD patients can experience long-term cardiovascular issues,as evidenced by a recent case report of an adult who suffered a ST-segment elevation myocardial infarction due to previous KD in the World Journal of Clinical Cases.This editorial emphasizes the critical need for long-term management and regular surveillance to prevent such complications.By drawing on recent research and case studies,we advocate for a structured approach to follow-up care that includes routine cardiac evaluations and preventive measures.展开更多
Based on a coupled ocean-sea ice model,this study investigates how changes in the mean state of the atmosphere in different CO2 emission scenarios (RCP 8.5,6.0,4.5 and 2.6) may affect the sea ice in the Bohai Sea,Chin...Based on a coupled ocean-sea ice model,this study investigates how changes in the mean state of the atmosphere in different CO2 emission scenarios (RCP 8.5,6.0,4.5 and 2.6) may affect the sea ice in the Bohai Sea,China,especially in the Liaodong Bay,the largest bay in the Bohai Sea. In the RCP 8.5 scenario,an abrupt change of the atmospheric state happens around 2070. Due to the abrupt change,wintertime sea ice of the Liaodong Bay can be divided into 3 periods: a mild decreasing period (2021–2060),in which the sea ice severity weakens at a near-constant rate;a rapid decreasing period (2061–2080),in which the sea ice severity drops dramatically;and a stabilized period (2081–2100). During 2021–2060,the dates of first ice are approximately unchanged,suggesting that the onset of sea ice is probably determined by a cold-air event and is not sensitive to the mean state of the atmosphere. The mean and maximum sea ice thickness in the Liaodong Bay is relatively stable before 2060,and then drops rapidly in the following decade. Different from the RCP 8.5 scenario,atmospheric state changes smoothly in the RCP 6.0,4.5 and 2.6 scenarios. In the RCP 6.0 scenario,the sea ice severity in the Bohai Sea weakens with time to the end of the twenty-first century. In the RCP 4.5 scenario,the sea ice severity weakens with time until reaching a stable state around the 2070s. In the RCP 2.6 scenario,the sea ice severity weakens until the 2040s,stabilizes from then,and starts intensifying after the 2080s. The sea ice condition in the other bays of the Bohai Sea is also discussed under the four CO_(2) emissions scenarios. Among atmospheric factors,air temperature is the leading one for the decline of the sea ice extent. Specific humidity also plays an important role in the four scenarios. The surface downward shortwave/longwave radiation and meridional wind only matter in certain scenarios,while effects from the zonal wind and precipitation are negligible.展开更多
BACKGROUND Autoimmune enteropathy(AIE)is a rare disease whose diagnosis and long-term prognosis remain challenging,especially for adult AIE patients.AIM To improve overall understanding of this disease’s diagnosis an...BACKGROUND Autoimmune enteropathy(AIE)is a rare disease whose diagnosis and long-term prognosis remain challenging,especially for adult AIE patients.AIM To improve overall understanding of this disease’s diagnosis and prognosis.METHODS We retrospectively analyzed the clinical,endoscopic and histopathological characteristics and prognoses of 16 adult AIE patients in our tertiary medical center between 2011 and 2023,whose diagnosis was based on the 2007 diagnostic criteria.RESULTS Diarrhea in AIE patients was characterized by secretory diarrhea.The common endoscopic manifestations were edema,villous blunting and mucosal hyperemia in the duodenum and ileum.Villous blunting(100%),deep crypt lymphocytic infiltration(67%),apoptotic bodies(50%),and mild intraepithelial lymphocytosis(69%)were observed in the duodenal biopsies.Moreover,there were other remarkable abnormalities,including reduced or absent goblet cells(duodenum 94%,ileum 62%),reduced or absent Paneth cells(duodenum 94%,ileum 69%)and neutrophil infiltration(duodenum 100%,ileum 69%).Our patients also fulfilled the 2018 diagnostic criteria but did not match the 2022 diagnostic criteria due to undetectable anti-enterocyte antibodies.All patients received glucocorticoid therapy as the initial medication,of which 14/16 patients achieved a clinical response in 5(IQR:3-20)days.Immunosuppressants were administered to 9 patients with indications of steroid dependence(6/9),steroid refractory status(2/9),or intensified maintenance medication(1/9).During the median of 20.5 months of followup,2 patients died from multiple organ failure,and 1 was diagnosed with non-Hodgkin’s lymphoma.The cumulative relapse-free survival rates were 62.5%,55.6%and 37.0%at 6 months,12 months and 48 months,respectively.CONCLUSION Certain histopathological findings,including a decrease or disappearance of goblet and Paneth cells in intestinal biopsies,might be potential diagnostic criteria for adult AIE.The long-term prognosis is still unsatisfactory despite corticosteroid and immunosuppressant medications,which highlights the need for early diagnosis and novel medications.展开更多
BACKGROUND Transjugular intrahepatic portosystemic shunt(TIPS)placement is a procedure that can effectively treat complications of portal hypertension,such as variceal bleeding and refractory ascites.However,there hav...BACKGROUND Transjugular intrahepatic portosystemic shunt(TIPS)placement is a procedure that can effectively treat complications of portal hypertension,such as variceal bleeding and refractory ascites.However,there have been no specific studies on predicting long-term survival after TIPS placement.AIM To establish a model to predict long-term survival in patients with hepatitis cirrhosis after TIPS.METHODS A retrospective analysis was conducted on a cohort of 224 patients who un-derwent TIPS implantation.Through univariate and multivariate Cox regression analyses,various factors were examined for their ability to predict survival at 6 years after TIPS.Consequently,a composite score was formulated,encompassing the indication,shunt reasonability,portal venous pressure gradient(PPG)after TIPS,percentage decrease in portal venous pressure(PVP),indocyanine green retention rate at 15 min(ICGR15)and total bilirubin(Tbil)level.Furthermore,the performance of the newly developed Cox(NDC)model was evaluated in an in-ternal validation cohort and compared with that of a series of existing models.RESULTS The indication(variceal bleeding or ascites),shunt reasonability(reasonable or unreasonable),ICGR15,post-operative PPG,percentage of PVP decrease and Tbil were found to be independent factors affecting long-term survival after TIPS placement.The NDC model incorporated these parameters and successfully identified patients at high risk,exhibiting a notably elevated mortality rate following the TIPS procedure,as observed in both the training and validation cohorts.Additionally,in terms of predicting the long-term survival rate,the performance of the NDC model was significantly better than that of the other four models[Child-Pugh,model for end-stage liver disease(MELD),MELD-sodium and the Freiburg index of post-TIPS survival].CONCLUSION The NDC model can accurately predict long-term survival after the TIPS procedure in patients with hepatitis cirrhosis,help identify high-risk patients and guide follow-up management after TIPS implantation.展开更多
Based on the supply-side perspective,the improved STIRPAT model is applied to reveal the mechanisms of supply-side factors such as human,capital,technology,industrial synergy,institutions and economic growth on carbon...Based on the supply-side perspective,the improved STIRPAT model is applied to reveal the mechanisms of supply-side factors such as human,capital,technology,industrial synergy,institutions and economic growth on carbon emissions in the Yangtze River Delta(YRD)through path analysis,and to forecast carbon emissions in the YRD from the baseline scenario,factor regulation scenario and integrated scenario to reach the peak.The results show that:(1)Jiangsu's high carbon emission pattern is the main reason for the YRD hindering the synergistic regulation of carbon emissions.(2)Human factors,institutional factors and economic growth factors can all contribute to carbon emissions in the YRD region,while technological and industrial factors can generally suppress carbon emissions in the YRD region.(3)Under the capital regulation scenario,the YRD region has the highest level of carbon emission synergy,with Jiangsu reaching its peak five years earlier.Under the balanced regulation scenario,the YRD region as a whole,Jiangsu,Zhejiang and Anhui reach the peak as scheduled.展开更多
