For reaction-diffusion equations in irregular domains with moving boundaries,the numerical stability constraints from the reaction and diffusion terms often require very restricted time step sizes,while complex geomet...For reaction-diffusion equations in irregular domains with moving boundaries,the numerical stability constraints from the reaction and diffusion terms often require very restricted time step sizes,while complex geometries may lead to difficulties in the accuracy when discretizing the high-order derivatives on grid points near the boundary.It is very challenging to design numerical methods that can efficiently and accurately handle both difficulties.Applying an implicit scheme may be able to remove the stability constraints on the time step,however,it usually requires solving a large global system of nonlinear equations for each time step,and the computational cost could be significant.Integration factor(IF)or exponential time differencing(ETD)methods are one of the popular methods for temporal partial differential equations(PDEs)among many other methods.In our paper,we couple ETD methods with an embedded boundary method to solve a system of reaction-diffusion equations with complex geometries.In particular,we rewrite all ETD schemes into a linear combination of specificФ-functions and apply one state-of-the-art algorithm to compute the matrix-vector multiplications,which offers significant computational advantages with adaptive Krylov subspaces.In addition,we extend this method by incorporating the level set method to solve the free boundary problem.The accuracy,stability,and efficiency of the developed method are demonstrated by numerical examples.展开更多
A perturbation finite volume(PFV)method for the convective-diffusion integral equa- tion is developed in this paper.The PFV scheme is an upwind and mixed scheme using any higher-order interpolation and second-order in...A perturbation finite volume(PFV)method for the convective-diffusion integral equa- tion is developed in this paper.The PFV scheme is an upwind and mixed scheme using any higher-order interpolation and second-order integration approximations,with the least nodes similar to the standard three-point schemes,that is,the number of the nodes needed is equal to unity plus the face-number of the control volume.For instance,in the two-dimensional(2-D)case,only four nodes for the triangle grids and five nodes for the Cartesian grids are utilized,respectively.The PFV scheme is applied on a number of 1-D linear and nonlinear problems,2-D and 3-D flow model equations.Comparing with other standard three-point schemes,the PFV scheme has much smaller numerical diffusion than the first-order upwind scheme(UDS).Its numerical accuracies are also higher than the second-order central scheme(CDS),the power-law scheme(PLS)and QUICK scheme.展开更多
This paper presents a finite element procedure for solving transient, multidimensional convection-diffusion equations. The procedure is based on the characteristic Galerkin method with an implicit algorithm using prec...This paper presents a finite element procedure for solving transient, multidimensional convection-diffusion equations. The procedure is based on the characteristic Galerkin method with an implicit algorithm using precise integration method. With the operator splitting procedure, the precise integration method is introduced to determine the material derivative in the convection-diffusion equation, consequently, the physical quantities of material points. An implicit algorithm with a combination of both the precise and the traditional numerical integration procedures in time domain in the Lagrange coordinates for the characteristic Galerkin method is formulated. The stability analysis of the algorithm shows that the unconditional stability of present implicit algorithm is enhanced as compared with that of the traditional implicit numerical integration procedure. The numerical results validate the presented method in solving convection-diffusion equations. As compared with SUPG method and explicit characteristic Galerkin method, the present method gives the results with higher accuracy and better stability.展开更多
The effect of changing Be doping concentration in GaAs layer on the integrated photosensitivity for nega- tive-electron-affinity GaAs photocathodes is investigated. Two GaAs samples with the monolayer structure and th...The effect of changing Be doping concentration in GaAs layer on the integrated photosensitivity for nega- tive-electron-affinity GaAs photocathodes is investigated. Two GaAs samples with the monolayer structure and the muhilayer structure are grown by molecular beam epitaxy. The former has a constant Be concentration of 1 × 10^19 cm^-3, while the latter includes four layers with Be doping concentrations of 1 × 10^19, 7 × 10^18, 4 × 10^18, and 1 × 10^18 cm^-3 from the bottom to the surface. Negative-electron-affinity GaAs photocathodes are fabricated by exciting the sample surfaces with alternating input of Cs and O in the high vacuum system. The spectral response results measured by the on-line spectral response measurement system show that the integrated photosensitivity of the photocathode with the muhilayer structure enhanced by at least 50% as compared to that of the monolayer structure. This attributes to the improvement in the crystal quality and the increase in the surface escape probability. Different stress situations are observed on GaAs samples with monolayer structure and muhilayer structure, respectively.展开更多
