Rare earth mineral composite materials were prepared using rare earths and natural far-infrared mineral materials . The influences of rare earth additive content and heat treatment temperature on the far infrared radi...Rare earth mineral composite materials were prepared using rare earths and natural far-infrared mineral materials . The influences of rare earth additive content and heat treatment temperature on the far infrared radiance were studied. The results show that the far infrared radiance of rare earth mineral composite materials is 0.93 when the rare earth additive content is 6% and heat treatment temperature is 750℃.展开更多
Long-wave infrared (IR) generation based on type-Ⅱ (o→e+o) phase matching ZnGeP2 (ZGP) and CdSe optical parametric oscillators (OPOs) pumped by a 2.05μm Tm,Ho:GdVO4 laser is reported. The comparisons of t...Long-wave infrared (IR) generation based on type-Ⅱ (o→e+o) phase matching ZnGeP2 (ZGP) and CdSe optical parametric oscillators (OPOs) pumped by a 2.05μm Tm,Ho:GdVO4 laser is reported. The comparisons of the birefringent walk-off effect and the oscillation threshold between ZGP and CdSe OPOs are performed theoretically and experimentally. For the ZGP OPO, up to 419 mW output at 8.04 μm is obtained at the 8 kHz pump pulse repetition frequency (PRF) with a slope efficiency of 7.6%. This ZGP OPO can be continuously tuned from 7.8 to 8.5 μm. For the CdSe OPO, we demonstrate a 64 mW output at 8.9μm with a single crystal 28 mm in length.展开更多
Two-dimensional(2D) materials, such as graphene, transition metal dichalcogenides(TMDs), black phosphorus(BP),and related derivatives, have attracted great attention due to their advantages of flexibility, strong ligh...Two-dimensional(2D) materials, such as graphene, transition metal dichalcogenides(TMDs), black phosphorus(BP),and related derivatives, have attracted great attention due to their advantages of flexibility, strong light–matter interaction,broadband absorption, and high carrier mobility, and have become a powerful contender for next-generation infrared photodetectors. However, since the thickness of 2D materials is on the order of nanometers, the absorption of 2D materials is very weak, which limits the detection performance of 2D materials-based infrared photodetectors. In order to solve this problem, scientific researchers have tried to use optimized device structures to combine with 2D materials for improving the performance of infrared photodetectors. In this review, we review the progress of room-temperature infrared photodetectors with hybrid structure based on 2D materials in recent years, focusing mainly on 2D–nD(n = 0, 1, 2) heterostructures, the integration between 2D materials and on-chip or plasmonic structure. Finally, we summarize the current challenges and point out the future development direction.展开更多
Rare earth composite materials radiating far-infrared rays were prepared according to far infrared absorption spectrum of main component in liquefied petroleum gas (LPG). The composite materials were characterized by ...Rare earth composite materials radiating far-infrared rays were prepared according to far infrared absorption spectrum of main component in liquefied petroleum gas (LPG). The composite materials were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and Fourier transformed infrared spectra(FTIR). The results show that after the composite materials were calcined at 873 K for 4 h, FTIR spectra of rare earth composite materials display two new peaks at 1336 and 2926 cm-1 available for activating LPG.展开更多
The rare earth composite materials (RECMS) for far infrared radiation were prepared using rare earth elements and natural mineral materials radiating far infrared. The effects of the granularity and rare earth additio...The rare earth composite materials (RECMS) for far infrared radiation were prepared using rare earth elements and natural mineral materials radiating far infrared. The effects of the granularity and rare earth additions on the far infrared radiation were investigated. The results show that the as-prepared composite materials with higher infrared radiance can enhance the combustion of gasoline, when the composite are about 4.24 μm in average granularity and comprise about 6% (mass fraction) of rare earth. Through bench test, the oil-saving rate of the engine dealt with the composite is 2.8%~3.7%, and the reducing rate of CO and HC in the exhaust gas is 20%~25% and 28%~30%, respectively.展开更多
The rare earth, far-infrared natural mineral and clay were compounded to prepare the far-infrared composite materials. The effects of the far-infrared composite materials on the physicochemical properties of diesel fu...The rare earth, far-infrared natural mineral and clay were compounded to prepare the far-infrared composite materials. The effects of the far-infrared composite materials on the physicochemical properties of diesel fuel were studied. It shows that the composite materials can radiate higher intensity of far infrared; and the surface tension, viscosity and flash point decrease when the diesel fuel is dealt with the composite materials containing rare earth elements; and then the available effect mechanisms of the composite materials on the properties of diesel fuel were investigated by testing the activity changes of arene.展开更多
