期刊文献+
共找到1,390篇文章
< 1 2 70 >
每页显示 20 50 100
Flow softening and dynamic recrystallization behavior of a Mg-Gd-Y-Nd-Zr alloy under elevated temperature compressions
1
作者 Yiping WU Yuzhen JIA +3 位作者 Sha Zhang Yu Liu Hanqing Xiong Gang Chen 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第8期2891-2900,共10页
Flow softening behavior of a homogenized Mg-7Gd-4Y-1Nd-0.5Zr alloy under compression to a final strain of∼1.8 at elevated temperatures of 450∼550℃ and a constant strain rate of 2s^(−1) has been investigated by opti... Flow softening behavior of a homogenized Mg-7Gd-4Y-1Nd-0.5Zr alloy under compression to a final strain of∼1.8 at elevated temperatures of 450∼550℃ and a constant strain rate of 2s^(−1) has been investigated by optical microscopy,scanning electron microscopy,electron back-scattered diffraction and transmission electron microscopy.The results show that true stress first rises to the peak point and then drops to the bottom value and increases again with further increasing strain at each temperature.Twinning dynamic recrystallization(DRX)and continuous DRX contribute to the formation of new fine grains at temperatures 450∼475℃ when the restoration is caused by both DRX and texture change due to extension twinning,resulting in the larger softening degrees compared with the softening effects owing to continuous DRX and discontinuous DRX at 500∼550℃ when twinning activation is suppressed.500℃ is the transition temperature denoting a significant decline in the contribution of twinning and TDRX to the strain with increasing temperature.The cuboid-shape phase exists in both homogenized and compressed samples,while the compositions are varied. 展开更多
关键词 Mg-Gd-Y alloy elevated temperature compression Flow softening Dynamic recrystallization
下载PDF
High temperature deformation and recrystallization behavior of magnesium bicrystals with 90°<1010>and 90°<1120>tilt grain boundaries
2
作者 Kevin Bissa Talal Al-Samman Dmitri A.Molodov 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期625-638,共14页
The deformation mechanisms and dynamic recrystallization(DRX)behavior of specifically grown bicrystals with a symmetric 90°<1010>and 90°<1120>tilt grain boundary,respectively,were investigated un... The deformation mechanisms and dynamic recrystallization(DRX)behavior of specifically grown bicrystals with a symmetric 90°<1010>and 90°<1120>tilt grain boundary,respectively,were investigated under deformation in plane strain compression at 200℃and 400℃.The microstructures were analyzed by panoramic optical microscopy and large-area electron backscatter diffraction(EBSD)orientation mapping.The analysis employed a meticulous approach utilizing hundreds of individual,small EBSD maps with a small step size that were stitched together to provide comprehensive access to orientation and misorientation data on a macroscopic scale.Basal slip primarily governed the early stages of deformation at the two temperatures,and the resulting shear induced lattice rotation around the transverse direction(TD)of the sample.The existence of the grain boundary gave rise to dislocation pile-up in its vicinity,leading to much larger TD-lattice rotations within the boundary region compared to the bulk.With increasing temperature,the deformation was generally more uniform towards the bulk due to enhanced dislocation mobility and more uniform stress distribution.Dynamic recrystallization at 200℃was initiated in{1011}-compression twins at strains of 40%and higher.At 400℃,DRX consumed the entire grain boundary region and gradually replaced the deformed microstructure with progressing deformation.The recrystallized grains displayed characteristic orientations,such that their c-axes were perpendicular to the TD and additionally scattered between 0°and 60°from the loading axis.These recrystallized grains displayed mutual rotations of up to 30°around the c-axes of the initial grains,forming a discernible basal fiber texture component,prominently visible in the{1120}pole figure.It is noteworthy that the deformation and DRX behaviors of the two analyzed bicrystals exhibited marginal variations in response to strain and deformation temperature. 展开更多
关键词 elevated deformation temperatures Plain strain compression Magnesium bicrystals Panorama EBSD Dynamic Recrystallization
下载PDF
CO_2 absorption with ionic liquids at elevated temperatures 被引量:7
3
作者 Lu Bai Dawei Shang +3 位作者 Mengdie Li Zhongde Dai Liyuan Deng Xiangping Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第5期1001-1006,共6页