The evolution of a pure coherent state into a chaotic state is described very well by a master equation, as is validated via an examination of the coherent state's evolution during the diffusion process, fully utiliz...The evolution of a pure coherent state into a chaotic state is described very well by a master equation, as is validated via an examination of the coherent state's evolution during the diffusion process, fully utilizing the technique of integration within an ordered product (IWOP) of operators. The same equation also describes a limitation that maintains the coherence in a weak diffusion process, i.e., when the dissipation is very weak and the initial average photon number is large. This equation is dp/dt = -κ[a+ap -a+pa -apa+ + paa+]. The physical difference between this diffusion equation and the better-known amplitude damping master equation is pointed out.展开更多
Metalization is widely used in integrated circuit devices to connect millions of devices together. The success of metallization depends strongly on diffusion barrier technology, due to the interactions of metals with ...Metalization is widely used in integrated circuit devices to connect millions of devices together. The success of metallization depends strongly on diffusion barrier technology, due to the interactions of metals with surrounding materials. As device dimension further shrinks, diffusion barrier technology is facing more challenges and opening up new opportunities, particularly for chemical vapor deposition (CVD) process technology. CVD is attracting increased attention in advanced metallization mainly due to its capability in producing conformal thin films. In this review, we will focus our discussion on CVD processes for three most important classes of diffusion barriers: Ti, W and Ta-based diffusion banters. Examples from current literature will be examined.展开更多
We find the time evolution law of a negative binomial optical field in a diffusion channel. We reveal that by adjusting the diffusion parameter, the photon number can be controlled. Therefore, the diffusion process ca...We find the time evolution law of a negative binomial optical field in a diffusion channel. We reveal that by adjusting the diffusion parameter, the photon number can be controlled. Therefore, the diffusion process can be considered a quantum controlling scheme through photon addition.展开更多
This paper studies the critical exercise price of American floating strike lookback options under the mixed jump-diffusion model. By using It formula and Wick-It-Skorohod integral, a new market pricing model estab...This paper studies the critical exercise price of American floating strike lookback options under the mixed jump-diffusion model. By using It formula and Wick-It-Skorohod integral, a new market pricing model established under the environment of mixed jumpdiffusion fractional Brownian motion. The fundamental solutions of stochastic parabolic partial differential equations are estimated under the condition of Merton assumptions. The explicit integral representation of early exercise premium and the critical exercise price are also given, then the American floating strike lookback options factorization formula is obtained, the results is generalized the classical Black-Scholes market pricing model.展开更多
Zinc has been diffused into n-type InxGa1-xAs, InP and GaAs in closed ampoules, and the experimental data for InxGa1-xAs rarely reported previously have been obtained. Theoretically the linear relationship between log...Zinc has been diffused into n-type InxGa1-xAs, InP and GaAs in closed ampoules, and the experimental data for InxGa1-xAs rarely reported previously have been obtained. Theoretically the linear relationship between logarithmic diffusion coefficient InD and the composition x has been demonstrated, which is in good agreement with the experimental results. The calculated diffusion junction depth for InGaAs based on the diffusion model in which D∝ c2 is assumed also agrees well with that of the experiment. Finally the overall diffusion time in a multilayer heterostructure was approximated as t=(Σ )2.展开更多