Erosion test of some infrared (IR) optical crystals (Ge, ZnS, MgF2, and quartz) was conducted with a number of different erodents (glass bead, and angular SiC, SiO2, Al2O3) by a homemade gas-blasting erosion tes...Erosion test of some infrared (IR) optical crystals (Ge, ZnS, MgF2, and quartz) was conducted with a number of different erodents (glass bead, and angular SiC, SiO2, Al2O3) by a homemade gas-blasting erosion tester. The influence of impact angle, impact velocity, erodent, and erosion time on the erosion rate and the effect of erosion on their IR transmittance were studied. The dam- aged surface morphology was characterized by scanning electron microscopy, and the erosion mechanism was explored. All of the materials show the maximum in wear versus impact angle at 90°, confirming their brittle failure behavior. It is found that the erosion rate is dependent on the erodent velocity by a power law, and it is highly correlated to the hardness of the erodent. The erosion rate-time curves do not show an incubation state, but an accelerated erosion period followed a maximum erosion (steady state). The decrease of IR transmittance is direct proportion to the erosion rate. Although the material loss occurs primarily by brittle process, ductile behavior is clearly an important feature, especially for MgF2 and ZnS.展开更多
Optical metasurfaces are two-dimensional arrays of nano-scatterers that modify optical wavefronts at subwavelength spatial resolution.They achieve the effect of focusing through phase control under a subwavelength sca...Optical metasurfaces are two-dimensional arrays of nano-scatterers that modify optical wavefronts at subwavelength spatial resolution.They achieve the effect of focusing through phase control under a subwavelength scale,and are called metalenses.They are poised to revolutionize optics by enabling complex low-cost systems.However,there are severe monochromatic aberrations in the metasurfaces.In this paper,the coma of the long-wave infrared optical system is eliminated through a single-layer metasurface.By changing the phase function,this metalens has a numerical aperture of 0.89,a focal length of 150μm and a field of view of 120°(0.4@60 line pairs/mm)that enables diffraction-limited monochromatic imaging along the focal plane at a wavelength of 10.6μm.The designed metasurface maintains a favorable value of the modulation transfer function at different angles.This equipment can be widely used in imaging and industrial processing.展开更多
In view of the difficulties in traditional long-wave infrared imaging spectrometer which is hard to realize a high signal-to-noise ratio and miniaturization as well under the weak remote sensing signal,Offner convex g...In view of the difficulties in traditional long-wave infrared imaging spectrometer which is hard to realize a high signal-to-noise ratio and miniaturization as well under the weak remote sensing signal,Offner convex grating spectrometer and Dyson concave grating spectrometer,both having concentric structure,are designed and analyzed in the band of 8-12 μm. The diffraction angle expressions of the two spectrometers are obtained and the diffraction characteristics are acquired. Both of the spectrometers are designed in Zemax environment under different F-numbers and different grating constants with the same slit,spatial resolution,spectral resolution and detector. The results show that Dyson grating spectrometer possesses the advantages of higher throughput and smaller volume, and Offner grating spectrometer possesses the advantage of more accessible material and the absence of chromatic aberration. The differences between Dyson form and Offner form show that the former is a better choice in the long-wave infrared imaging spectrometer.展开更多
According to the basic infrared stealth mechanism of low infrared emissivity powders,the ZAO powder materials were prepared by liquid coprecipitation method,and the starting materials were Zn( NO3) 6H2O and Al( NO3) 3...According to the basic infrared stealth mechanism of low infrared emissivity powders,the ZAO powder materials were prepared by liquid coprecipitation method,and the starting materials were Zn( NO3) 6H2O and Al( NO3) 39H2O. The process parameters were obtained,and the relationship between technology parameters and infrared emissivity was investigated. The temperature of thermal treatment,crystal structure and surface micrograph of ZAO powder was analyzed by the help of TG-DTA,XRD and SEM. The infrared stealth performance of ZAO powder was studied by IR-2 emissivity spectroscopy. Results showed that the infrared emissivity was the lowest when pH was 8. 0,calcination temperature was 1100 ℃,calcination time was 2 h,and the Al2O3doping content was 3% ( mass percentage) . The crystal structure of doped ZAO powder was lead-zinc, and there exists distortion of crystal lattice in nanocrystalline ZnO. The average particle size was 10 μm. The lowest infrared emissivity reached to 0. 61 at between 8 μm and 14 μm. It means that the ZAO powders will be excellent infrared stealthy materials.展开更多