BACKGROUND Choosing an optimal post-polypectomy management strategy of malignant colorectal polyps is challenging,and evidence regarding a surveillance-only strategy is limited.AIM To evaluate long-term outcomes after...BACKGROUND Choosing an optimal post-polypectomy management strategy of malignant colorectal polyps is challenging,and evidence regarding a surveillance-only strategy is limited.AIM To evaluate long-term outcomes after endoscopic removal of malignant colorectal polyps.METHODS A single-center retrospective cohort study was conducted to evaluate outcomes after endoscopic removal of malignant colorectal polyps between 2010 and 2020.Residual disease rate and nodal metastases after secondary surgery and local and distant recurrence rate for those with at least 1 year of follow-up were invest-igated.Event rates for categorical variables and means for continuous variables with 95%confidence intervals were calculated,and Fisher’s exact test and Mann-Whitney test were performed.Potential risk factors of adverse outcomes were RESULTS In total,135 lesions(mean size:22.1 mm;location:42%rectal)from 129 patients(mean age:67.7 years;56%male)were enrolled.The proportion of pedunculated and non-pedunculated lesions was similar,with en bloc resection in 82%and 47%of lesions,respectively.Tumor differentiation,distance from resection margins,depth of submucosal invasion,lymphovascular invasion,and budding were reported at 89.6%,45.2%,58.5%,31.9%,and 25.2%,respectively.Residual tumor was found in 10 patients,and nodal metastasis was found in 4 of 41 patients who underwent secondary surgical resection.Univariate analysis identified piecemeal resection as a risk factor for residual malignancy(odds ratio:1.74;P=0.042).At least 1 year of follow-up was available for 117 lesions from 111 patients(mean follow-up period:5.59 years).Overall,54%,30%,30%,11%,and 16%of patients presented at the 1-year,3-year,5-year,7-year,and 9-10-year surveillance examinations.Adverse outcomes occurred in 9.0%(local recurrence and dissemination in 4 patients and 9 patients,respectively),with no difference between patients undergoing secondary surgery and surveillance only.CONCLUSION Reporting of histological features and adherence to surveillance colonoscopy needs improvement.Long-term adverse outcome rates might be higher than previously reported,irrespective of whether secondary surgery was performed.展开更多
The hybrid scenario,which has good confinement and moderate MHD instabilities,is a proposed operation scenario for international thermonuclear experimental reactor(ITER).In this work,the effect of plasma rotation on t...The hybrid scenario,which has good confinement and moderate MHD instabilities,is a proposed operation scenario for international thermonuclear experimental reactor(ITER).In this work,the effect of plasma rotation on the HL-3 hybrid scenario is analyzed with the integrated modeling framework OMFIT.The results show that toroidal rotation has no obvious effect on confinement with a high line averaged density of n_(bar)~(7)×10^(19)m^(-3).In this case,the ion temperature only changes from 4.7 keV to 4.4 keV with the rotation decreasing from 10^(5) rad/s to 10^(3) rad/s,which means that the turbulent heat transport is not dominant.While in the scenarios characterized by lower densities,such as n_(bar)~4×10^(19)m^(-3),turbulent transport becomes dominant in determining heat transport.The ion temperature rises from 3.8 keV to 6.1 keV in the core as the rotation velocity increases from 10^(3) rad/s to 10^(5) rad/s.Despite the ion temperature rising,the rotation velocity does not obviously affect electron temperature or density.Additionally,it is noteworthy that the variation in rotation velocity does not significantly affect the global confinement of plasma in scenarios with low density or with high density.展开更多
The glacial history of Pico de Orizaba indicates that during the Last Glacial Maximum,its icecap covered up to~3000 m asl;due to the air temperature increasing,its main glacier has retreated to 5050 m asl.The retracti...The glacial history of Pico de Orizaba indicates that during the Last Glacial Maximum,its icecap covered up to~3000 m asl;due to the air temperature increasing,its main glacier has retreated to 5050 m asl.The retraction of the glacier has left behind an intense climatic instability that causes a high frequency of freeze-thaw cycles of great intensity;the resulting geomorphological processes are represented by the fragmentation of the bedrock that occupies the upper parts of the mountain.There is a notable lack of studies regarding the fragmentation and erosion occurring in tropical high mountains,and the associated geomorphological risks;for this reason,as a first stage of future continuous research,this study analyzes the freezing and thawing cycles that occur above 4000 m asl,through continuous monitoring of surface ground temperature.The results allow us to identify and characterize four zones:glacial,paraglacial,periglacial and proglacial.It was found that the paraglacial zone presents an intense drop of temperature,of up to~9℃ in only sixty minutes.The rock fatigue and intense freeze-thaw cycles that occur in this area are responsible for the high rate of rock disintegration and represent the main factor of the constant slope dynamics that occur at the site.This activity decreases,both in frequency and intensity,according to the distance to the glacier,which is where the temperature presents a certain degree of stability,until reaching the proglacial zone,where cycles are almost non-existent,and therefore there is no gelifraction activity.The geomorphological processes have resulted in significant alterations to the mountain slopes,which can have severe consequences in terms of risk and water.展开更多
Revegetation of former agricultural land is a key option for climate change mitigation and nature conservation.Expansion and abandonment of agricultural land is typically influenced by trends in diets and agricultural...Revegetation of former agricultural land is a key option for climate change mitigation and nature conservation.Expansion and abandonment of agricultural land is typically influenced by trends in diets and agricultural inten-sification,which are two key parameters in the Shared Socioeconomic Pathways(SSPs).Datasets mapping future land dynamics under different SSPs and climate change mitigation targets stem from different scenario assump-tions,land data and modelling frameworks.This study aims to determine the role that these three factors play in the estimates of the evolution of cropland and pastureland in future SSPs under different climate scenarios from four main datasets largely used in the climate and land surface studies.The datasets largely agree with the rep-resentation of cropland at present-day conditions,but the identification of pastureland is ambiguous and shows large discrepancies due to the lack of a unique land-use category.Differences occur with future projections,even for the same SSP and climate target.Accounting for CO_(2)sequestration from revegetation of abandoned agri-cultural land and CO_(2)emissions from forest clearance due to agricultural expansion shows a net reduction in vegetation carbon stock for most SSPs considered,except SSP1.However,different datasets give differences in estimates,even when representative of the same scenario.With SSP1,the cumulative increase in carbon stock until 2050 is 3.3 GtC for one dataset,and more than double for another.Our study calls for a common classifica-tion system with improved detection of pastureland to harmonize projections and reduce variability of outcomes in environmental studies.展开更多
The presence of iron(Fe) has been found to favor power generation in microbial fuel cells(MFCs). To achieve long-term power production in MFCs, it is crucial to effectively tailor the release of Fe ions over extended ...The presence of iron(Fe) has been found to favor power generation in microbial fuel cells(MFCs). To achieve long-term power production in MFCs, it is crucial to effectively tailor the release of Fe ions over extended operating periods. In this study, we developed a composite anode(A/IF) by coating iron foam with cellulose-based aerogel. The concentration of Fe ions in the anode solution of A/IF anode reaches 0.280 μg/mL(Fe^(2+) vs. Fe^(3+) = 61%:39%) after 720 h of aseptic primary cell operation. This value was significantly higher than that(0.198 μg/mL, Fe^(2+) vs. Fe^(3+) = 92%:8%) on uncoated iron foam(IF), indicating a continuous release of Fe ions over long-term operation. Notably, the resulting MFCs hybrid cell exhibited a 23% reduction in Fe ion concentration(compared to a 47% reduction for the IF anode) during the sixth testing cycle(600-720 h). It achieved a high-power density of 301 ± 55 mW/m^(2) at 720 h, which was 2.62 times higher than that of the IF anode during the same period. Furthermore, a sedimentary microbial fuel cell(SMFCs) was constructed in a marine environment, and the A/IF anode demonstrated a power density of 103 ± 3 mW/m^(2) at 3240 h, representing a 75% improvement over the IF anode. These findings elucidate the significant enhancement in long-term power production performance of MFCs achieved through effective tailoring of Fe ions release during operation.展开更多