The rapid development of electric vehicles and portable energy storage systems demands improvements in the energy density and cost-effectiveness of lithium-ion batteries,a domain in which Lithium-rich layered cathode(...The rapid development of electric vehicles and portable energy storage systems demands improvements in the energy density and cost-effectiveness of lithium-ion batteries,a domain in which Lithium-rich layered cathode(LLO)materials inherently excel.However,these materials face practical challenges,such as low initial Coulombic efficiency,inferior cycle/rate performance,and voltage decline during cycling,which limit practical application.Our study introduces a surface multi-component integration strategy that incorporates oxygen vacancies into the pristine LLO material Li1.2Mn_(0.6)Ni_(0.2)O_(2).This process involves a brief citric acid treatment followed by calcination,aiming to explore rate-dependent degradation behavior.The induced surface oxygen vacancies can reduce surface oxygen partial pressure and diminish the generation of O_(2)and other highly reactive oxygen species on the surface,thereby facilitating the activation of Li ions trapped in tetrahedral sites while overcoming transport barriers.Additionally,the formation of a spinel-like phase with 3D Li+diffusion channels significantly improves Li^(+)diffusion kinetics and stabilizes the surface structure.The optimally modified sample boasts a discharge capacity of 299.5 mA h g^(-1)at a 0.1 C and 251.6 mA h g^(-1)at a 1 C during the initial activation cycle,with an impressive capacity of 222.1 mA h g^(-1)at a 5 C.Most notably,it retained nearly 70%of its capacity after 300 cycles at this elevated rate.This straightforward,effective,and highly viable modification strategy provides a crucial resolution for overcoming challenges associated with LLO materials,making them more suitable for practical application.展开更多
Reaction-diffusion equations modeling Predator-Prey interaction are of current interest. Standard approaches such as first-order (in time) finite difference schemes for approximating the solution are widely spread. Th...Reaction-diffusion equations modeling Predator-Prey interaction are of current interest. Standard approaches such as first-order (in time) finite difference schemes for approximating the solution are widely spread. Though, this paper shows that recent advance methods can be more favored. In this work, we have incorporated, throughout numerical comparison experiments, spectral methods, for the space discretization, in conjunction with second and fourth-order time integrating methods for approximating the solution of the reaction-diffusion differential equations. The results have revealed that these methods have advantages over the conventional methods, some of which to mention are: the ease of implementation, accuracy and CPU time.展开更多
We investigate the effective diffusion of a tracer immersed in an active particle bath consisting of self-propelled particles.Utilising the Dean's method developed for the equilibrium bath and extending it to the ...We investigate the effective diffusion of a tracer immersed in an active particle bath consisting of self-propelled particles.Utilising the Dean's method developed for the equilibrium bath and extending it to the nonequilibrium situation,we derive a generalized Langevin equation(GLE)for the tracer particle.The complex interactions between the tracer and bath particles are shown as a memory kernel term and two colored noise terms.To obtain the effective diffusivity of the tracer,we use path integral technique to calculate all necessary correlation functions.Calculations show the effective diffusion decreases with the persistent time of active force,and has rich behavior with the number density of bath particles,depending on different activities.All theoretical results regarding the dependence of such diffusivity on bath parameters have been confirmed by direct computer simulation.展开更多
The time integration method with four-order accuracy, self-starting and implicit for the diffuse chemical reaction kinetics equation or the transient instantaneous temperature filed equation was presented. The example...The time integration method with four-order accuracy, self-starting and implicit for the diffuse chemical reaction kinetics equation or the transient instantaneous temperature filed equation was presented. The examples show that both accuracy and stability are better than Runge-Kutta method with four-order. The coefficients of the equation are stored with sparse matrix pattern, so an algorithm is presented which combines a compact storage scheme with reduced computation cost. The computation of the competitive and consecutive reaction in the rotating packed bed, taken as examples, shows that the method is effective.展开更多