Nowadays, the material recycling is a growing trend in development of building materials and therefore using of secondary raw materials for production new building materials is in accordance with sustainable developme...Nowadays, the material recycling is a growing trend in development of building materials and therefore using of secondary raw materials for production new building materials is in accordance with sustainable development in civil engineering. Therefore, it is increasingly becoming crucial to accelerate the transition from application of non-renewable sources of raw materials to renewable raw materials. One fast renewable resource is natural plant fibers. The use of the cellulosic fibers as environmentally friendly material in building products contributes to the environmental protection and saves non-renewable resources of raw materials. Wood fibers and recycled cellulose fibers of waste paper appear as suited reinforcing elements for cement-based materials. In this paper, there is used application of Fourier transform infrared spectroscopy (FTIR) on cellulose fibers coming from different sources. FTIR spectra of cellulose fiber samples are investigated and compared with reference sample of cellulose.展开更多
We investigated image processing algorithms of the original infrared glass flaw image. Using the Laplacian edge enhancement following LSD (Line Segment Detector) algorithm, we can get a good flaw image very consiste...We investigated image processing algorithms of the original infrared glass flaw image. Using the Laplacian edge enhancement following LSD (Line Segment Detector) algorithm, we can get a good flaw image very consistent with the original one. This study is very helpful to further enhance the infrared glass flaw inspection technique.展开更多
The rare earth composite ceramic materials were prepared using rare earths and far infrared natural mineral. The effects of the as-prepared ceramic materials on the oil consumption and air pollutants emissions of oil-...The rare earth composite ceramic materials were prepared using rare earths and far infrared natural mineral. The effects of the as-prepared ceramic materials on the oil consumption and air pollutants emissions of oil-burning boiler were investigated. The results show that the composite ceramic materials can radiate higher intensity of far infrared. The molecular movement is strengthened and the chemical bonds of the molecules are easily ruptured when the diesel oil is dealt with the composite materials. The oil-saving rate of the RBS·VH-1 .5 boiler dealt with the rare earth composite ceramic materials is 3.49%, and the reducing rates of CO and NO in the exhaust gas are 25.4% and 9.7%, respectively.展开更多
Infrared radiation is one of the main exposure symptoms of military targets. Infrared radiation differences between targets and backgrounds should be eliminated to the greatest extent to fight against all kinds of inf...Infrared radiation is one of the main exposure symptoms of military targets. Infrared radiation differences between targets and backgrounds should be eliminated to the greatest extent to fight against all kinds of infrared reconnaissance. In addition to the employment of the camouflage paint with low emissivity, reducing the surface temperature of targets is an urgent and difficult challenge. PCM (phase-change material) can be used to effectively solve this problem. The application of microcapsule in the infrared stealth materials greatly promotes the development of infrared stealth technology.展开更多
Nanoscale powder of SiO2/Al2O3/TiO2 composite was prepared by sol-gel method. Microstructure and morphology of the obtained samples were characterized by infrared (IR), X-ray diffraction (XRD) analysis and transmi...Nanoscale powder of SiO2/Al2O3/TiO2 composite was prepared by sol-gel method. Microstructure and morphology of the obtained samples were characterized by infrared (IR), X-ray diffraction (XRD) analysis and transmission electron microscopy (TEM). It is proved that infrared absorbing peaks of the samples are in waveband range of 1300-400 cm^-1, and the peak shape changes with their component. Mechanism of the infrared peak's positions and shapes which changes with the size and morphology of the prepared nano-particles has been tentatively discussed.展开更多