COcapture with ionic liquids(ILs) has attracted many attentions, and most works focused on absorption ability at ambient temperatures, while seldom research was concerned at elevated temperatures.This not only limit... COcapture with ionic liquids(ILs) has attracted many attentions, and most works focused on absorption ability at ambient temperatures, while seldom research was concerned at elevated temperatures.This not only limits the COabsorption application at elevated temperature, but also the determination of the operation condition of the COdesorption generally occurring at higher temperature. This work mainly reported COsolubilities in ILs at elevated temperatures and related properties were also provided. 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide([CnMIm][TfN]) ILs were selected as physical absorbents for COcapture in this work due to their relative higher COabsorption capacities and good thermal stabilities. The long-term stability tests showed that [CnMIm][TfN] is thermally stable at 393.15 K for long time. COsolubilities in [CnMIm][TfN] were systematically determined at temperatures from 353.15 K to 393.15 K. It demonstrated that COsolubility obviously increases with the increase of pressure while slightly decreases with increase of temperature. As the length of alkyl chain on the cation increases, COsolubility in ILs increases. Additionally, the thermodynamic properties including the Gibbs free energy, enthalpy, and entropy of COwere also calculated. 展开更多
关键词 Ionic liquids CO2 capture elevated temperature Pre-combustion
下载PDF
Influence of surface coating on Ti811 alloy resistance to fretting fatigue at elevated temperature 被引量:6
4
作者 ZHANG Xiaohua LIU Daoxin 《Rare Metals》 SCIE EI CAS CSCD 2009年第3期266-271,共6页
An extensive study of the composition distribution, bonding strength, hardness, and wear resistance of a 0Cr18Ni9 film deposited on a Ti811 titanium alloy surface by ion beam enhanced deposition (IBED) is presented.... An extensive study of the composition distribution, bonding strength, hardness, and wear resistance of a 0Cr18Ni9 film deposited on a Ti811 titanium alloy surface by ion beam enhanced deposition (IBED) is presented. Shot peening was introduced to post-treat the modified surface to synergistically improve the fretting fatigue resistance of the Ti811 alloy at 350°C. The results indicate that the 0Cr18Ni9 film with high density, small grain size, low void radio, and high bonding strength can be prepared using IBED. As a result, the hardness, wear resistance, and fretting fatigue resistance of the Ti811 alloy are increased to a remarkable extent. Compared with shot peening treatment or IBED 0Cr18Ni9 film alone, the Ti811 titanium alloy with an IBED 0Cr18Ni9 film combined with shot peening shows a higher fretting fatigue resistance at 350°C. This is due to the synergistic effect of the high wear resistance of the film surface and the residual compressive stress induced by shot peening. 展开更多
关键词 titanium alloys fretting fatigue elevated temperature shot peening ion beam enhanced deposition
下载PDF
VISCO-PLASTIC CONSTITUTIVE MODEL FOR UNIAXIAL AND MULTIAXIAL RATCHETING AT ELEVATED TEMPERATURES 被引量:4
5
作者 G.Z.Kang Q.Gao J.Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第4期431-436,共6页
Based on the experimental results of the ratcheting for SS304 stainless steel, a new visco-plastic cyclic constitutive model was established to describe the uniaxial and multiaxial ratcheting of the material at room a... Based on the experimental results of the ratcheting for SS304 stainless steel, a new visco-plastic cyclic constitutive model was established to describe the uniaxial and multiaxial ratcheting of the material at room and elevated temperatures within the framework of unified visco-plasticity. In the model, the temperature dependence of the ratcheting was emphasized, and the dynamic strain aging occurred in the temperature range of 4 00-600℃ for the material was taken into account particularly. Finally, the prediction capability of the developed model was checked by comparing to the corresponding experimental results. 展开更多
关键词 constitutive model RATCHETING elevated temperature multiaxial loading
下载PDF
Response of phenology- and yield-related traits of maize to elevated temperature in a temperate region 被引量:3
6
作者 Dana Shim Kyu-Jong Lee Byun-Woo Lee 《The Crop Journal》 SCIE CAS CSCD 2017年第4期305-316,共12页