Laboratory safety is a critical area of broad societal concern,particularly in the detection of abnormal actions.To enhance the efficiency and accuracy of detecting such actions,this paper introduces a novel method ca...Laboratory safety is a critical area of broad societal concern,particularly in the detection of abnormal actions.To enhance the efficiency and accuracy of detecting such actions,this paper introduces a novel method called TubeRAPT(Tubelet Transformer based onAdapter and Prefix TrainingModule).Thismethod primarily comprises three key components:the TubeR network,an adaptive clustering attention mechanism,and a prefix training module.These components work in synergy to address the challenge of knowledge preservation in models pretrained on large datasets while maintaining training efficiency.The TubeR network serves as the backbone for spatio-temporal feature extraction,while the adaptive clustering attention mechanism refines the focus on relevant information.The prefix training module facilitates efficient fine-tuning and knowledge transfer.Experimental results demonstrate the effectiveness of TubeRAPT,achieving a 68.44%mean Average Precision(mAP)on the CLA(Crazy LabActivity)small-scale dataset,marking a significant improvement of 1.53%over the previous TubeR method.This research not only showcases the potential applications of TubeRAPT in the field of abnormal action detection but also offers innovative ideas and technical support for the future development of laboratory safety monitoring technologies.The proposed method has implications for improving safety management systems in various laboratory environments,potentially reducing accidents and enhancing overall workplace safety.展开更多
The linear and nonlinear simulations are carried out using the gyrokinetic code NLT for the electrostatic instabilities in the core region of a deuterium plasma based on the International Thermonuclear Experimental Re...The linear and nonlinear simulations are carried out using the gyrokinetic code NLT for the electrostatic instabilities in the core region of a deuterium plasma based on the International Thermonuclear Experimental Reactor(ITER)baseline scenario.The kinetic electron effects on the linear frequency and nonlinear transport are studied by adopting the adiabatic electron model and the fully drift-kinetic electron model in the NLT code,respectively.The linear simulations focus on the dependence of linear frequency on the plasma parameters,such as the ion and electron temperature gradientsκ_(Ti,e)≡R=L_(Ti,e),the density gradientκ_(n)≡R/L_(n)and the ion-electron temperature ratioτ=T_(e)=T_(i).Here,is the major radius,and T_(e)and T_(i)denote the electron and ion temperatures,respectively.L_(A)=-(δ_(r)lnA)^(-1)is the gradient scale length,with denoting the density,the ion and electron temperatures,respectively.In the kinetic electron model,the ion temperature gradient(ITG)instability and the trapped electron mode(TEM)dominate in the small and large k_(θ)region,respectively,wherek_(θ)is the poloidal wavenumber.The TEMdominant region becomes wider by increasing(decreasing)κ_(T_(e))(κ_(T_(i)))or by decreasingκ_(n).For the nominal parameters of the ITER baseline scenario,the maximum growth rate of dominant ITG instability in the kinetic electron model is about three times larger than that in the adiabatic electron model.The normalized linear frequency depends on the value ofτ,rather than the value of T_(e)or T_(i),in both the adiabatic and kinetic electron models.The nonlinear simulation results show that the ion heat diffusivity in the kinetic electron model is quite a lot larger than that in the adiabatic electron model,the radial structure is finer and the time oscillation is more rapid.In addition,the magnitude of the fluctuated potential at the saturated stage peaks in the ITGdominated region,and contributions from the TEM(dominating in the higher k_(θ)region)to the nonlinear transport can be neglected.In the adiabatic electron model,the zonal radial electric field is found to be mainly driven by the turbulent energy flux,and the contribution of turbulent poloidal Reynolds stress is quite small due to the toroidal shielding effect.However,in the kinetic electron model,the turbulent energy flux is not strong enough to drive the zonal radial electric field in the nonlinear saturated stage.The kinetic electron effects on the mechanism of the turbulence-driven zonal radial electric field should be further investigated.展开更多
The forward design of trajectory planning strategies requires preset trajectory optimization functions,resulting in poor adaptability of the strategy and an inability to accurately generate obstacle avoidance trajecto...The forward design of trajectory planning strategies requires preset trajectory optimization functions,resulting in poor adaptability of the strategy and an inability to accurately generate obstacle avoidance trajectories that conform to real driver behavior habits.In addition,owing to the strong time-varying dynamic characteristics of obstacle avoidance scenarios,it is necessary to design numerous trajectory optimization functions and adjust the corresponding parameters.Therefore,an anthropomorphic obstacle-avoidance trajectory planning strategy for adaptive driving scenarios is proposed.First,numerous expert-demonstrated trajectories are extracted from the HighD natural driving dataset.Subsequently,a trajectory expectation feature-matching algorithm is proposed that uses maximum entropy inverse reinforcement learning theory to learn the extracted expert-demonstrated trajectories and achieve automatic acquisition of the optimization function of the expert-demonstrated trajectory.Furthermore,a mapping model is constructed by combining the key driving scenario information that affects vehicle obstacle avoidance with the weight of the optimization function,and an anthropomorphic obstacle avoidance trajectory planning strategy for adaptive driving scenarios is proposed.Finally,the proposed strategy is verified based on real driving scenarios.The results show that the strategy can adjust the weight distribution of the trajectory optimization function in real time according to the“emergency degree”of obstacle avoidance and the state of the vehicle.Moreover,this strategy can generate anthropomorphic trajectories that are similar to expert-demonstrated trajectories,effectively improving the adaptability and acceptability of trajectories in driving scenarios.展开更多
A large amount of mobile data from growing high-speed train(HST)users makes intelligent HST communications enter the era of big data.The corresponding artificial intelligence(AI)based HST channel modeling becomes a tr...A large amount of mobile data from growing high-speed train(HST)users makes intelligent HST communications enter the era of big data.The corresponding artificial intelligence(AI)based HST channel modeling becomes a trend.This paper provides AI based channel characteristic prediction and scenario classification model for millimeter wave(mmWave)HST communications.Firstly,the ray tracing method verified by measurement data is applied to reconstruct four representative HST scenarios.By setting the positions of transmitter(Tx),receiver(Rx),and other parameters,the multi-scenarios wireless channel big data is acquired.Then,based on the obtained channel database,radial basis function neural network(RBF-NN)and back propagation neural network(BP-NN)are trained for channel characteristic prediction and scenario classification.Finally,the channel characteristic prediction and scenario classification capabilities of the network are evaluated by calculating the root mean square error(RMSE).The results show that RBF-NN can generally achieve better performance than BP-NN,and is more applicable to prediction of HST scenarios.展开更多
Physical-layer secret key generation(PSKG)provides a lightweight way for group key(GK)sharing between wireless users in large-scale wireless networks.However,most of the existing works in this field consider only grou...Physical-layer secret key generation(PSKG)provides a lightweight way for group key(GK)sharing between wireless users in large-scale wireless networks.However,most of the existing works in this field consider only group communication.For a commonly dual-task scenario,where both GK and pairwise key(PK)are required,traditional methods are less suitable for direct extension.For the first time,we discover a security issue with traditional methods in dual-task scenarios,which has not previously been recognized.We propose an innovative segment-based key generation method to solve this security issue.We do not directly use PK exclusively to negotiate the GK as traditional methods.Instead,we generate GK and PK separately through segmentation which is the first solution to meet dual-task.We also perform security and rate analysis.It is demonstrated that our method is effective in solving this security issue from an information-theoretic perspective.The rate results of simulation are also consistent with the our rate derivation.展开更多
This study investigates the long-term performance of laboratory dam concrete in different curing environments over ten years and the microstructure of 17-year-old laboratory concrete and actual concrete cores drilled ...This study investigates the long-term performance of laboratory dam concrete in different curing environments over ten years and the microstructure of 17-year-old laboratory concrete and actual concrete cores drilled from the Three Gorges Dam.The mechanical properties of the laboratory dam concrete,whether cured in natural or standard environments,continued to improve over time.Furthermore,the laboratory dam concrete exhibited good resistance to diffusion and a refined microstructure after 17 years.However,curing and long-term exposure to the local natural environment reduced the frost resistance.Microstructural analyses of the laboratory concrete samples demonstrated that moderate-heat cement and fine fly ash(FA)particles were almost fully hydrated to form compact micro structures consisting of large quantities of homogeneous calcium(alumino)silicate hydrate(C-(A)-S-H)gels and a few crystals.No obvious interfacial transition zones were observed in the microstructure owing to the longterm pozzolanic reaction.This dense and homogenous microstructure was the crucial reason for the excellent long-term performance of the dam concrete.A high FA volume also played a significant role in the microstructural densification and performance growth of dam concrete at a later age.The concrete drilled from the dam surface exhibited a loose microstructure with higher microporosity,indicating that concrete directly exposed to the actual service environment suffered degradation caused by water and wind attacks.In this study,both macro-performance and microstructural analyses revealed that the application of moderate-heat cement and FA resulted in a dense and homogenous microstructure,which ensured the excellent long-term performance of concrete from the Three Gorges Dam after 17 years.Long-term exposure to an actual service environment may lead to microstructural degradation of the concrete surface.Therefore,the retained long-term dam concrete samples need to be further researched to better understand its microstructural evolution and development of its properties.展开更多