The Fourier Transform Infrared (FT-IR) spectroscopy is by far known to be a useful technique for qualitative and quantitative analysis of asbestos in bulk samples, since all asbestos species exhibit intense absorption...The Fourier Transform Infrared (FT-IR) spectroscopy is by far known to be a useful technique for qualitative and quantitative analysis of asbestos in bulk samples, since all asbestos species exhibit intense absorption peaks in the 4000 - 400 cm-1 region of the infrared spectrum. In the present work, we compare the accuracy and precision of two analytical procedures (the Linear Calibration Curve Method and the Method of Addition) for the quantitative determination of asbestos in a host matrix. We have found that, providing careful samples preparation, both techniques quantify the asbestos content at the level of few micrograms with good precision. Due to less expensive equipment requirements and shorter analysis time, FT-IR can be a competitive analytical technique in the characterization of asbestos containing material with the respect to diffractometry or electron microscopy.展开更多
Sn_(1−x)Er_(x)O_(2)(x=0%,8%,16%,24%)micro/nanofibers were prepared by electrospinning combined with heat treatment using erbium nitrate,stannous chloride and polyvinylpyrrolidone(PVP)as raw materials.The target produc...Sn_(1−x)Er_(x)O_(2)(x=0%,8%,16%,24%)micro/nanofibers were prepared by electrospinning combined with heat treatment using erbium nitrate,stannous chloride and polyvinylpyrrolidone(PVP)as raw materials.The target products were characterized by thermogravimetric analyzer,X-ray diffrotometer,fourier transform infrared spectrometer,scanning electron microscope,spectrophotometer and infrared emissivity tester,and the effects of Er^(3+)doping on its infrared and laser emissivity were studied.At the same time,the Sn_(1−x)Er_(x)O_(2)(x=0%,16%)doping models were constructed based on the first principles of density functional theory,and the related optoelectronic properties such as their energy band structure,density of states,reflectivity and dielectric constant were analyzed,and further explained the mechanism of Er^(3+)doping on SnO_(2)infrared emissivity and laser absorption from the point of electronic structure.The results showed that after calcination at 600℃,single rutile type SnO_(2)was formed,and the crystal structure was not changed by doping Er^(3+).The calcined products showed good fiber morphology,and the average fiber diameter was 402 nm.The infrared emissivity and resistivity of the samples both decreased first and then increased with the increase of Er^(3+)doping amount.When x=16%,the infrared emis-sivity of the sample was at least 0.71;and Er^(3+)doping can effectively reduce the reflectivity of SnO_(2)at 1.06μm and 1.55μm,when x=16%,its reflectivity at 1.06μm and 1.55μm are 50.5%and 40%,respectively,when x=24%,the reflectivity at 1.06μm and 1.55μm wavelengths are 47.3%and 42.1%,respectively.At the same time,the change of carrier concentration and electron transition before and after Er^(3+)doping were described by first-principle calculation,and the regulation mechanism of infrared emissivity and laser reflectivity was explained.This study provides a certain experimental and theoretical basis for the development of a single-type,light-weight and easily prepared infrared and laser compatible-stealth material.展开更多
Phase change material(PCM) can be used to prepare the infrared false targets for realizing all-weather passive infrared decoy,but its low thermal conductivity is a great blockage to the simulation of the infrared sign...Phase change material(PCM) can be used to prepare the infrared false targets for realizing all-weather passive infrared decoy,but its low thermal conductivity is a great blockage to the simulation of the infrared signature of thick metal plates.For that reason,a method of simulating the infrared signature of thick steel plates by thermal conduction enhanced PCM,including the aluminum fins,is proposed.A physical and mathematic model is set up,and the infrared signature simulation of thick steel plate is investigated numerically.The effects of the distribution density and thickness of fins and the thickness of PCM plate on the simulation results are discussed,and the reasonable construction parameters of PCM plates used to simulate the steel plates of different thickness are obtained.展开更多
Opto-thermal transient emission radiometry(OTTER) is a infrared remote sensing technique, which has been successfully used in in vivoskin moisture content and skin moisture depth profiling measurements. In present pap...Opto-thermal transient emission radiometry(OTTER) is a infrared remote sensing technique, which has been successfully used in in vivoskin moisture content and skin moisture depth profiling measurements. In present paper, we extend this moisture content measurement capability to analyze the moisture content of fruit(tomato, grape, etc.) skins, and to study the relationship between fruits ripening process and their surface moisture and moisture depth profiles.展开更多