Air pollution transport and dispersion in the atmospheric boundary layer are modeled by the advection-diffusion equation, that is, essentially, a statement of conservation of the suspended material in an incompressibl...Air pollution transport and dispersion in the atmospheric boundary layer are modeled by the advection-diffusion equation, that is, essentially, a statement of conservation of the suspended material in an incompressible flow. Many models simulating air pollution dispersion are based upon the solution (numerical or analytical) of the advection-diffusion equation assuming turbulence parameterization for realistic physical scenarios. We present the general time dependent three-dimensional solution of the advection-diffusion equation considering a vertically inhomogeneous atmospheric boundary layer for arbitrary vertical profiles of wind and eddy-diffusion coefficients. Numerical results and comparison with experimental data are shown.展开更多
针对中波红外辐射测量定标的需求,提出了将微型积分球与中红外探测器集成在低温环境中。验证比对了几种用于制作积分球内腔表面的材料样品,通过宽光谱反射率、特征光谱反射率、双向反射分布函数(bidirectional reflectance distribution...针对中波红外辐射测量定标的需求,提出了将微型积分球与中红外探测器集成在低温环境中。验证比对了几种用于制作积分球内腔表面的材料样品,通过宽光谱反射率、特征光谱反射率、双向反射分布函数(bidirectional reflectance distribution function,BRDF),以及用激光共聚焦显微镜、扫描电子显微镜(scanning electron microscope,SEM)等进行微观表面形貌的测量,获得了适用于制作中红外积分球的内腔表面制作工艺。BRDF测试结果显示,制作的内腔表面接近朗伯反射表面。测试了积分球探测器样品的光谱与电学性能,经过表面粗糙化处理并蒸镀金属反射膜,样品的光谱波段适应性好,光强衰减比为0.0674,经计算,积分球内腔壁的反射率为96.4%;同时,低温积分球的引入,使探测器芯片的噪声由3.5×10^(-12)A·Hz^(-1/2)降低至1.0×10^(-12)A·Hz^(-1/2)。展开更多
文摘For reaction-diffusion equations in irregular domains with moving boundaries,the numerical stability constraints from the reaction and diffusion terms often require very restricted time step sizes,while complex geometries may lead to difficulties in the accuracy when discretizing the high-order derivatives on grid points near the boundary.It is very challenging to design numerical methods that can efficiently and accurately handle both difficulties.Applying an implicit scheme may be able to remove the stability constraints on the time step,however,it usually requires solving a large global system of nonlinear equations for each time step,and the computational cost could be significant.Integration factor(IF)or exponential time differencing(ETD)methods are one of the popular methods for temporal partial differential equations(PDEs)among many other methods.In our paper,we couple ETD methods with an embedded boundary method to solve a system of reaction-diffusion equations with complex geometries.In particular,we rewrite all ETD schemes into a linear combination of specificФ-functions and apply one state-of-the-art algorithm to compute the matrix-vector multiplications,which offers significant computational advantages with adaptive Krylov subspaces.In addition,we extend this method by incorporating the level set method to solve the free boundary problem.The accuracy,stability,and efficiency of the developed method are demonstrated by numerical examples.
基金The project supported by the National Natural Science Foundation of China(10272106,10372106)
文摘A perturbation finite volume(PFV)method for the convective-diffusion integral equa- tion is developed in this paper.The PFV scheme is an upwind and mixed scheme using any higher-order interpolation and second-order integration approximations,with the least nodes similar to the standard three-point schemes,that is,the number of the nodes needed is equal to unity plus the face-number of the control volume.For instance,in the two-dimensional(2-D)case,only four nodes for the triangle grids and five nodes for the Cartesian grids are utilized,respectively.The PFV scheme is applied on a number of 1-D linear and nonlinear problems,2-D and 3-D flow model equations.Comparing with other standard three-point schemes,the PFV scheme has much smaller numerical diffusion than the first-order upwind scheme(UDS).Its numerical accuracies are also higher than the second-order central scheme(CDS),the power-law scheme(PLS)and QUICK scheme.
文摘This paper presents a finite element procedure for solving transient, multidimensional convection-diffusion equations. The procedure is based on the characteristic Galerkin method with an implicit algorithm using precise integration method. With the operator splitting procedure, the precise integration method is introduced to determine the material derivative in the convection-diffusion equation, consequently, the physical quantities of material points. An implicit algorithm with a combination of both the precise and the traditional numerical integration procedures in time domain in the Lagrange coordinates for the characteristic Galerkin method is formulated. The stability analysis of the algorithm shows that the unconditional stability of present implicit algorithm is enhanced as compared with that of the traditional implicit numerical integration procedure. The numerical results validate the presented method in solving convection-diffusion equations. As compared with SUPG method and explicit characteristic Galerkin method, the present method gives the results with higher accuracy and better stability.