Atmospheric nitrogen(N)deposition is predicted to increase,especially in the subtropics.However,the responses of soil microorganisms to long-term N addition at the molecular level in N-rich subtropical forests have no...Atmospheric nitrogen(N)deposition is predicted to increase,especially in the subtropics.However,the responses of soil microorganisms to long-term N addition at the molecular level in N-rich subtropical forests have not been clarified.A long-term nutrient addition experiment was conducted in a subtropical evergreen old-growth forest in China.The four treatments were:control,low N(50 kg N ha^(-1)a^(-1)),high N(100 kg N ha^(-1)a^(-1)),and combined N and phosphorus(P)(100 kg N ha^(-1)a^(-1)+50 kg P ha^(-1)a^(-1)).Metagenomic sequencing characterized diversity and composition of soil microbial communities and used to construct bacterial/fungal co-occurrence networks.Nutrient-treated soils were more acidic and had higher levels of dissolved organic carbon than controls.There were no significant differences in microbial diversity and community composition across treatments.The addition of nutrients increased the abundance of copiotrophic bacteria and potentially beneficial microorganisms(e.g.,Gemmatimonadetes,Chaetomium,and Aureobasidium).Low N addition increased microbiome network connectivity.Three rare fungi were identified as module hubs under nutrient addition,indicating that low abundance fungi were more sensitive to increased nutrients.The results indicate that the overall composition of microbial communities was stable but not static to long-term N addition.Our findings provide new insights that can aid predictions of the response of soil microbial communities to long-term N addition.展开更多
Interest in the dynamics of soil respiration(R_(S))in subalpine forest ecosystems is increasing due to their high soil carbon density and potential sensitivity to environmental changes.However,as a principal silvicult...Interest in the dynamics of soil respiration(R_(S))in subalpine forest ecosystems is increasing due to their high soil carbon density and potential sensitivity to environmental changes.However,as a principal silvicultural practice,the long-term impacts of thinning on R_(S) and its heterotrophic and autotrophic respiration components(R_(h) and Ra,respectively)in subalpine plantations are poorly understood,espe-cially in winter.A 3-year field observation was carried out with consideration of winter CO_(2) efflux in middle-aged sub-alpine spruce plantations in northwestern China.A trench-ing method was used to explore the long-term impacts of thinning on Rs,Rn and R_(a).Seventeen years after thinning,mean annual Rs,Rn and R_(a) increased,while the contribu-tion of R_(h) to R_(s) decreased with thinning intensity.Thinning significantly decreased winter R,because of the reduction in R_(n) but had no significant effect on Ra.The temperature sensitivity(Q_(10))of R_(h) and R_(a) also increased with thinning intensity,with lower Q_(10) values for R_(h)(2.1-2.6)than for Ra(2.4-2.8).The results revealed the explanatory variables and pathways related to R_(n) and R_(a) dynamics.Thinning increased soil moisture and nitrate nitrogen(NO_(3)^(-)-N),and the enhanced nitrogen and water availability promoted R_(h) and R_(a) by improving fine root biomass and microbial activity.Our results highlight the positive roles of NO_(3)^(-)-N in stimulating R_(s) components following long-term thinning.Therefore,applications of nitrogen fertilizer are not recommended while thinning subalpine spruce plantations from the perspective of reducing soil CO_(2) emissions.The increased Q_(10) values of R_(s) components indicate that a large increase in soil CO_(2) emissions would be expected following thinning because of more pronounced climate warming in alpineregions.展开更多
Stochastic unit commitment is one of the most powerful methods to address uncertainty. However, the existingscenario clustering technique for stochastic unit commitment cannot accurately select representative scenario...Stochastic unit commitment is one of the most powerful methods to address uncertainty. However, the existingscenario clustering technique for stochastic unit commitment cannot accurately select representative scenarios,which threatens the robustness of stochastic unit commitment and hinders its application. This paper providesa stochastic unit commitment with dynamic scenario clustering based on multi-parametric programming andBenders decomposition. The stochastic unit commitment is solved via the Benders decomposition, which decouplesthe primal problem into the master problem and two types of subproblems. In the master problem, the committedgenerator is determined, while the feasibility and optimality of generator output are checked in these twosubproblems. Scenarios are dynamically clustered during the subproblem solution process through the multiparametric programming with respect to the solution of the master problem. In other words, multiple scenariosare clustered into several representative scenarios after the subproblem is solved, and the Benders cut obtainedby the representative scenario is generated for the master problem. Different from the conventional stochasticunit commitment, the proposed approach integrates scenario clustering into the Benders decomposition solutionprocess. Such a clustering approach could accurately cluster representative scenarios that have impacts on theunit commitment. The proposed method is tested on a 6-bus system and the modified IEEE 118-bus system.Numerical results illustrate the effectiveness of the proposed method in clustering scenarios. Compared withthe conventional clustering method, the proposed method can accurately select representative scenarios whilemitigating computational burden, thus guaranteeing the robustness of unit commitment.展开更多
Long-term navigation ability based on consumer-level wearable inertial sensors plays an essential role towards various emerging fields, for instance, smart healthcare, emergency rescue, soldier positioning et al. The ...Long-term navigation ability based on consumer-level wearable inertial sensors plays an essential role towards various emerging fields, for instance, smart healthcare, emergency rescue, soldier positioning et al. The performance of existing long-term navigation algorithm is limited by the cumulative error of inertial sensors, disturbed local magnetic field, and complex motion modes of the pedestrian. This paper develops a robust data and physical model dual-driven based trajectory estimation(DPDD-TE) framework, which can be applied for long-term navigation tasks. A Bi-directional Long Short-Term Memory(Bi-LSTM) based quasi-static magnetic field(QSMF) detection algorithm is developed for extracting useful magnetic observation for heading calibration, and another Bi-LSTM is adopted for walking speed estimation by considering hybrid human motion information under a specific time period. In addition, a data and physical model dual-driven based multi-source fusion model is proposed to integrate basic INS mechanization and multi-level constraint and observations for maintaining accuracy under long-term navigation tasks, and enhanced by the magnetic and trajectory features assisted loop detection algorithm. Real-world experiments indicate that the proposed DPDD-TE outperforms than existing algorithms, and final estimated heading and positioning accuracy indexes reaches 5° and less than 2 m under the time period of 30 min, respectively.展开更多
文摘Kawasaki disease(KD)is a significant pediatric vasculitis known for its potential to cause severe coronary artery complications.Despite the effectiveness of initial treatments,such as intravenous immunoglobulin,KD patients can experience long-term cardiovascular issues,as evidenced by a recent case report of an adult who suffered a ST-segment elevation myocardial infarction due to previous KD in the World Journal of Clinical Cases.This editorial emphasizes the critical need for long-term management and regular surveillance to prevent such complications.By drawing on recent research and case studies,we advocate for a structured approach to follow-up care that includes routine cardiac evaluations and preventive measures.