The resin composite materials (RCM) were prepared by the method of doping resin with tourmaline powders modified with lanthanum element. It was characterized by scanning electron microscope (SEM), IR radiation determi...The resin composite materials (RCM) were prepared by the method of doping resin with tourmaline powders modified with lanthanum element. It was characterized by scanning electron microscope (SEM), IR radiation determination, X-ray diffraction (XRD), and fourier transform infrared spectroscope (FTIR). The results showed that the RCM could radiate higher intensity of far infrared. The molecular movement was strengthened and the inter-molecular contacts were easily reduced when the diesel oil was dealt with the RCM. The effects of the RCM on the oil consumption and air pollutant emissions of oil-burning boiler were investigated. The oil-saving rate of the RBS·VH-1.5 boiler dealt with the RCM was 2.76%, and the reducing rates of CO and NO in the exhaust gas were 32.9% and 15.8%, respectively.展开更多
基金Project supported by the Key Technologies R & D Programme of Tianjin (06YFGZGX02400)
文摘Rare earth mineral composite materials were prepared using rare earths and natural far-infrared mineral materials . The influences of rare earth additive content and heat treatment temperature on the far infrared radiance were studied. The results show that the far infrared radiance of rare earth mineral composite materials is 0.93 when the rare earth additive content is 6% and heat treatment temperature is 750℃.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60878011 and 61078008)the Program for New Century Excellent Talents in University,China (Grant No. NCET-10-0067)
文摘Long-wave infrared (IR) generation based on type-Ⅱ (o→e+o) phase matching ZnGeP2 (ZGP) and CdSe optical parametric oscillators (OPOs) pumped by a 2.05μm Tm,Ho:GdVO4 laser is reported. The comparisons of the birefringent walk-off effect and the oscillation threshold between ZGP and CdSe OPOs are performed theoretically and experimentally. For the ZGP OPO, up to 419 mW output at 8.04 μm is obtained at the 8 kHz pump pulse repetition frequency (PRF) with a slope efficiency of 7.6%. This ZGP OPO can be continuously tuned from 7.8 to 8.5 μm. For the CdSe OPO, we demonstrate a 64 mW output at 8.9μm with a single crystal 28 mm in length.
基金Project supported by the National Natural Science Foundation of China(Grant No.61704061)
文摘Two-dimensional(2D) materials, such as graphene, transition metal dichalcogenides(TMDs), black phosphorus(BP),and related derivatives, have attracted great attention due to their advantages of flexibility, strong light–matter interaction,broadband absorption, and high carrier mobility, and have become a powerful contender for next-generation infrared photodetectors. However, since the thickness of 2D materials is on the order of nanometers, the absorption of 2D materials is very weak, which limits the detection performance of 2D materials-based infrared photodetectors. In order to solve this problem, scientific researchers have tried to use optimized device structures to combine with 2D materials for improving the performance of infrared photodetectors. In this review, we review the progress of room-temperature infrared photodetectors with hybrid structure based on 2D materials in recent years, focusing mainly on 2D–nD(n = 0, 1, 2) heterostructures, the integration between 2D materials and on-chip or plasmonic structure. Finally, we summarize the current challenges and point out the future development direction.
基金Project supported by the Key Technologies R & D Programme of Tianjin (06YFGZGX02400)
文摘Rare earth composite materials radiating far-infrared rays were prepared according to far infrared absorption spectrum of main component in liquefied petroleum gas (LPG). The composite materials were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and Fourier transformed infrared spectra(FTIR). The results show that after the composite materials were calcined at 873 K for 4 h, FTIR spectra of rare earth composite materials display two new peaks at 1336 and 2926 cm-1 available for activating LPG.
文摘The rare earth composite materials (RECMS) for far infrared radiation were prepared using rare earth elements and natural mineral materials radiating far infrared. The effects of the granularity and rare earth additions on the far infrared radiation were investigated. The results show that the as-prepared composite materials with higher infrared radiance can enhance the combustion of gasoline, when the composite are about 4.24 μm in average granularity and comprise about 6% (mass fraction) of rare earth. Through bench test, the oil-saving rate of the engine dealt with the composite is 2.8%~3.7%, and the reducing rate of CO and HC in the exhaust gas is 20%~25% and 28%~30%, respectively.
