The composite quantile regression should provide estimation efficiency gain over a single quantile regression. In this paper, we extend composite quantile regression to nonparametric model with random censored data. T...The composite quantile regression should provide estimation efficiency gain over a single quantile regression. In this paper, we extend composite quantile regression to nonparametric model with random censored data. The asymptotic normality of the proposed estimator is established. The proposed methods are applied to the lung cancer data. Extensive simulations are reported, showing that the proposed method works well in practical settings.展开更多
Logic regression is an adaptive regression method which searches for Boolean (logic) combinations of binary variables that best explain the variability in the outcome, and thus, it reveals interaction effects which ar...Logic regression is an adaptive regression method which searches for Boolean (logic) combinations of binary variables that best explain the variability in the outcome, and thus, it reveals interaction effects which are associated with the response. In this study, we extended logic regression to longitudinal data with binary response and proposed “Transition Logic Regression Method” to find interactions related to response. In this method, interaction effects over time were found by Annealing Algorithm with AIC (Akaike Information Criterion) as the score function of the model. Also, first and second orders Markov dependence were allowed to capture the correlation among successive observations of the same individual in longitudinal binary response. Performance of the method was evaluated with simulation study in various conditions. Proposed method was used to find interactions of SNPs and other risk factors related to low HDL over time in data of 329 participants of longitudinal TLGS study.展开更多
This paper considers quantile regression analysis based on semi-competing risks data in which a non-terminal event may be dependently censored by a terminal event. The major interest is the covariate effects on the qu...This paper considers quantile regression analysis based on semi-competing risks data in which a non-terminal event may be dependently censored by a terminal event. The major interest is the covariate effects on the quantile of the non-terminal event time. Dependent censoring is handled by assuming that the joint distribution of the two event times follows a parametric copula model with unspecified marginal distributions. The technique of inverse probability weighting (IPW) is adopted to adjust for the selection bias. Large-sample properties of the proposed estimator are derived and a model diagnostic procedure is developed to check the adequacy of the model assumption. Simulation results show that the proposed estimator performs well. For illustrative purposes, our method is applied to analyze the bone marrow transplant data in [1].展开更多
In this paper, it is discussed that two tests for varying dispersion of binomial data in the framework of nonlinear logistic models with random effects, which are widely used in analyzing longitudinal binomial data. O...In this paper, it is discussed that two tests for varying dispersion of binomial data in the framework of nonlinear logistic models with random effects, which are widely used in analyzing longitudinal binomial data. One is the individual test and power calculation for varying dispersion through testing the randomness of cluster effects, which is extensions of Dean(1992) and Commenges et al (1994). The second test is the composite test for varying dispersion through simultaneously testing the randomness of cluster effects and the equality of random-effect means. The score test statistics are constructed and expressed in simple, easy to use, matrix formulas. The authors illustrate their test methods using the insecticide data (Giltinan, Capizzi & Malani (1988)).展开更多
This paper is focused on the goodness-of-fit test of the functional linear composite quantile regression model.A nonparametric test is proposed by using the orthogonality of the residual and its conditional expectatio...This paper is focused on the goodness-of-fit test of the functional linear composite quantile regression model.A nonparametric test is proposed by using the orthogonality of the residual and its conditional expectation under the null model.The proposed test statistic has an asymptotic standard normal distribution under the null hypothesis,and tends to infinity in probability under the alternative hypothesis,which implies the consistency of the test.Furthermore,it is proved that the test statistic converges to a normal distribution with nonzero mean under a local alternative hypothesis.Extensive simulations are reported,and the results show that the proposed test has proper sizes and is sensitive to the considered model discrepancies.The proposed methods are also applied to two real datasets.展开更多
For left censored response longitudinal data, we propose a composite quantile regression estimator(CQR) of regression parameter. Statistical properties such as consistency and asymptotic normality of CQR are studied...For left censored response longitudinal data, we propose a composite quantile regression estimator(CQR) of regression parameter. Statistical properties such as consistency and asymptotic normality of CQR are studied under relaxable assumptions of correlation structure of error terms. The performance of CQR is investigated via simulation studies and a real dataset analysis.展开更多