基金The National Key R&D Program of China under contract No.2019YFC1408403the Outstanding Young Talents Funding Project of the Cultivation Project for High-level-innovation Talents in Science and Technology,Ministry of Natural Resources,under contract No.12110600000018003923.
文摘Based on a coupled ocean-sea ice model,this study investigates how changes in the mean state of the atmosphere in different CO2 emission scenarios (RCP 8.5,6.0,4.5 and 2.6) may affect the sea ice in the Bohai Sea,China,especially in the Liaodong Bay,the largest bay in the Bohai Sea. In the RCP 8.5 scenario,an abrupt change of the atmospheric state happens around 2070. Due to the abrupt change,wintertime sea ice of the Liaodong Bay can be divided into 3 periods: a mild decreasing period (2021–2060),in which the sea ice severity weakens at a near-constant rate;a rapid decreasing period (2061–2080),in which the sea ice severity drops dramatically;and a stabilized period (2081–2100). During 2021–2060,the dates of first ice are approximately unchanged,suggesting that the onset of sea ice is probably determined by a cold-air event and is not sensitive to the mean state of the atmosphere. The mean and maximum sea ice thickness in the Liaodong Bay is relatively stable before 2060,and then drops rapidly in the following decade. Different from the RCP 8.5 scenario,atmospheric state changes smoothly in the RCP 6.0,4.5 and 2.6 scenarios. In the RCP 6.0 scenario,the sea ice severity in the Bohai Sea weakens with time to the end of the twenty-first century. In the RCP 4.5 scenario,the sea ice severity weakens with time until reaching a stable state around the 2070s. In the RCP 2.6 scenario,the sea ice severity weakens until the 2040s,stabilizes from then,and starts intensifying after the 2080s. The sea ice condition in the other bays of the Bohai Sea is also discussed under the four CO_(2) emissions scenarios. Among atmospheric factors,air temperature is the leading one for the decline of the sea ice extent. Specific humidity also plays an important role in the four scenarios. The surface downward shortwave/longwave radiation and meridional wind only matter in certain scenarios,while effects from the zonal wind and precipitation are negligible.
基金Supported by National High Level Hospital Clinical Research Funding,No.2022-PUMCH-B-022 and No.2022-PUMCH-D-002CAMS Innovation Fund for Medical Sciences,No.2021-1-I2M-003+1 种基金Undergraduate Innovation Program,No.2023-zglc-06034National Key Clinical Specialty Construction Project,No.ZK108000。
文摘BACKGROUND Autoimmune enteropathy(AIE)is a rare disease whose diagnosis and long-term prognosis remain challenging,especially for adult AIE patients.AIM To improve overall understanding of this disease’s diagnosis and prognosis.METHODS We retrospectively analyzed the clinical,endoscopic and histopathological characteristics and prognoses of 16 adult AIE patients in our tertiary medical center between 2011 and 2023,whose diagnosis was based on the 2007 diagnostic criteria.RESULTS Diarrhea in AIE patients was characterized by secretory diarrhea.The common endoscopic manifestations were edema,villous blunting and mucosal hyperemia in the duodenum and ileum.Villous blunting(100%),deep crypt lymphocytic infiltration(67%),apoptotic bodies(50%),and mild intraepithelial lymphocytosis(69%)were observed in the duodenal biopsies.Moreover,there were other remarkable abnormalities,including reduced or absent goblet cells(duodenum 94%,ileum 62%),reduced or absent Paneth cells(duodenum 94%,ileum 69%)and neutrophil infiltration(duodenum 100%,ileum 69%).Our patients also fulfilled the 2018 diagnostic criteria but did not match the 2022 diagnostic criteria due to undetectable anti-enterocyte antibodies.All patients received glucocorticoid therapy as the initial medication,of which 14/16 patients achieved a clinical response in 5(IQR:3-20)days.Immunosuppressants were administered to 9 patients with indications of steroid dependence(6/9),steroid refractory status(2/9),or intensified maintenance medication(1/9).During the median of 20.5 months of followup,2 patients died from multiple organ failure,and 1 was diagnosed with non-Hodgkin’s lymphoma.The cumulative relapse-free survival rates were 62.5%,55.6%and 37.0%at 6 months,12 months and 48 months,respectively.CONCLUSION Certain histopathological findings,including a decrease or disappearance of goblet and Paneth cells in intestinal biopsies,might be potential diagnostic criteria for adult AIE.The long-term prognosis is still unsatisfactory despite corticosteroid and immunosuppressant medications,which highlights the need for early diagnosis and novel medications.
基金Supported by the Talent Training Plan during the"14th Five-Year Plan"period of Beijing Shijitan Hospital Affiliated to Capital Medical University,No.2023LJRCLFQ.
文摘BACKGROUND Transjugular intrahepatic portosystemic shunt(TIPS)placement is a procedure that can effectively treat complications of portal hypertension,such as variceal bleeding and refractory ascites.However,there have been no specific studies on predicting long-term survival after TIPS placement.AIM To establish a model to predict long-term survival in patients with hepatitis cirrhosis after TIPS.METHODS A retrospective analysis was conducted on a cohort of 224 patients who un-derwent TIPS implantation.Through univariate and multivariate Cox regression analyses,various factors were examined for their ability to predict survival at 6 years after TIPS.Consequently,a composite score was formulated,encompassing the indication,shunt reasonability,portal venous pressure gradient(PPG)after TIPS,percentage decrease in portal venous pressure(PVP),indocyanine green retention rate at 15 min(ICGR15)and total bilirubin(Tbil)level.Furthermore,the performance of the newly developed Cox(NDC)model was evaluated in an in-ternal validation cohort and compared with that of a series of existing models.RESULTS The indication(variceal bleeding or ascites),shunt reasonability(reasonable or unreasonable),ICGR15,post-operative PPG,percentage of PVP decrease and Tbil were found to be independent factors affecting long-term survival after TIPS placement.The NDC model incorporated these parameters and successfully identified patients at high risk,exhibiting a notably elevated mortality rate following the TIPS procedure,as observed in both the training and validation cohorts.Additionally,in terms of predicting the long-term survival rate,the performance of the NDC model was significantly better than that of the other four models[Child-Pugh,model for end-stage liver disease(MELD),MELD-sodium and the Freiburg index of post-TIPS survival].CONCLUSION The NDC model can accurately predict long-term survival after the TIPS procedure in patients with hepatitis cirrhosis,help identify high-risk patients and guide follow-up management after TIPS implantation.
文摘Based on the supply-side perspective,the improved STIRPAT model is applied to reveal the mechanisms of supply-side factors such as human,capital,technology,industrial synergy,institutions and economic growth on carbon emissions in the Yangtze River Delta(YRD)through path analysis,and to forecast carbon emissions in the YRD from the baseline scenario,factor regulation scenario and integrated scenario to reach the peak.The results show that:(1)Jiangsu's high carbon emission pattern is the main reason for the YRD hindering the synergistic regulation of carbon emissions.(2)Human factors,institutional factors and economic growth factors can all contribute to carbon emissions in the YRD region,while technological and industrial factors can generally suppress carbon emissions in the YRD region.(3)Under the capital regulation scenario,the YRD region has the highest level of carbon emission synergy,with Jiangsu reaching its peak five years earlier.Under the balanced regulation scenario,the YRD region as a whole,Jiangsu,Zhejiang and Anhui reach the peak as scheduled.
基金Supported by the New National Excellence Program of the Ministry for Innovation and Technology From the Source of the National Research,Development and Innovation Fund,No.ÚNKP-22-4-SZTE-296,No.ÚNKP-23-3-SZTE-268,and No.ÚNKP-23-5-SZTE-719the EU’s Horizon 2020 Research and Innovation Program under Grant Agreement,No.739593.