文摘The rare earth, far-infrared natural mineral and clay were compounded to prepare the far-infrared composite materials. The effects of the far-infrared composite materials on the physicochemical properties of diesel fuel were studied. It shows that the composite materials can radiate higher intensity of far infrared; and the surface tension, viscosity and flash point decrease when the diesel fuel is dealt with the composite materials containing rare earth elements; and then the available effect mechanisms of the composite materials on the properties of diesel fuel were investigated by testing the activity changes of arene.
基金supported by the National Natural Science Foundation of China (No.50572007)
文摘Erosion test of some infrared (IR) optical crystals (Ge, ZnS, MgF2, and quartz) was conducted with a number of different erodents (glass bead, and angular SiC, SiO2, Al2O3) by a homemade gas-blasting erosion tester. The influence of impact angle, impact velocity, erodent, and erosion time on the erosion rate and the effect of erosion on their IR transmittance were studied. The dam- aged surface morphology was characterized by scanning electron microscopy, and the erosion mechanism was explored. All of the materials show the maximum in wear versus impact angle at 90°, confirming their brittle failure behavior. It is found that the erosion rate is dependent on the erodent velocity by a power law, and it is highly correlated to the hardness of the erodent. The erosion rate-time curves do not show an incubation state, but an accelerated erosion period followed a maximum erosion (steady state). The decrease of IR transmittance is direct proportion to the erosion rate. Although the material loss occurs primarily by brittle process, ductile behavior is clearly an important feature, especially for MgF2 and ZnS.
基金the National Natural Science Foundation of China(Grant No.61875087)Innovation and Development Foundation of China Academy of Engineering Physics(Grant No.CX20200021)。
文摘Optical metasurfaces are two-dimensional arrays of nano-scatterers that modify optical wavefronts at subwavelength spatial resolution.They achieve the effect of focusing through phase control under a subwavelength scale,and are called metalenses.They are poised to revolutionize optics by enabling complex low-cost systems.However,there are severe monochromatic aberrations in the metasurfaces.In this paper,the coma of the long-wave infrared optical system is eliminated through a single-layer metasurface.By changing the phase function,this metalens has a numerical aperture of 0.89,a focal length of 150μm and a field of view of 120°(0.4@60 line pairs/mm)that enables diffraction-limited monochromatic imaging along the focal plane at a wavelength of 10.6μm.The designed metasurface maintains a favorable value of the modulation transfer function at different angles.This equipment can be widely used in imaging and industrial processing.
基金Sponsored by the National High Technology Research and Development Program of China(863 Program)(Grant No.2013AA03A116)
文摘In view of the difficulties in traditional long-wave infrared imaging spectrometer which is hard to realize a high signal-to-noise ratio and miniaturization as well under the weak remote sensing signal,Offner convex grating spectrometer and Dyson concave grating spectrometer,both having concentric structure,are designed and analyzed in the band of 8-12 μm. The diffraction angle expressions of the two spectrometers are obtained and the diffraction characteristics are acquired. Both of the spectrometers are designed in Zemax environment under different F-numbers and different grating constants with the same slit,spatial resolution,spectral resolution and detector. The results show that Dyson grating spectrometer possesses the advantages of higher throughput and smaller volume, and Offner grating spectrometer possesses the advantage of more accessible material and the absence of chromatic aberration. The differences between Dyson form and Offner form show that the former is a better choice in the long-wave infrared imaging spectrometer.