Extreme high temperatures detrimental to maize production are projected to occur more frequently with future climate change.Phenology and yield-related traits were investigated under several levels of elevated tempera... Extreme high temperatures detrimental to maize production are projected to occur more frequently with future climate change.Phenology and yield-related traits were investigated under several levels of elevated temperature in two early-maturing hybrid cultivars:Junda 6(grown in northeastern China)and Chalok 1(grown in South Korea).They were cultivated in plastic houses in Suwon,Korea(37.27°N,126.99°E)held at target temperatures of ambient(AT),AT+1.5°C,AT+3°C,and AT+5°C at one sowing date in 2013 and three different sowing dates in 2014.Vegetative and reproductive growth durations showed variation depending on sowing date,experimental year,and cultivar.Growth duration tended to decrease,but not necessarily,with temperature elevation,but somewhat increased again above a certain temperature.High temperature-dependent variation was greater during grain filling than in the vegetative period before anthesis.Elevated temperature showed no significant effects on duration or peak dates of silking and anthesis,and thus on anthesis–silking interval.Grain yield tended to decrease with temperature elevation above ambient,showing a sharper linear decrease with mean growing season temperature increase in Junda 6 than in Chalok 1.The decrease in kernel number accounted for a much greater contribution to the yield reductions due to temperature elevation than did the decrease in individual kernel weight in both cultivars.Individual harvestable kernel weight was not significantly affected by temperature elevation treatments.Kernel number showed a linear decrease with mean growth temperature from early ear formation to early grain-filling stage,with Junda 6 showing a much severer decrease than Chalok 1.Kernel number reduction due to temperature elevation was attributable more to the decrease in differentiated ovule number than to the decrease in kernel set in Chalok 1,but largely to the decrease of kernel set in Junda 6. 展开更多
关键词 MAIZE elevated temperature PHENOLOGY YIELD Yield-related TRAITS
下载PDF
Effect of Yttrium on Microstructures and Properties at Elevated Temperature of Mg-0.8Zr-0.35Zn Alloys 被引量:4
7
作者 梁维中 宁志良 +2 位作者 王海波 刘洪德 刘洪汇 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第2期268-271,共4页
The effects of Y addition on microstructures and properties of as-cast and solid solutioning and aging treated Mg-0.8Zr-0.35Zn alloys at elevated temperature (250 ℃) were investigated by the use of XJG-04 optical mic... The effects of Y addition on microstructures and properties of as-cast and solid solutioning and aging treated Mg-0.8Zr-0.35Zn alloys at elevated temperature (250 ℃) were investigated by the use of XJG-04 optical microscopy, JCXA-733 electron probe, D/max-rB X-ray diffractometer (XRD) and WDW-200 electronic universal material testing machine. The results show that the microstructures of as-cast and heat treated Mg-0.8Zr-0.35Zn alloys with Y addition are refined and a new phase, Mg_(24)Y_5, is formed. At 250 ℃, the strength at elevated temperature of the alloys increases with increasing amount of Y addition, but relative elongation and area reduction decreases. The tendency of brittle fracture of fractured surface at elevated temperature is enlarged and fracture is changed from ductile into cleavage. 展开更多
关键词 metal materials MICROSTRUCTURES elevated temperature properties rare earth metal
下载PDF
Elevated temperature intensity,timing,and duration of exposure affect soybean internode elongation,mainstem node number,and pod number per plant 被引量:3
8
作者 Leon Hartwell Allen Jr. Lingxiao Zhang +1 位作者 Kenneth J.Boote Bernard A.Hauser 《The Crop Journal》 SCIE CAS CSCD 2018年第2期148-161,共14页
A study was conducted in four compartments of a polycarbonate greenhouse at Gainesville,FL, USA to investigate how a soybean(Glycine max L. Merr.) cultivar, Maverick(maturity group III, indeterminate), responded to th... A study was conducted in four compartments of a polycarbonate greenhouse at Gainesville,FL, USA to investigate how a soybean(Glycine max L. Merr.) cultivar, Maverick(maturity group III, indeterminate), responded to three elevated temperatures, ELT,(day/night of 34/26 °C, 38/30 °C, and 42/34 °C) in comparison to a control growth temperature(30/22 °C).Carbon dioxide(CO_2) concentration was maintained at 700 μmol mol^(-1) in each compartment by a processor controlled air-sampling and