文摘BACKGROUND Choosing an optimal post-polypectomy management strategy of malignant colorectal polyps is challenging,and evidence regarding a surveillance-only strategy is limited.AIM To evaluate long-term outcomes after endoscopic removal of malignant colorectal polyps.METHODS A single-center retrospective cohort study was conducted to evaluate outcomes after endoscopic removal of malignant colorectal polyps between 2010 and 2020.Residual disease rate and nodal metastases after secondary surgery and local and distant recurrence rate for those with at least 1 year of follow-up were invest-igated.Event rates for categorical variables and means for continuous variables with 95%confidence intervals were calculated,and Fisher’s exact test and Mann-Whitney test were performed.Potential risk factors of adverse outcomes were RESULTS In total,135 lesions(mean size:22.1 mm;location:42%rectal)from 129 patients(mean age:67.7 years;56%male)were enrolled.The proportion of pedunculated and non-pedunculated lesions was similar,with en bloc resection in 82%and 47%of lesions,respectively.Tumor differentiation,distance from resection margins,depth of submucosal invasion,lymphovascular invasion,and budding were reported at 89.6%,45.2%,58.5%,31.9%,and 25.2%,respectively.Residual tumor was found in 10 patients,and nodal metastasis was found in 4 of 41 patients who underwent secondary surgical resection.Univariate analysis identified piecemeal resection as a risk factor for residual malignancy(odds ratio:1.74;P=0.042).At least 1 year of follow-up was available for 117 lesions from 111 patients(mean follow-up period:5.59 years).Overall,54%,30%,30%,11%,and 16%of patients presented at the 1-year,3-year,5-year,7-year,and 9-10-year surveillance examinations.Adverse outcomes occurred in 9.0%(local recurrence and dissemination in 4 patients and 9 patients,respectively),with no difference between patients undergoing secondary surgery and surveillance only.CONCLUSION Reporting of histological features and adherence to surveillance colonoscopy needs improvement.Long-term adverse outcome rates might be higher than previously reported,irrespective of whether secondary surgery was performed.
基金Project supported by the National Magnetic Confinement Fusion Program of China (Grants Nos.2019YFE03040002 and 2018YFE0301101)the Talent Project of China National Nuclear Corporation,China (Grant No.2022JZYF-01)。
文摘The hybrid scenario,which has good confinement and moderate MHD instabilities,is a proposed operation scenario for international thermonuclear experimental reactor(ITER).In this work,the effect of plasma rotation on the HL-3 hybrid scenario is analyzed with the integrated modeling framework OMFIT.The results show that toroidal rotation has no obvious effect on confinement with a high line averaged density of n_(bar)~(7)×10^(19)m^(-3).In this case,the ion temperature only changes from 4.7 keV to 4.4 keV with the rotation decreasing from 10^(5) rad/s to 10^(3) rad/s,which means that the turbulent heat transport is not dominant.While in the scenarios characterized by lower densities,such as n_(bar)~4×10^(19)m^(-3),turbulent transport becomes dominant in determining heat transport.The ion temperature rises from 3.8 keV to 6.1 keV in the core as the rotation velocity increases from 10^(3) rad/s to 10^(5) rad/s.Despite the ion temperature rising,the rotation velocity does not obviously affect electron temperature or density.Additionally,it is noteworthy that the variation in rotation velocity does not significantly affect the global confinement of plasma in scenarios with low density or with high density.
基金support from the Programa de Apoyos para la Superación del Personal Académico (DGAPA)the support by the Alexander von Humboldt Foundationpart of the SIREI project num 531062023178 developed at CCT-UV
文摘The glacial history of Pico de Orizaba indicates that during the Last Glacial Maximum,its icecap covered up to~3000 m asl;due to the air temperature increasing,its main glacier has retreated to 5050 m asl.The retraction of the glacier has left behind an intense climatic instability that causes a high frequency of freeze-thaw cycles of great intensity;the resulting geomorphological processes are represented by the fragmentation of the bedrock that occupies the upper parts of the mountain.There is a notable lack of studies regarding the fragmentation and erosion occurring in tropical high mountains,and the associated geomorphological risks;for this reason,as a first stage of future continuous research,this study analyzes the freezing and thawing cycles that occur above 4000 m asl,through continuous monitoring of surface ground temperature.The results allow us to identify and characterize four zones:glacial,paraglacial,periglacial and proglacial.It was found that the paraglacial zone presents an intense drop of temperature,of up to~9℃ in only sixty minutes.The rock fatigue and intense freeze-thaw cycles that occur in this area are responsible for the high rate of rock disintegration and represent the main factor of the constant slope dynamics that occur at the site.This activity decreases,both in frequency and intensity,according to the distance to the glacier,which is where the temperature presents a certain degree of stability,until reaching the proglacial zone,where cycles are almost non-existent,and therefore there is no gelifraction activity.The geomorphological processes have resulted in significant alterations to the mountain slopes,which can have severe consequences in terms of risk and water.
基金funded by the Norwegian Research Council through the project MitiStress(Grant No.286773).
文摘Revegetation of former agricultural land is a key option for climate change mitigation and nature conservation.Expansion and abandonment of agricultural land is typically influenced by trends in diets and agricultural inten-sification,which are two key parameters in the Shared Socioeconomic Pathways(SSPs).Datasets mapping future land dynamics under different SSPs and climate change mitigation targets stem from different scenario assump-tions,land data and modelling frameworks.This study aims to determine the role that these three factors play in the estimates of the evolution of cropland and pastureland in future SSPs under different climate scenarios from four main datasets largely used in the climate and land surface studies.The datasets largely agree with the rep-resentation of cropland at present-day conditions,but the identification of pastureland is ambiguous and shows large discrepancies due to the lack of a unique land-use category.Differences occur with future projections,even for the same SSP and climate target.Accounting for CO_(2)sequestration from revegetation of abandoned agri-cultural land and CO_(2)emissions from forest clearance due to agricultural expansion shows a net reduction in vegetation carbon stock for most SSPs considered,except SSP1.However,different datasets give differences in estimates,even when representative of the same scenario.With SSP1,the cumulative increase in carbon stock until 2050 is 3.3 GtC for one dataset,and more than double for another.Our study calls for a common classifica-tion system with improved detection of pastureland to harmonize projections and reduce variability of outcomes in environmental studies.
基金financially supported by Joint Foundation of Ministry of Education of China(No.8091B022225)National Natural Science Foundation of China(No.52173078)。
文摘The presence of iron(Fe) has been found to favor power generation in microbial fuel cells(MFCs). To achieve long-term power production in MFCs, it is crucial to effectively tailor the release of Fe ions over extended operating periods. In this study, we developed a composite anode(A/IF) by coating iron foam with cellulose-based aerogel. The concentration of Fe ions in the anode solution of A/IF anode reaches 0.280 μg/mL(Fe^(2+) vs. Fe^(3+) = 61%:39%) after 720 h of aseptic primary cell operation. This value was significantly higher than that(0.198 μg/mL, Fe^(2+) vs. Fe^(3+) = 92%:8%) on uncoated iron foam(IF), indicating a continuous release of Fe ions over long-term operation. Notably, the resulting MFCs hybrid cell exhibited a 23% reduction in Fe ion concentration(compared to a 47% reduction for the IF anode) during the sixth testing cycle(600-720 h). It achieved a high-power density of 301 ± 55 mW/m^(2) at 720 h, which was 2.62 times higher than that of the IF anode during the same period. Furthermore, a sedimentary microbial fuel cell(SMFCs) was constructed in a marine environment, and the A/IF anode demonstrated a power density of 103 ± 3 mW/m^(2) at 3240 h, representing a 75% improvement over the IF anode. These findings elucidate the significant enhancement in long-term power production performance of MFCs achieved through effective tailoring of Fe ions release during operation.