基金Sponsored by the Young Academic Backbone Funding Schemes of Harbin Normal University (Grant No KGB200906)China Postdoctoral Science Foundation( Grant No20100471069)Science and Technology Research Projects of Heilongjiang Provincial Education Department (Grant No11551119)
文摘According to the basic infrared stealth mechanism of low infrared emissivity powders,the ZAO powder materials were prepared by liquid coprecipitation method,and the starting materials were Zn( NO3) 6H2O and Al( NO3) 39H2O. The process parameters were obtained,and the relationship between technology parameters and infrared emissivity was investigated. The temperature of thermal treatment,crystal structure and surface micrograph of ZAO powder was analyzed by the help of TG-DTA,XRD and SEM. The infrared stealth performance of ZAO powder was studied by IR-2 emissivity spectroscopy. Results showed that the infrared emissivity was the lowest when pH was 8. 0,calcination temperature was 1100 ℃,calcination time was 2 h,and the Al2O3doping content was 3% ( mass percentage) . The crystal structure of doped ZAO powder was lead-zinc, and there exists distortion of crystal lattice in nanocrystalline ZnO. The average particle size was 10 μm. The lowest infrared emissivity reached to 0. 61 at between 8 μm and 14 μm. It means that the ZAO powders will be excellent infrared stealthy materials.
文摘Nowadays, the material recycling is a growing trend in development of building materials and therefore using of secondary raw materials for production new building materials is in accordance with sustainable development in civil engineering. Therefore, it is increasingly becoming crucial to accelerate the transition from application of non-renewable sources of raw materials to renewable raw materials. One fast renewable resource is natural plant fibers. The use of the cellulosic fibers as environmentally friendly material in building products contributes to the environmental protection and saves non-renewable resources of raw materials. Wood fibers and recycled cellulose fibers of waste paper appear as suited reinforcing elements for cement-based materials. In this paper, there is used application of Fourier transform infrared spectroscopy (FTIR) on cellulose fibers coming from different sources. FTIR spectra of cellulose fiber samples are investigated and compared with reference sample of cellulose.
基金Funded by the Program for New Century Excellent Talents in University (11-0687)the National Natural Science Foundation of China (51172169)the Fundamental Research Funds for the Central Universities (Wuhan University of Technology)
文摘We investigated image processing algorithms of the original infrared glass flaw image. Using the Laplacian edge enhancement following LSD (Line Segment Detector) algorithm, we can get a good flaw image very consistent with the original one. This study is very helpful to further enhance the infrared glass flaw inspection technique.
基金Project supported by the Key Technologies R & D Programme of Tianjin (06YFGZGX02400)
文摘The rare earth composite ceramic materials were prepared using rare earths and far infrared natural mineral. The effects of the as-prepared ceramic materials on the oil consumption and air pollutants emissions of oil-burning boiler were investigated. The results show that the composite ceramic materials can radiate higher intensity of far infrared. The molecular movement is strengthened and the chemical bonds of the molecules are easily ruptured when the diesel oil is dealt with the composite materials. The oil-saving rate of the RBS·VH-1 .5 boiler dealt with the rare earth composite ceramic materials is 3.49%, and the reducing rates of CO and NO in the exhaust gas are 25.4% and 9.7%, respectively.
文摘Infrared radiation is one of the main exposure symptoms of military targets. Infrared radiation differences between targets and backgrounds should be eliminated to the greatest extent to fight against all kinds of infrared reconnaissance. In addition to the employment of the camouflage paint with low emissivity, reducing the surface temperature of targets is an urgent and difficult challenge. PCM (phase-change material) can be used to effectively solve this problem. The application of microcapsule in the infrared stealth materials greatly promotes the development of infrared stealth technology.
基金the Science Foundation of Yunnan Province under grant No.2001E0003Z.
文摘Nanoscale powder of SiO2/Al2O3/TiO2 composite was prepared by sol-gel method. Microstructure and morphology of the obtained samples were characterized by infrared (IR), X-ray diffraction (XRD) analysis and transmission electron microscopy (TEM). It is proved that infrared absorbing peaks of the samples are in waveband range of 1300-400 cm^-1, and the peak shape changes with their component. Mechanism of the infrared peak's positions and shapes which changes with the size and morphology of the prepared nano-particles has been tentatively discussed.
文摘The Fourier Transform Infrared (FT-IR) spectroscopy is by far known to be a useful technique for qualitative and quantitative analysis of asbestos in bulk samples, since all asbestos species exhibit intense absorption peaks in the 4000 - 400 cm-1 region of the infrared spectrum. In the present work, we compare the accuracy and precision of two analytical procedures (the Linear Calibration Curve Method and the Method of Addition) for the quantitative determination of asbestos in a host matrix. We have found that, providing careful samples preparation, both techniques quantify the asbestos content at the level of few micrograms with good precision. Due to less expensive equipment requirements and shorter analysis time, FT-IR can be a competitive analytical technique in the characterization of asbestos containing material with the respect to diffractometry or electron microscopy.