CO_2-injection system. Three sequential experiments were conducted at different times of year(summer, autumn, and early spring)to investigate the effect of intensity, timing, and duration of ELT on soybean node number,internode elongation, mainstem length, and number of pods set per plant. At the control temperature, the soybean plants grown in the polycarbonate greenhouse were taller than field-grown plants. When plants were grown under continuous ELT applied soon after sowing or at initial flowering, the number of nodes increased with increasing ELT intensity,whereas the length of individual internodes decreased. When ELT treatment was applied during the beginning of flowering stage(R1–R2) or earlier, more nodes were produced and the length of affected internodes was decreased. When the ELT was imposed later at reproductive stage R5+ just before the beginning of seed filling, effects on node numbers and internode lengths were negligible. Short-term(10-day) duration of ELT applied at four stages from V3 to R5+ did not significantly affect final mean numbers of nodes or mean mainstem lengths. Possible mechanisms of elevated temperature effects on soybean internode elongation and node number(internode number) are discussed. Total pod numbers per plant increased linearly with mainstem node numbers and mainstem length.Furthermore, total pod numbers per plant were greatest at 34/26 °C rather than at the control temperature of 30/22 °C(and remained high at 38/30 °C). Mild increases in temperature might not threaten, but actually increase, yields of soybean in northerly zones where this crop is currently grown at slightly suboptimal temperatures. However, a sustained increase in ambient temperature would likely threaten soybean yields. 展开更多
关键词 elevated temperature INTERNODE ELONGATION Node NUMBER POD yield SOYBEAN PHENOLOGY
下载PDF
Characterization of mechanical properties of aluminum cast alloy at elevated temperature 被引量:6
9
作者 Shuiqiang ZHANG Yichi ZHANG +5 位作者 Ming CHEN Yanjun WANG Quan CUI Rong WU D.AROLA Dongsheng ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第7期967-980,共14页
The tensile response, the low cycle fatigue (LCF) resistance, and the creep behavior of an aluminum (A1) cast alloy are studied at ambient and elevated temperatures. A non-contact real-time optical extensometer ba... The tensile response, the low cycle fatigue (LCF) resistance, and the creep behavior of an aluminum (A1) cast alloy are studied at ambient and elevated temperatures. A non-contact real-time optical extensometer based on the digital image correlation (DIC) is developed to achieve strain measurements without damage to the specimen. The optical extensometer is validated and used to monitor dynamic strains during the mechanical experiments. Results show that Young's modulus of the cast alloy decreases with the increasing temperature, and the percentage elongation to fracture at 100 ℃ is the lowest over the temperature range evaluated from 25 ℃ to 300 ℃. In the LCF test, the fatigue strength coefficient decreases, whereas the fatigue strength exponent increases with the rising temperature. The fatigue ductility at 100 ℃. As expected, the resistance to and changes from 200 ℃ to 300 ℃. coefficient and exponent reach maximum values creep decreases with the increasing temperature 展开更多
关键词 mechanical behavior aluminum(A1)cast alloy elevated temperature digital image correlation(DIC) optical extensometer
下载PDF
Development of New Wear-Resistant Surface Coating at Elevated Temperature 被引量:3
10
作者 LI Shang-ping FENG Di LUO He-li ZHANG Xi-e CAO Xu 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2006年第5期37-40,59,共5页
Because of good oxidation resistance at high temperature and excellent mechanical properties of Ni3 Al and high hot hardness, and good oxidation resistance of chromium carbide, chromium carbide particle reinforced Ni3... Because of good oxidation resistance at high temperature and excellent mechanical properties of Ni3 Al and high hot hardness, and good oxidation resistance of chromium carbide, chromium carbide particle reinforced Ni3Al matrix composite would possess excellent wear resistance at elevated temperature. Cr3 C2-NiAl-Ni welding wire was produced by pressureless sintering process in vacuum. When the welding wire was welded on the surface of carbon steel, under the action of the physical heat of arc, NiAl reacted with nickel to form Ni3 Al and carbide particle reinforced Ni3 Al matrix composite was formed on the welding layers. Cr3 C2 was dissolved during welding and dispersed Cr7C3 was formed, which strengthened the Ni3Al matrix significantly. The CrTC3-Ni3Al interface was broadened, and a zone of interdiffusion and a new phase M23 C6 were formed, indicating that a good bond has been formed. The hardness of Cr7 C3/Ni3 Al composite at room and elevated temperatures is much higher than that of stellite alloys. In addition, CrTC3/Ni3Al composite possesses better high temperature oxidation resistance than stellite 12 alloy. So Cr7 C3/ Ni3 Al composite can become an attractive potential candidate for elevated temperature wear-resistant surface material. 展开更多