This paper proposes a new weighted quantile regression model for longitudinal data with weights chosen by empirical likelihood(EL). This approach efficiently incorporates the information from the conditional quantile ...This paper proposes a new weighted quantile regression model for longitudinal data with weights chosen by empirical likelihood(EL). This approach efficiently incorporates the information from the conditional quantile restrictions to account for within-subject correlations. The resulted estimate is computationally simple and has good performance under modest or high within-subject correlation. The efficiency gain is quantified theoretically and illustrated via simulation and a real data application.展开更多
Kink model is developed to analyze the data where the regression function is two-stage piecewise linear with respect to the threshold covariate but continuous at an unknown kink point.In quantile regression for longit...Kink model is developed to analyze the data where the regression function is two-stage piecewise linear with respect to the threshold covariate but continuous at an unknown kink point.In quantile regression for longitudinal data,kink point where the kink effect happens is often assumed to be heterogeneous across different quantiles.However,the kink point tends to be the same across different quantiles,especially in a region of neighboring quantile levels.Incorporating such homogeneity information could increase the estimation efficiency of the common kink point.In this paper,we propose a composite quantile estimation approach for the common kink point by combining information from multiple neighboring quantiles.Asymptotic normality of the proposed estimator is studied.In addition,we also develop a sup-likelihood-ratio test to check the existence of the kink effect at a given quantile level.A test-inversion confidence interval for the common kink point is also developed based on the quantile rank score test.The simulation studies show that the proposed composite kink estimator is more efficient than the single quantile regression estimator.We also illustrate the proposed method via an application to a longitudinal data set on blood pressure and body mass index.展开更多
Longitudinal data with ordinal outcomes commonly arise in clinical and social studies,where the purpose of interest is usually quantile curves rather than a simple reference range.In this paper we consider Bayesian no...Longitudinal data with ordinal outcomes commonly arise in clinical and social studies,where the purpose of interest is usually quantile curves rather than a simple reference range.In this paper we consider Bayesian nonlinear quantile regression for longitudinal ordinal data through a latent variable.An efficient Metropolis–Hastings within Gibbs algorithm was developed for model fitting.Simulation studies and a real data example are conducted to assess the performance of the proposed method.Results show that the proposed approach performs well.展开更多
Quantile regression is gradually emerging as a powerful tool for estimating models of conditional quantile functions, and therefore research in this area has vastly increased in the past two decades. This paper, with ...Quantile regression is gradually emerging as a powerful tool for estimating models of conditional quantile functions, and therefore research in this area has vastly increased in the past two decades. This paper, with the quantile regression technique, is the first comprehensive longitudinal study on mathematics participation data collected in Alberta, Canada. The major advantage of longitudinal study is its capability to separate the so-called cohort and age effects in the context of population studies. One aim of this paper is to study whether the family background factors alter performance on the mathematical achievement of the strongest students in the same way as that of weaker students based on the large longitudinal sample of 2000, 2001 and 2002 mathematics participation longitudinal data set. The interesting findings suggest that there may be differential family background factor effects at different points in the mathematical achievement conditional distribution.展开更多
It is well known that the nonparametric estimation of the regression function is highly sensitive to the presence of even a small proportion of outliers in the data.To solve the problem of typical observations when th...It is well known that the nonparametric estimation of the regression function is highly sensitive to the presence of even a small proportion of outliers in the data.To solve the problem of typical observations when the covariates of the nonparametric component are functional,the robust estimates for the regression parameter and regression operator are introduced.The main propose of the paper is to consider data-driven methods of selecting the number of neighbors in order to make the proposed processes fully automatic.We use thek Nearest Neighbors procedure(kNN)to construct the kernel estimator of the proposed robust model.Under some regularity conditions,we state consistency results for kNN functional estimators,which are uniform in the number of neighbors(UINN).Furthermore,a simulation study and an empirical application to a real data analysis of octane gasoline predictions are carried out to illustrate the higher predictive performances and the usefulness of the kNN approach.展开更多