基金supported by the Key Research and Development Program of Hebei Province(No.21351501D)A Provincial and Ministerial Scientific Research Project(LJ20212C031165)Basic Frontier Science and Technology Innovation Project of Army Engineering University of PLA(KYSZJQZL2210)。
文摘Sn_(1−x)Er_(x)O_(2)(x=0%,8%,16%,24%)micro/nanofibers were prepared by electrospinning combined with heat treatment using erbium nitrate,stannous chloride and polyvinylpyrrolidone(PVP)as raw materials.The target products were characterized by thermogravimetric analyzer,X-ray diffrotometer,fourier transform infrared spectrometer,scanning electron microscope,spectrophotometer and infrared emissivity tester,and the effects of Er^(3+)doping on its infrared and laser emissivity were studied.At the same time,the Sn_(1−x)Er_(x)O_(2)(x=0%,16%)doping models were constructed based on the first principles of density functional theory,and the related optoelectronic properties such as their energy band structure,density of states,reflectivity and dielectric constant were analyzed,and further explained the mechanism of Er^(3+)doping on SnO_(2)infrared emissivity and laser absorption from the point of electronic structure.The results showed that after calcination at 600℃,single rutile type SnO_(2)was formed,and the crystal structure was not changed by doping Er^(3+).The calcined products showed good fiber morphology,and the average fiber diameter was 402 nm.The infrared emissivity and resistivity of the samples both decreased first and then increased with the increase of Er^(3+)doping amount.When x=16%,the infrared emis-sivity of the sample was at least 0.71;and Er^(3+)doping can effectively reduce the reflectivity of SnO_(2)at 1.06μm and 1.55μm,when x=16%,its reflectivity at 1.06μm and 1.55μm are 50.5%and 40%,respectively,when x=24%,the reflectivity at 1.06μm and 1.55μm wavelengths are 47.3%and 42.1%,respectively.At the same time,the change of carrier concentration and electron transition before and after Er^(3+)doping were described by first-principle calculation,and the regulation mechanism of infrared emissivity and laser reflectivity was explained.This study provides a certain experimental and theoretical basis for the development of a single-type,light-weight and easily prepared infrared and laser compatible-stealth material.
基金Sponsored by National Nature Science Foundation of China (50402009)
文摘Phase change material(PCM) can be used to prepare the infrared false targets for realizing all-weather passive infrared decoy,but its low thermal conductivity is a great blockage to the simulation of the infrared signature of thick metal plates.For that reason,a method of simulating the infrared signature of thick steel plates by thermal conduction enhanced PCM,including the aluminum fins,is proposed.A physical and mathematic model is set up,and the infrared signature simulation of thick steel plate is investigated numerically.The effects of the distribution density and thickness of fins and the thickness of PCM plate on the simulation results are discussed,and the reasonable construction parameters of PCM plates used to simulate the steel plates of different thickness are obtained.
文摘Opto-thermal transient emission radiometry(OTTER) is a infrared remote sensing technique, which has been successfully used in in vivoskin moisture content and skin moisture depth profiling measurements. In present paper, we extend this moisture content measurement capability to analyze the moisture content of fruit(tomato, grape, etc.) skins, and to study the relationship between fruits ripening process and their surface moisture and moisture depth profiles.
基金the Key Technologies R &D Programme of Tianjin (06YFGZGX02400)
文摘The resin composite materials (RCM) were prepared by the method of doping resin with tourmaline powders modified with lanthanum element. It was characterized by scanning electron microscope (SEM), IR radiation determination, X-ray diffraction (XRD), and fourier transform infrared spectroscope (FTIR). The results showed that the RCM could radiate higher intensity of far infrared. The molecular movement was strengthened and the inter-molecular contacts were easily reduced when the diesel oil was dealt with the RCM. The effects of the RCM on the oil consumption and air pollutant emissions of oil-burning boiler were investigated. The oil-saving rate of the RBS·VH-1.5 boiler dealt with the RCM was 2.76%, and the reducing rates of CO and NO in the exhaust gas were 32.9% and 15.8%, respectively.