关键词 NI3AL chromium carbide COMPOSITE wear resistance elevated temperature
下载PDF
Experimental determination of mechanical properties and short-time creep of AISI 304 stainless steel at elevated temperatures 被引量:3
11
作者 Josip Brnic Ji-tai Niu +2 位作者 Goran Turkalj Marko Canadija Domagoj Lanc 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第1期39-45,共7页
The high temperature properties of AISI 304 stainless steel were studied. Basic data about the employed experimental equipment, testing procedures, and specimen geometry were given. The experimental setup was used to ... The high temperature properties of AISI 304 stainless steel were studied. Basic data about the employed experimental equipment, testing procedures, and specimen geometry were given. The experimental setup was used to obtain stress-strain diagrams from tensile tests at room temperature as well as several elevated temperatures. Furthermore, the specimens were subjected to short-time creep tests at various temperatures. Stress levels for creep testing were established as a percentage of yield stress. The results indicate that at lowered temperatures and lower stress levels, AISI 304 stainless steel can be used as a sufficiently creep resistant material. 展开更多
关键词 AISI 304 mechanical properties elevated temperature creep tests constitutive model
下载PDF
A method of elevated temperatures coupled with magnetic stirring to predict real time release from long acting progesterone PLGA microspheres 被引量:3
12
作者 Mingzhu Ye Hongliang Duan +6 位作者 Lixia Yao Yicheng Fang Xiaoyu Zhang Ling Dong Feifei Yang Xinggang Yang Weisan Pan 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2019年第2期222-232,共11页
The object of the study was to develop a quick and reproducible accelerated in vitro release method to predict and deduce the function of the real time(37 °C) release for long acting PLGA microspheres. The method... The object of the study was to develop a quick and reproducible accelerated in vitro release method to predict and deduce the function of the real time(37 °C) release for long acting PLGA microspheres. The method could be described in several steps. First, the release of the microspheres were studied using the sample and separate method at 37 °C with normal orbital shaking and elevated temperatures with magnetic stirring to further accelerate the release. Second, the most similar profile at elevated temperatures with the real time release was chosen with the help of the n value in the fitted Korsmeyer-Peppas Function. Third,the Weibull function and conversion ratio were used to deduce the function of real time release according to the chosen profile at elevated temperatures. The key point in this study was to provide a quick and precise method to predict the real time release for long acting progesterone PLGA microspheres. So the elevated temperatures coupled with magnetic stirring were used to accelerate the release further, and when there have many similar release profiles with the real time release at elevated temperatures, releasing time at elevated temperatures and the R2 of the final deduced function will be used to help choosing the most similar release profile with the real time release. Four different types of progesterone PLGA microspheres were used to verify the method, and all the deduced function correlated well with the real time releases, for R2 = 0.9912, 0.9781, 0.9918 and 0.9972, respectively. 展开更多
关键词 LONG ACTING PLGA MICROSPHERES elevated temperatures Korsmeyer-Peppas equation Weibull function
下载PDF
Processing of AM60 magnesium alloy by hydrostatic cyclic expansion extrusion at elevated temperature as a new severe plastic deformation method 被引量:8
13
作者 Farshad Samadpour Ghader Faraji Armin Siahsarani 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第5期669-677,共9页