In this paper, we consider the semiparametric regression model for longitudinal data. Due to the correlation within groups, a generalized empirical log-likelihood ratio statistic for the unknown parameters in the mode...In this paper, we consider the semiparametric regression model for longitudinal data. Due to the correlation within groups, a generalized empirical log-likelihood ratio statistic for the unknown parameters in the model is suggested by introducing the working covariance matrix. It is proved that the proposed statistic is asymptotically standard chi-squared under some suitable conditions, and hence it can be used to construct the confidence regions of the parameters. A simulation study is conducted to compare the proposed method with the generalized least squares method in terms of coverage accuracy and average lengths of the confidence intervals.展开更多
Quantile regression links the whole distribution of an outcome to the covariates of interest and has become an important alternative to commonly used regression models.However,the presence of censored data such as sur...Quantile regression links the whole distribution of an outcome to the covariates of interest and has become an important alternative to commonly used regression models.However,the presence of censored data such as survival time,often the main endpoint in cancer studies,has hampered the use of quantile regression techniques because of the incompleteness of data.With the advent of the precision medicine era and availability of high throughput data,quantile regression with high-dimensional predictors has attracted much attention and provided added insight compared to traditional regression approaches.This paper provides a practical guide for using quantile regression for right censored outcome data with covariates of low-or highdimensionality.We frame our discussion using a dataset from the Boston Lung Cancer Survivor Cohort,a hospital-based prospective cohort study,with the goals of broadening the scope of cancer research,maximizing the utility of collected data,and offering useful statistical alternatives.We use quantile regression to identify clinical and molecular predictors,for example CpG methylation sites,associated with high-risk lung cancer patients,for example those with short survival.展开更多
The purpose of this paper is two fold.First,the authors investigate quantile regression(QR)estimation for single-index QR models when the response is subject to random left truncation.The random weights are introduced...The purpose of this paper is two fold.First,the authors investigate quantile regression(QR)estimation for single-index QR models when the response is subject to random left truncation.The random weights are introduced to deal with left truncated data and the associated iteration estimation method is proposed.The asymptotic properties for the proposed QR estimates of the index parameter and unknown link function are both obtained.Further,by combining the QR loss function and the adaptive LASSO penalization,a variable selection procedure for the index parameter is introduced and its oracle property is established.Second,a weighted empirical log-likelihood ratio of the index parameter based on the QR method is introduced and is proved to be asymptotic standard chi-square distribution.Furthermore,confidence regions of the index parameter can be constructed.The finite sample performance of the proposed methods are demonstrated.A real data analysis is also conducted to show the usefulness of the proposed approaches.展开更多
文摘The composite quantile regression should provide estimation efficiency gain over a single quantile regression. In this paper, we extend composite quantile regression to nonparametric model with random censored data. The asymptotic normality of the proposed estimator is established. The proposed methods are applied to the lung cancer data. Extensive simulations are reported, showing that the proposed method works well in practical settings.
文摘Logic regression is an adaptive regression method which searches for Boolean (logic) combinations of binary variables that best explain the variability in the outcome, and thus, it reveals interaction effects which are associated with the response. In this study, we extended logic regression to longitudinal data with binary response and proposed “Transition Logic Regression Method” to find interactions related to response. In this method, interaction effects over time were found by Annealing Algorithm with AIC (Akaike Information Criterion) as the score function of the model. Also, first and second orders Markov dependence were allowed to capture the correlation among successive observations of the same individual in longitudinal binary response. Performance of the method was evaluated with simulation study in various conditions. Proposed method was used to find interactions of SNPs and other risk factors related to low HDL over time in data of 329 participants of longitudinal TLGS study.
文摘This paper considers quantile regression analysis based on semi-competing risks data in which a non-terminal event may be dependently censored by a terminal event. The major interest is the covariate effects on the quantile of the non-terminal event time. Dependent censoring is handled by assuming that the joint distribution of the two event times follows a parametric copula model with unspecified marginal distributions. The technique of inverse probability weighting (IPW) is adopted to adjust for the selection bias. Large-sample properties of the proposed estimator are derived and a model diagnostic procedure is developed to check the adequacy of the model assumption. Simulation results show that the proposed estimator performs well. For illustrative purposes, our method is applied to analyze the bone marrow transplant data in [1].
基金The project supported by NNSFC (19631040), NSSFC (04BTJ002) and the grant for post-doctor fellows in SELF.
