The compact,sensitive,and multidimensional displacement measurement device plays a crucial role in semiconductor manufacture and high-resolution optical imaging.The metasurface offers a promising solution to develop h...The compact,sensitive,and multidimensional displacement measurement device plays a crucial role in semiconductor manufacture and high-resolution optical imaging.The metasurface offers a promising solution to develop high-precision displacement metrology.In this work,we proposed and experimentally demonstrated a two-dimensional displacement(XZ)measurement device by a dielectric metasurface.Both transversal and longitudinal displacements of the metasurface can be obtained by the analysis of the interference optical intensity that is generated by the deflected light beams while the metasurface is under linearly polarized incidence.We experimentally demonstrated that displacements down to 5.4 nm along the x-axis and 0.12μm along the z-axis can be resolved with a 900μm×900μm metasurface.Our work opens up new possibilities to develop a compact high-precision multidimensional displacement sensor.展开更多
基金supported by the National Natural Science Foundation of China(No.U20A20216)the Technology Domain Fund of 173 Project(No.2021-JCJQ-JJ-0284)。
文摘The compact,sensitive,and multidimensional displacement measurement device plays a crucial role in semiconductor manufacture and high-resolution optical imaging.The metasurface offers a promising solution to develop high-precision displacement metrology.In this work,we proposed and experimentally demonstrated a two-dimensional displacement(XZ)measurement device by a dielectric metasurface.Both transversal and longitudinal displacements of the metasurface can be obtained by the analysis of the interference optical intensity that is generated by the deflected light beams while the metasurface is under linearly polarized incidence.We experimentally demonstrated that displacements down to 5.4 nm along the x-axis and 0.12μm along the z-axis can be resolved with a 900μm×900μm metasurface.Our work opens up new possibilities to develop a compact high-precision multidimensional displacement sensor.