Hydrostatic cyclic expansion extrusion(HCEE) process at elevated temperatures is proposed as a method for processing less deformable materials such as magnesium and for producing long ultrafine-grained rods. In the HC... Hydrostatic cyclic expansion extrusion(HCEE) process at elevated temperatures is proposed as a method for processing less deformable materials such as magnesium and for producing long ultrafine-grained rods. In the HCEE process at elevated temperatures, high-pressure molten linear low-density polyethylene(LLDPE) was used as a fluid to eliminate frictional forces. To study the capability of the process,AM60 magnesium rods were processed and the properties were investigated. The mechanical properties were found to improve significantly after the HCEE process. The yield and ultimate strengths increased from initial values of 138 and 221 MPa to 212 and 317 MPa, respectively.Moreover, the elongation was enhanced due to the refined grains and the existence of high hydrostatic pressure. Furthermore, the microhardness was increased from HV 55.0 to HV 72.5. The microstructural analysis revealed that ultrafine-grained structure could be produced by the HCEE process. Moreover, the size of the particles decreased, and these particles thoroughly scattered between the grains. Finite element analysis showed that the HCEE was independent of the length of the sample, which makes the process suitable for industrial applications. 展开更多
关键词 high-pressure fluid elevated temperature severe plastic deformation HYDROSTATIC CYCLIC EXPANSION EXTRUSION mechanical properties magnesium alloy
下载PDF
Pilot study on the effects of elevated air temperature and CO2 on artificially defoliated silver birch saplings 被引量:2
14
作者 Valda Araminiene Iveta Varnagiryte-Kabasinskiene Vidas Stakenas 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第6期1507-1518,共12页
The impacts of elevated temperature and COon young silver birch(Betula pendula Roth) saplings after 0,25, 50 or 75% artificial defoliation were assessed by measuring plant height and dry mass of aboveground compartmen... The impacts of elevated temperature and COon young silver birch(Betula pendula Roth) saplings after 0,25, 50 or 75% artificial defoliation were assessed by measuring plant height and dry mass of aboveground compartments and roots and various morphological and physiological variables. Defoliation either increased or decreased plant growth depending on the severity of damage and the climatic treatment. At 21 °C and400 mg LCO, defoliated plants were not able to compensate for the lost foliage, but growth compensation and adaptation to the changed conditions were greater; growth of young defoliated silver birch saplings increased, which led to increased height and a tendency to enhance final aboveground and root biomass and leaf nitrogen and carbon content compared to the nondefoliated controls. Nevertheless, the short-term effect of the different climatic conditions did not result in a significant overgrowth of defoliated plants. A slight increase in temperature and COwere the most acceptable conditions for defoliated plants;however, a 4 °C increase with correspondingly higher COwas more stressful as shown by less growth in height and biomass allocation to leaves, stems and roots. The findings from the pilot experiment are more applicable to young birch trees, but stress on young trees may be reflected in future tree growth. 展开更多
关键词 BIOMASS Betula pendula CO_2 concentration elevated temperature PHOTOSYNTHESIS
下载PDF
DYNAMIC TENSILE BEHAVIOR OF 5CrMnMo AT ELEVATED TEMPERATURES 被引量:2
15
作者 W.Huang X.Nie +1 位作者 X.Zan Y.M.Xia 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第4期521-527,共7页
A new experimental technique has been developed for the performance of high temperature, high-strain rate tensile experiments in the self-designed tensile impact apparatus. This technique uses rapid contact heating me... A new experimental technique has been developed for the performance of high temperature, high-strain rate tensile experiments in the self-designed tensile impact apparatus. This technique uses rapid contact heating method to heat the specimen to the desired temperature, thus avoids a significant temperature rise in incident and transmitted bars, and at the same time it is capable of retaining a nearly homogeneous temperature field within the specimen. As an illustration of its application, the high-temperature response of the forging die steel 5CrMnMo at high strain rates has been examined. Stress-strain curves are obtained for this material at strain rates ranging from 230s-1 to 1200s-1 and at temperature ranging from 25 to 600℃, respectively. For comparison, quasi-static experiments are performed over a slightly smaller range of temperatures. 展开更多