文摘The effect of changing Be doping concentration in GaAs layer on the integrated photosensitivity for nega- tive-electron-affinity GaAs photocathodes is investigated. Two GaAs samples with the monolayer structure and the muhilayer structure are grown by molecular beam epitaxy. The former has a constant Be concentration of 1 × 10^19 cm^-3, while the latter includes four layers with Be doping concentrations of 1 × 10^19, 7 × 10^18, 4 × 10^18, and 1 × 10^18 cm^-3 from the bottom to the surface. Negative-electron-affinity GaAs photocathodes are fabricated by exciting the sample surfaces with alternating input of Cs and O in the high vacuum system. The spectral response results measured by the on-line spectral response measurement system show that the integrated photosensitivity of the photocathode with the muhilayer structure enhanced by at least 50% as compared to that of the monolayer structure. This attributes to the improvement in the crystal quality and the increase in the surface escape probability. Different stress situations are observed on GaAs samples with monolayer structure and muhilayer structure, respectively.
基金Project supported by the National Basic Research Program of China(Grant No.2012CB922103)the National Natural Science Foundation of China(GrantNos.11175113 and 11274104)the Natural Science Foundation of Hubei Province of China(Grant No.2011CDA021)
文摘The evolution of a pure coherent state into a chaotic state is described very well by a master equation, as is validated via an examination of the coherent state's evolution during the diffusion process, fully utilizing the technique of integration within an ordered product (IWOP) of operators. The same equation also describes a limitation that maintains the coherence in a weak diffusion process, i.e., when the dissipation is very weak and the initial average photon number is large. This equation is dp/dt = -κ[a+ap -a+pa -apa+ + paa+]. The physical difference between this diffusion equation and the better-known amplitude damping master equation is pointed out.
文摘Metalization is widely used in integrated circuit devices to connect millions of devices together. The success of metallization depends strongly on diffusion barrier technology, due to the interactions of metals with surrounding materials. As device dimension further shrinks, diffusion barrier technology is facing more challenges and opening up new opportunities, particularly for chemical vapor deposition (CVD) process technology. CVD is attracting increased attention in advanced metallization mainly due to its capability in producing conformal thin films. In this review, we will focus our discussion on CVD processes for three most important classes of diffusion barriers: Ti, W and Ta-based diffusion banters. Examples from current literature will be examined.
基金Project supported by the National Basic Research Program of China(Grant No.2012CB922103)the National Natural Science Foundation of China(Grant Nos.11175113,11274104,and 11404108)the Natural Science Foundation of Hubei Province,China(Grant No.2011CDA021)
文摘We find the time evolution law of a negative binomial optical field in a diffusion channel. We reveal that by adjusting the diffusion parameter, the photon number can be controlled. Therefore, the diffusion process can be considered a quantum controlling scheme through photon addition.
基金Supported by the Fundamental Research Funds of Lanzhou University of Finance and Economics(Lzufe2017C-09)
文摘This paper studies the critical exercise price of American floating strike lookback options under the mixed jump-diffusion model. By using It formula and Wick-It-Skorohod integral, a new market pricing model established under the environment of mixed jumpdiffusion fractional Brownian motion. The fundamental solutions of stochastic parabolic partial differential equations are estimated under the condition of Merton assumptions. The explicit integral representation of early exercise premium and the critical exercise price are also given, then the American floating strike lookback options factorization formula is obtained, the results is generalized the classical Black-Scholes market pricing model.
文摘Zinc has been diffused into n-type InxGa1-xAs, InP and GaAs in closed ampoules, and the experimental data for InxGa1-xAs rarely reported previously have been obtained. Theoretically the linear relationship between logarithmic diffusion coefficient InD and the composition x has been demonstrated, which is in good agreement with the experimental results. The calculated diffusion junction depth for InGaAs based on the diffusion model in which D∝ c2 is assumed also agrees well with that of the experiment. Finally the overall diffusion time in a multilayer heterostructure was approximated as t=(Σ )2.