基金supported by the Philosophy and Social Sciences Planning Project of Guangdong Province of China(GD23XGL099)the Guangdong General Universities Young Innovative Talents Project(2023KQNCX247)the Research Project of Shanwei Institute of Technology(SWKT22-019).
文摘Laboratory safety is a critical area of broad societal concern,particularly in the detection of abnormal actions.To enhance the efficiency and accuracy of detecting such actions,this paper introduces a novel method called TubeRAPT(Tubelet Transformer based onAdapter and Prefix TrainingModule).Thismethod primarily comprises three key components:the TubeR network,an adaptive clustering attention mechanism,and a prefix training module.These components work in synergy to address the challenge of knowledge preservation in models pretrained on large datasets while maintaining training efficiency.The TubeR network serves as the backbone for spatio-temporal feature extraction,while the adaptive clustering attention mechanism refines the focus on relevant information.The prefix training module facilitates efficient fine-tuning and knowledge transfer.Experimental results demonstrate the effectiveness of TubeRAPT,achieving a 68.44%mean Average Precision(mAP)on the CLA(Crazy LabActivity)small-scale dataset,marking a significant improvement of 1.53%over the previous TubeR method.This research not only showcases the potential applications of TubeRAPT in the field of abnormal action detection but also offers innovative ideas and technical support for the future development of laboratory safety monitoring technologies.The proposed method has implications for improving safety management systems in various laboratory environments,potentially reducing accidents and enhancing overall workplace safety.
基金supported by the National MCF Energy R&D Program of China(No.2019YFE03060000)National Natural Science Foundation of China(Nos.12005063,12375215 and 12175034)the Collaborative Innovation Program of Hefei Science Center,CAS(No.2022HSC-CIP008).
文摘The linear and nonlinear simulations are carried out using the gyrokinetic code NLT for the electrostatic instabilities in the core region of a deuterium plasma based on the International Thermonuclear Experimental Reactor(ITER)baseline scenario.The kinetic electron effects on the linear frequency and nonlinear transport are studied by adopting the adiabatic electron model and the fully drift-kinetic electron model in the NLT code,respectively.The linear simulations focus on the dependence of linear frequency on the plasma parameters,such as the ion and electron temperature gradientsκ_(Ti,e)≡R=L_(Ti,e),the density gradientκ_(n)≡R/L_(n)and the ion-electron temperature ratioτ=T_(e)=T_(i).Here,is the major radius,and T_(e)and T_(i)denote the electron and ion temperatures,respectively.L_(A)=-(δ_(r)lnA)^(-1)is the gradient scale length,with denoting the density,the ion and electron temperatures,respectively.In the kinetic electron model,the ion temperature gradient(ITG)instability and the trapped electron mode(TEM)dominate in the small and large k_(θ)region,respectively,wherek_(θ)is the poloidal wavenumber.The TEMdominant region becomes wider by increasing(decreasing)κ_(T_(e))(κ_(T_(i)))or by decreasingκ_(n).For the nominal parameters of the ITER baseline scenario,the maximum growth rate of dominant ITG instability in the kinetic electron model is about three times larger than that in the adiabatic electron model.The normalized linear frequency depends on the value ofτ,rather than the value of T_(e)or T_(i),in both the adiabatic and kinetic electron models.The nonlinear simulation results show that the ion heat diffusivity in the kinetic electron model is quite a lot larger than that in the adiabatic electron model,the radial structure is finer and the time oscillation is more rapid.In addition,the magnitude of the fluctuated potential at the saturated stage peaks in the ITGdominated region,and contributions from the TEM(dominating in the higher k_(θ)region)to the nonlinear transport can be neglected.In the adiabatic electron model,the zonal radial electric field is found to be mainly driven by the turbulent energy flux,and the contribution of turbulent poloidal Reynolds stress is quite small due to the toroidal shielding effect.However,in the kinetic electron model,the turbulent energy flux is not strong enough to drive the zonal radial electric field in the nonlinear saturated stage.The kinetic electron effects on the mechanism of the turbulence-driven zonal radial electric field should be further investigated.
基金supported by the National Natural Science Foundation of China(51875302)。
文摘The forward design of trajectory planning strategies requires preset trajectory optimization functions,resulting in poor adaptability of the strategy and an inability to accurately generate obstacle avoidance trajectories that conform to real driver behavior habits.In addition,owing to the strong time-varying dynamic characteristics of obstacle avoidance scenarios,it is necessary to design numerous trajectory optimization functions and adjust the corresponding parameters.Therefore,an anthropomorphic obstacle-avoidance trajectory planning strategy for adaptive driving scenarios is proposed.First,numerous expert-demonstrated trajectories are extracted from the HighD natural driving dataset.Subsequently,a trajectory expectation feature-matching algorithm is proposed that uses maximum entropy inverse reinforcement learning theory to learn the extracted expert-demonstrated trajectories and achieve automatic acquisition of the optimization function of the expert-demonstrated trajectory.Furthermore,a mapping model is constructed by combining the key driving scenario information that affects vehicle obstacle avoidance with the weight of the optimization function,and an anthropomorphic obstacle avoidance trajectory planning strategy for adaptive driving scenarios is proposed.Finally,the proposed strategy is verified based on real driving scenarios.The results show that the strategy can adjust the weight distribution of the trajectory optimization function in real time according to the“emergency degree”of obstacle avoidance and the state of the vehicle.Moreover,this strategy can generate anthropomorphic trajectories that are similar to expert-demonstrated trajectories,effectively improving the adaptability and acceptability of trajectories in driving scenarios.
基金supported by the National Key R&D Program of China under Grant 2021YFB1407001the National Natural Science Foundation of China (NSFC) under Grants 62001269 and 61960206006+2 种基金the State Key Laboratory of Rail Traffic Control and Safety (under Grants RCS2022K009)Beijing Jiaotong University, the Future Plan Program for Young Scholars of Shandong Universitythe EU H2020 RISE TESTBED2 project under Grant 872172
文摘A large amount of mobile data from growing high-speed train(HST)users makes intelligent HST communications enter the era of big data.The corresponding artificial intelligence(AI)based HST channel modeling becomes a trend.This paper provides AI based channel characteristic prediction and scenario classification model for millimeter wave(mmWave)HST communications.Firstly,the ray tracing method verified by measurement data is applied to reconstruct four representative HST scenarios.By setting the positions of transmitter(Tx),receiver(Rx),and other parameters,the multi-scenarios wireless channel big data is acquired.Then,based on the obtained channel database,radial basis function neural network(RBF-NN)and back propagation neural network(BP-NN)are trained for channel characteristic prediction and scenario classification.Finally,the channel characteristic prediction and scenario classification capabilities of the network are evaluated by calculating the root mean square error(RMSE).The results show that RBF-NN can generally achieve better performance than BP-NN,and is more applicable to prediction of HST scenarios.
基金supported in part by the National Key R&D Program of China(No.2022YFB2902202)in part by the Fundamental Research Funds for the Central Universities(No.2242023K30034)+2 种基金in part by the National Natural Science Foundation of China(No.62171121,U22A2001),in part by the National Natural Science Foundation of China(No.62301144)in part by the National Natural Science Foundation of Jiangsu Province,China(No.BK20211160)in part by the Southeast University Startup Fund(No.4009012301)。
文摘Physical-layer secret key generation(PSKG)provides a lightweight way for group key(GK)sharing between wireless users in large-scale wireless networks.However,most of the existing works in this field consider only group communication.For a commonly dual-task scenario,where both GK and pairwise key(PK)are required,traditional methods are less suitable for direct extension.For the first time,we discover a security issue with traditional methods in dual-task scenarios,which has not previously been recognized.We propose an innovative segment-based key generation method to solve this security issue.We do not directly use PK exclusively to negotiate the GK as traditional methods.Instead,we generate GK and PK separately through segmentation which is the first solution to meet dual-task.We also perform security and rate analysis.It is demonstrated that our method is effective in solving this security issue from an information-theoretic perspective.The rate results of simulation are also consistent with the our rate derivation.