关键词 elevated temperature strain rate TENSILE 5CrMnMo
下载PDF
A new die-cast magnesium alloy for applications at higher elevated temperatures of 200-300℃ 被引量:6
16
作者 Xixi Dong Lingyun Feng +2 位作者 Shihao Wang Eric A.Nyberg Shouxun Ji 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第1期90-101,共12页
The development of lightweight magnesium(Mg)alloys capable of operating at elevated temperatures of 200-300℃and the ability of using high pressure die casting for high-volume manufacturing are the most advanced devel... The development of lightweight magnesium(Mg)alloys capable of operating at elevated temperatures of 200-300℃and the ability of using high pressure die casting for high-volume manufacturing are the most advanced developments in manufacturing critical parts for internal combustion engines used in power tools.Here we report the microstructure and mechanical properties of a newly developed die-cast Mg-RE(La,Ce,Nd,Gd)-Al alloy capable of working at higher elevated temperatures of 200-300℃.The new alloy delivers the yield strength of 94 MPa at 300℃,which demonstrates a 42%increase over the benchmark AE44 high temperature die-cast Mg alloy.The new alloy also has good stiffness at elevated temperatures with its modulus only decreasing linearly by 13%from room temperature up to 300℃.Thermal analysis shows a minor peak at 364.7℃in the specific heat curve of the new alloy,indicating a good phase stability of the alloy up to 300℃.Nd and Gd have more affinity to Al for the formation of the minority of divorced Al-RE(Nd,Gd)based compounds,and the stable Al-poor Mg_(12)RE(La_(0.22)Ce_(0.13)Nd_(0.31)Gd_(0.31))Zn_(0.39)Al_(0.13)compound acts as the continuous inter-dendritic network,which contribute to the high mechanical performance and stability of the new die-cast Mg alloy at 200-300℃. 展开更多
关键词 Magnesium alloys High pressure die casting elevated temperatures MICROSTRUCTURE Mechanical properties
下载PDF
Response of coralline algae Porolithon onkodes to elevated seawater temperature and reduced pH 被引量:2
17
作者 Xinming Lei Lei Jiang +3 位作者 Yuyang Zhang Guowei Zhou Jiansheng Lian Hui Huang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2020年第2期132-137,共6页
Coralline algae(CA),a type of primary calcifying producer presented in coastal ecosystems,are considered one of the highly sensitive organisms to marine environmental change.However,experimental studies on coralline a... Coralline algae(CA),a type of primary calcifying producer presented in coastal ecosystems,are considered one of the highly sensitive organisms to marine environmental change.However,experimental studies on coralline algae responses to elevated seawater temperature and reduced pH have documented either contradictory or opposite results.In this study,we analysed the growth and physiological responses of coralline algae Porolithon onkodes to the elevated temperature(30.8°C)and reduced pH(7.8).The aim of this analysis was to observe the direct and combined effects,while elucidating the growth and photosynthesis in this response.It was demonstrated that the algae thallus growth rate and photosynthesis under elevated temperature were depressed by 21.5%and 14.9%respectively.High pCO2 enhanced the growth and photosynthesis of the thallus at ambient temperature,while they were deceased when both temperature and pCO2 were elevated.CA is among the most sensitive organisms to ocean acidification(OA)because of their precipitate high Mg-calcite.We hypothesize that coralline algae could increase their calcification rate in order to counteract the effects of moderate acidification,but offset by the effect of elevated temperature.Accordingly,our results also support the conclusion that global warming(GW)is a stronger threat to algal performance than OA.Our findings are also proposed that coralline algae may be more resilient under OA than GW. 展开更多
关键词 crustose coralline algae RESPONSE elevated temperature reduced pH EFFECTS
下载PDF
Shrinkage Behavior of High Performance Concrete at Different Elevated Temperatures under Different Sealing Conditions 被引量:2
18
作者 潘志华 NAKAMURA Hidemi WEE Tionghuan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2006年第3期138-141,共4页