文摘In this paper, it is discussed that two tests for varying dispersion of binomial data in the framework of nonlinear logistic models with random effects, which are widely used in analyzing longitudinal binomial data. One is the individual test and power calculation for varying dispersion through testing the randomness of cluster effects, which is extensions of Dean(1992) and Commenges et al (1994). The second test is the composite test for varying dispersion through simultaneously testing the randomness of cluster effects and the equality of random-effect means. The score test statistics are constructed and expressed in simple, easy to use, matrix formulas. The authors illustrate their test methods using the insecticide data (Giltinan, Capizzi & Malani (1988)).
基金supported by the Natural Science Foundation of China under Grant Nos.11271014 and 11971045。
文摘This paper is focused on the goodness-of-fit test of the functional linear composite quantile regression model.A nonparametric test is proposed by using the orthogonality of the residual and its conditional expectation under the null model.The proposed test statistic has an asymptotic standard normal distribution under the null hypothesis,and tends to infinity in probability under the alternative hypothesis,which implies the consistency of the test.Furthermore,it is proved that the test statistic converges to a normal distribution with nonzero mean under a local alternative hypothesis.Extensive simulations are reported,and the results show that the proposed test has proper sizes and is sensitive to the considered model discrepancies.The proposed methods are also applied to two real datasets.
基金Supported in part by the National Natural Science Foundation of China under(Grant No.11601097 and 11471302)the State Key Program of National Natural Science of China(Grant No.11231010)
文摘For left censored response longitudinal data, we propose a composite quantile regression estimator(CQR) of regression parameter. Statistical properties such as consistency and asymptotic normality of CQR are studied under relaxable assumptions of correlation structure of error terms. The performance of CQR is investigated via simulation studies and a real dataset analysis.
基金supported by National Natural Science Foundation of China (Grant Nos. 11401048, 11301037, 11571051 and 11201174)the Natural Science Foundation for Young Scientists of Jilin Province of China (Grant Nos. 20150520055JH and 20150520054JH)
文摘This paper proposes a new weighted quantile regression model for longitudinal data with weights chosen by empirical likelihood(EL). This approach efficiently incorporates the information from the conditional quantile restrictions to account for within-subject correlations. The resulted estimate is computationally simple and has good performance under modest or high within-subject correlation. The efficiency gain is quantified theoretically and illustrated via simulation and a real data application.
基金Supported by the National Natural Science Foundation of China(Grant Nos.11922117,11771361)Fujian Provincial Science Fund for Distinguished Young Scholars(Grant No.2019J06004)。
文摘Kink model is developed to analyze the data where the regression function is two-stage piecewise linear with respect to the threshold covariate but continuous at an unknown kink point.In quantile regression for longitudinal data,kink point where the kink effect happens is often assumed to be heterogeneous across different quantiles.However,the kink point tends to be the same across different quantiles,especially in a region of neighboring quantile levels.Incorporating such homogeneity information could increase the estimation efficiency of the common kink point.In this paper,we propose a composite quantile estimation approach for the common kink point by combining information from multiple neighboring quantiles.Asymptotic normality of the proposed estimator is studied.In addition,we also develop a sup-likelihood-ratio test to check the existence of the kink effect at a given quantile level.A test-inversion confidence interval for the common kink point is also developed based on the quantile rank score test.The simulation studies show that the proposed composite kink estimator is more efficient than the single quantile regression estimator.We also illustrate the proposed method via an application to a longitudinal data set on blood pressure and body mass index.
基金supported in part by the National Key Research and Development Plan(No.2016YFC0800100)National Natural Science Foundation of China Grant 11671374 and 71631006.
文摘Longitudinal data with ordinal outcomes commonly arise in clinical and social studies,where the purpose of interest is usually quantile curves rather than a simple reference range.In this paper we consider Bayesian nonlinear quantile regression for longitudinal ordinal data through a latent variable.An efficient Metropolis–Hastings within Gibbs algorithm was developed for model fitting.Simulation studies and a real data example are conducted to assess the performance of the proposed method.Results show that the proposed approach performs well.