基金the financial supports provided by the National Natural Science Foundation of China(U2040222,52293431,and 52278259)。
文摘This study investigates the long-term performance of laboratory dam concrete in different curing environments over ten years and the microstructure of 17-year-old laboratory concrete and actual concrete cores drilled from the Three Gorges Dam.The mechanical properties of the laboratory dam concrete,whether cured in natural or standard environments,continued to improve over time.Furthermore,the laboratory dam concrete exhibited good resistance to diffusion and a refined microstructure after 17 years.However,curing and long-term exposure to the local natural environment reduced the frost resistance.Microstructural analyses of the laboratory concrete samples demonstrated that moderate-heat cement and fine fly ash(FA)particles were almost fully hydrated to form compact micro structures consisting of large quantities of homogeneous calcium(alumino)silicate hydrate(C-(A)-S-H)gels and a few crystals.No obvious interfacial transition zones were observed in the microstructure owing to the longterm pozzolanic reaction.This dense and homogenous microstructure was the crucial reason for the excellent long-term performance of the dam concrete.A high FA volume also played a significant role in the microstructural densification and performance growth of dam concrete at a later age.The concrete drilled from the dam surface exhibited a loose microstructure with higher microporosity,indicating that concrete directly exposed to the actual service environment suffered degradation caused by water and wind attacks.In this study,both macro-performance and microstructural analyses revealed that the application of moderate-heat cement and FA resulted in a dense and homogenous microstructure,which ensured the excellent long-term performance of concrete from the Three Gorges Dam after 17 years.Long-term exposure to an actual service environment may lead to microstructural degradation of the concrete surface.Therefore,the retained long-term dam concrete samples need to be further researched to better understand its microstructural evolution and development of its properties.
基金supported by the National Science Foundation of China(No.31770672 and 3137062)the National Basic Research Program of China(No.2010CB950602)。
文摘Atmospheric nitrogen(N)deposition is predicted to increase,especially in the subtropics.However,the responses of soil microorganisms to long-term N addition at the molecular level in N-rich subtropical forests have not been clarified.A long-term nutrient addition experiment was conducted in a subtropical evergreen old-growth forest in China.The four treatments were:control,low N(50 kg N ha^(-1)a^(-1)),high N(100 kg N ha^(-1)a^(-1)),and combined N and phosphorus(P)(100 kg N ha^(-1)a^(-1)+50 kg P ha^(-1)a^(-1)).Metagenomic sequencing characterized diversity and composition of soil microbial communities and used to construct bacterial/fungal co-occurrence networks.Nutrient-treated soils were more acidic and had higher levels of dissolved organic carbon than controls.There were no significant differences in microbial diversity and community composition across treatments.The addition of nutrients increased the abundance of copiotrophic bacteria and potentially beneficial microorganisms(e.g.,Gemmatimonadetes,Chaetomium,and Aureobasidium).Low N addition increased microbiome network connectivity.Three rare fungi were identified as module hubs under nutrient addition,indicating that low abundance fungi were more sensitive to increased nutrients.The results indicate that the overall composition of microbial communities was stable but not static to long-term N addition.Our findings provide new insights that can aid predictions of the response of soil microbial communities to long-term N addition.
基金supported by the National Natural Science Foundation of China (Grant Nos.41701296 and 42277481)the Natural Science Foundation of Gansu Province (GrantNo.22JR5RA058)the Youth Science and Technology Fund Program of Gansu Province (Grant No.22JR5RA087).
文摘Interest in the dynamics of soil respiration(R_(S))in subalpine forest ecosystems is increasing due to their high soil carbon density and potential sensitivity to environmental changes.However,as a principal silvicultural practice,the long-term impacts of thinning on R_(S) and its heterotrophic and autotrophic respiration components(R_(h) and Ra,respectively)in subalpine plantations are poorly understood,espe-cially in winter.A 3-year field observation was carried out with consideration of winter CO_(2) efflux in middle-aged sub-alpine spruce plantations in northwestern China.A trench-ing method was used to explore the long-term impacts of thinning on Rs,Rn and R_(a).Seventeen years after thinning,mean annual Rs,Rn and R_(a) increased,while the contribu-tion of R_(h) to R_(s) decreased with thinning intensity.Thinning significantly decreased winter R,because of the reduction in R_(n) but had no significant effect on Ra.The temperature sensitivity(Q_(10))of R_(h) and R_(a) also increased with thinning intensity,with lower Q_(10) values for R_(h)(2.1-2.6)than for Ra(2.4-2.8).The results revealed the explanatory variables and pathways related to R_(n) and R_(a) dynamics.Thinning increased soil moisture and nitrate nitrogen(NO_(3)^(-)-N),and the enhanced nitrogen and water availability promoted R_(h) and R_(a) by improving fine root biomass and microbial activity.Our results highlight the positive roles of NO_(3)^(-)-N in stimulating R_(s) components following long-term thinning.Therefore,applications of nitrogen fertilizer are not recommended while thinning subalpine spruce plantations from the perspective of reducing soil CO_(2) emissions.The increased Q_(10) values of R_(s) components indicate that a large increase in soil CO_(2) emissions would be expected following thinning because of more pronounced climate warming in alpineregions.
基金the Science and Technology Project of State Grid Corporation of China,Grant Number 5108-202304065A-1-1-ZN.
文摘Stochastic unit commitment is one of the most powerful methods to address uncertainty. However, the existingscenario clustering technique for stochastic unit commitment cannot accurately select representative scenarios,which threatens the robustness of stochastic unit commitment and hinders its application. This paper providesa stochastic unit commitment with dynamic scenario clustering based on multi-parametric programming andBenders decomposition. The stochastic unit commitment is solved via the Benders decomposition, which decouplesthe primal problem into the master problem and two types of subproblems. In the master problem, the committedgenerator is determined, while the feasibility and optimality of generator output are checked in these twosubproblems. Scenarios are dynamically clustered during the subproblem solution process through the multiparametric programming with respect to the solution of the master problem. In other words, multiple scenariosare clustered into several representative scenarios after the subproblem is solved, and the Benders cut obtainedby the representative scenario is generated for the master problem. Different from the conventional stochasticunit commitment, the proposed approach integrates scenario clustering into the Benders decomposition solutionprocess. Such a clustering approach could accurately cluster representative scenarios that have impacts on theunit commitment. The proposed method is tested on a 6-bus system and the modified IEEE 118-bus system.Numerical results illustrate the effectiveness of the proposed method in clustering scenarios. Compared withthe conventional clustering method, the proposed method can accurately select representative scenarios whilemitigating computational burden, thus guaranteeing the robustness of unit commitment.
文摘Long-term navigation ability based on consumer-level wearable inertial sensors plays an essential role towards various emerging fields, for instance, smart healthcare, emergency rescue, soldier positioning et al. The performance of existing long-term navigation algorithm is limited by the cumulative error of inertial sensors, disturbed local magnetic field, and complex motion modes of the pedestrian. This paper develops a robust data and physical model dual-driven based trajectory estimation(DPDD-TE) framework, which can be applied for long-term navigation tasks. A Bi-directional Long Short-Term Memory(Bi-LSTM) based quasi-static magnetic field(QSMF) detection algorithm is developed for extracting useful magnetic observation for heading calibration, and another Bi-LSTM is adopted for walking speed estimation by considering hybrid human motion information under a specific time period. In addition, a data and physical model dual-driven based multi-source fusion model is proposed to integrate basic INS mechanization and multi-level constraint and observations for maintaining accuracy under long-term navigation tasks, and enhanced by the magnetic and trajectory features assisted loop detection algorithm. Real-world experiments indicate that the proposed DPDD-TE outperforms than existing algorithms, and final estimated heading and positioning accuracy indexes reaches 5° and less than 2 m under the time period of 30 min, respectively.