The shrinkage behavior of high performance cement concrete made from Portland cement, ultra fine granulated blast furnace slag and pulverized fly ash with addition of superplasticizer at different temperatures from am... The shrinkage behavior of high performance cement concrete made from Portland cement, ultra fine granulated blast furnace slag and pulverized fly ash with addition of superplasticizer at different temperatures from ambient temperature to 120 ℃ under different seuliug conditions was investigated by means of length change measurement on cylindrical concrete specimens along with curing age. Results show that drying shrinkage deformations of titled concrete specimens increased rapidly as the curing temperature rose. The development of dryiing shrinkage deformatian can be efficiently controlled with the aid of aluminum tape sealing as compared with the unsealed specimens, especially when the curing temperature is below 60℃ , although it will increase dramatically when the curing temperature is elevated to above 90%" . Polymer coating on concrete specimens showed a similar effect on the control of drying shrinkage as the sealing operation with aluminum tape. 展开更多
关键词 high performance concrete SHRINKAGE granulated blast-furnace slag fly ash elevated temperature sealing condition
下载PDF
Effects of temperature,slip amplitude,contact pressure on fretting fatigue behavior of Ti811 alloys at elevated temperatures 被引量:2
19
作者 Xiaohua ZHANG Daoxin LIU 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2009年第2期131-137,共7页
Effects of the temperature, slip amplitude, and contact pressure on fretting fatigue (FF) behavior of the Ti811 titanium alloy were investigated using a high frequency fatigue machine and a home-made high temperatur... Effects of the temperature, slip amplitude, and contact pressure on fretting fatigue (FF) behavior of the Ti811 titanium alloy were investigated using a high frequency fatigue machine and a home-made high temperature apparatus. The fretting fatigue failure mechanism was studied by observing the fretting surface morphology features. The results show that the sensitivity to fretting fatigue is high at both 350 and 500 ℃. The higher the temperature, the more sensitive to the fretting fatigue failure is. Creep is an important factor that influences the fretting fatigue failure process at elevated temperatures. The fretting fatigue life of the Ti811 alloy does not change in a monotonic way as the slip amplitude and contact pressure increase. This is owing to the fact that the slip amplitude affects the action of fatigue and wear in the fretting process, and the nominal contact pressure affects the distribution and concentration of the stress and the amplitude of fretting slip at the contact surface, and thus further influences the crack initiation probability and the driving force for propagation. 展开更多
关键词 Fretting fatigue (FF) elevated temperature Titanium alloy Slip amplitude CREEP
下载PDF
Influence of Sc^(3+) on LiMn_2O_4 cathode materials at elevated temperature 被引量:2
20
作者 刘慧勇 邓干群 郭永榔 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第5期722-726,共5页
Sc^3+-doped lithium manganese oxides were synthesized by solid-state reaction. The influences of doping element on structure, mean valence of manganese, and electrochemical performances were studied by X-ray diffract... Sc^3+-doped lithium manganese oxides were synthesized by solid-state reaction. The influences of doping element on structure, mean valence of manganese, and electrochemical performances were studied by X-ray diffraction (XRD), galvanostatic charge-discharge and cyclic voltammetric tests, and also electrochemical impedance spectroscopy (EIS). XRD tests showed that doped lithium manganese oxides were pure spinel structure without other phases. Redox titration and visible spectrophotometry tests indicated that the mean valence of manganese in doped lithium manganese oxides was higher than that of pure one. LiSc0.02Mn1.9804 remained 92.9% of the initial specific discharge capacity after 50th cycle at a constant current of 50 m/g, and the reversibility of LiSc0.02Mn1.98O4 was improved in comparison with pure LiMn2O4 at 50 ℃. EIS indicated that film deposition on spinel particles was suppressed because of Sc^3+ doping, and the charge transfer between the surface film and spinel particles with increasing temperature for Sc^3+-doped materials became easier as compared with undoped one. 展开更多
关键词 Sc^3+-doped LiMn2O4 elevated temperature capacity fading rare earths
下载PDF
上一页 1 2 70 下一页 到第
使用帮助 返回顶部