基金Supported by the National Natural Science Foundation of China (No. 10431010) Education Ministry Key Project (No. 05JJD910001) +1 种基金 National Philosophy and Social Science Foundation grant (No. 07BTJ002) 2006 New Century Excellent Talent Program and Funds supported by Renmin University of China (No. 2006031611)
文摘Quantile regression is gradually emerging as a powerful tool for estimating models of conditional quantile functions, and therefore research in this area has vastly increased in the past two decades. This paper, with the quantile regression technique, is the first comprehensive longitudinal study on mathematics participation data collected in Alberta, Canada. The major advantage of longitudinal study is its capability to separate the so-called cohort and age effects in the context of population studies. One aim of this paper is to study whether the family background factors alter performance on the mathematical achievement of the strongest students in the same way as that of weaker students based on the large longitudinal sample of 2000, 2001 and 2002 mathematics participation longitudinal data set. The interesting findings suggest that there may be differential family background factor effects at different points in the mathematical achievement conditional distribution.
文摘It is well known that the nonparametric estimation of the regression function is highly sensitive to the presence of even a small proportion of outliers in the data.To solve the problem of typical observations when the covariates of the nonparametric component are functional,the robust estimates for the regression parameter and regression operator are introduced.The main propose of the paper is to consider data-driven methods of selecting the number of neighbors in order to make the proposed processes fully automatic.We use thek Nearest Neighbors procedure(kNN)to construct the kernel estimator of the proposed robust model.Under some regularity conditions,we state consistency results for kNN functional estimators,which are uniform in the number of neighbors(UINN).Furthermore,a simulation study and an empirical application to a real data analysis of octane gasoline predictions are carried out to illustrate the higher predictive performances and the usefulness of the kNN approach.
基金China Postdoctoral Science Foundation Funded Project (20080430633)Shanghai Postdoctoral Scientific Program (08R214121)+3 种基金the National Natural Science Foundation of China (10871013)the Research Fund for the Doctoral Program of Higher Education (20070005003)the Natural Science Foundation of Beijing (1072004)the Basic Research and Frontier Technology Foundation of He'nan (072300410090)
文摘In this paper, we consider the semiparametric regression model for longitudinal data. Due to the correlation within groups, a generalized empirical log-likelihood ratio statistic for the unknown parameters in the model is suggested by introducing the working covariance matrix. It is proved that the proposed statistic is asymptotically standard chi-squared under some suitable conditions, and hence it can be used to construct the confidence regions of the parameters. A simulation study is conducted to compare the proposed method with the generalized least squares method in terms of coverage accuracy and average lengths of the confidence intervals.
基金This study was supported by the National Institute of Health(U01CA209414).
文摘Quantile regression links the whole distribution of an outcome to the covariates of interest and has become an important alternative to commonly used regression models.However,the presence of censored data such as survival time,often the main endpoint in cancer studies,has hampered the use of quantile regression techniques because of the incompleteness of data.With the advent of the precision medicine era and availability of high throughput data,quantile regression with high-dimensional predictors has attracted much attention and provided added insight compared to traditional regression approaches.This paper provides a practical guide for using quantile regression for right censored outcome data with covariates of low-or highdimensionality.We frame our discussion using a dataset from the Boston Lung Cancer Survivor Cohort,a hospital-based prospective cohort study,with the goals of broadening the scope of cancer research,maximizing the utility of collected data,and offering useful statistical alternatives.We use quantile regression to identify clinical and molecular predictors,for example CpG methylation sites,associated with high-risk lung cancer patients,for example those with short survival.
基金supported by the National Social Science Foundation of China under Grant No.21BTJ038。
文摘The purpose of this paper is two fold.First,the authors investigate quantile regression(QR)estimation for single-index QR models when the response is subject to random left truncation.The random weights are introduced to deal with left truncated data and the associated iteration estimation method is proposed.The asymptotic properties for the proposed QR estimates of the index parameter and unknown link function are both obtained.Further,by combining the QR loss function and the adaptive LASSO penalization,a variable selection procedure for the index parameter is introduced and its oracle property is established.Second,a weighted empirical log-likelihood ratio of the index parameter based on the QR method is introduced and is proved to be asymptotic standard chi-square distribution.Furthermore,confidence regions of the index parameter can be constructed.The finite sample performance of the proposed methods are demonstrated.A real data analysis is also conducted to show the usefulness of the proposed approaches.