基金supported by the National Key R&D Program of China(2021YFB2401800)the National Natural Science Foundation of China(21875022,22179008)+4 种基金the Yibin‘Jie Bang Gua Shuai’(2022JB004)the support from the Beijing Nova Program(20230484241)the support from the Postdoctoral Fellowship Program of CPSF(GZB20230931)the support from the 4B7B beam line of Beijing Synchrotron Radiation Facility(2021-BEPC-PT-005924,2021-BEPC-PT-005967)BL08U1A beam line of Shanghai Synchrotron Radiation Facility(2021-SSRF-PT-017710)。
文摘The rapid development of electric vehicles and portable energy storage systems demands improvements in the energy density and cost-effectiveness of lithium-ion batteries,a domain in which Lithium-rich layered cathode(LLO)materials inherently excel.However,these materials face practical challenges,such as low initial Coulombic efficiency,inferior cycle/rate performance,and voltage decline during cycling,which limit practical application.Our study introduces a surface multi-component integration strategy that incorporates oxygen vacancies into the pristine LLO material Li1.2Mn_(0.6)Ni_(0.2)O_(2).This process involves a brief citric acid treatment followed by calcination,aiming to explore rate-dependent degradation behavior.The induced surface oxygen vacancies can reduce surface oxygen partial pressure and diminish the generation of O_(2)and other highly reactive oxygen species on the surface,thereby facilitating the activation of Li ions trapped in tetrahedral sites while overcoming transport barriers.Additionally,the formation of a spinel-like phase with 3D Li+diffusion channels significantly improves Li^(+)diffusion kinetics and stabilizes the surface structure.The optimally modified sample boasts a discharge capacity of 299.5 mA h g^(-1)at a 0.1 C and 251.6 mA h g^(-1)at a 1 C during the initial activation cycle,with an impressive capacity of 222.1 mA h g^(-1)at a 5 C.Most notably,it retained nearly 70%of its capacity after 300 cycles at this elevated rate.This straightforward,effective,and highly viable modification strategy provides a crucial resolution for overcoming challenges associated with LLO materials,making them more suitable for practical application.
文摘Reaction-diffusion equations modeling Predator-Prey interaction are of current interest. Standard approaches such as first-order (in time) finite difference schemes for approximating the solution are widely spread. Though, this paper shows that recent advance methods can be more favored. In this work, we have incorporated, throughout numerical comparison experiments, spectral methods, for the space discretization, in conjunction with second and fourth-order time integrating methods for approximating the solution of the reaction-diffusion differential equations. The results have revealed that these methods have advantages over the conventional methods, some of which to mention are: the ease of implementation, accuracy and CPU time.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0450402)the National Natural Science Foundation of China(32090040 and 22373090)
文摘We investigate the effective diffusion of a tracer immersed in an active particle bath consisting of self-propelled particles.Utilising the Dean's method developed for the equilibrium bath and extending it to the nonequilibrium situation,we derive a generalized Langevin equation(GLE)for the tracer particle.The complex interactions between the tracer and bath particles are shown as a memory kernel term and two colored noise terms.To obtain the effective diffusivity of the tracer,we use path integral technique to calculate all necessary correlation functions.Calculations show the effective diffusion decreases with the persistent time of active force,and has rich behavior with the number density of bath particles,depending on different activities.All theoretical results regarding the dependence of such diffusivity on bath parameters have been confirmed by direct computer simulation.
文摘The time integration method with four-order accuracy, self-starting and implicit for the diffuse chemical reaction kinetics equation or the transient instantaneous temperature filed equation was presented. The examples show that both accuracy and stability are better than Runge-Kutta method with four-order. The coefficients of the equation are stored with sparse matrix pattern, so an algorithm is presented which combines a compact storage scheme with reduced computation cost. The computation of the competitive and consecutive reaction in the rotating packed bed, taken as examples, shows that the method is effective.
文摘Air pollution transport and dispersion in the atmospheric boundary layer are modeled by the advection-diffusion equation, that is, essentially, a statement of conservation of the suspended material in an incompressible flow. Many models simulating air pollution dispersion are based upon the solution (numerical or analytical) of the advection-diffusion equation assuming turbulence parameterization for realistic physical scenarios. We present the general time dependent three-dimensional solution of the advection-diffusion equation considering a vertically inhomogeneous atmospheric boundary layer for arbitrary vertical profiles of wind and eddy-diffusion coefficients. Numerical results and comparison with experimental data are shown.
文摘针对中波红外辐射测量定标的需求,提出了将微型积分球与中红外探测器集成在低温环境中。验证比对了几种用于制作积分球内腔表面的材料样品,通过宽光谱反射率、特征光谱反射率、双向反射分布函数(bidirectional reflectance distribution function,BRDF),以及用激光共聚焦显微镜、扫描电子显微镜(scanning electron microscope,SEM)等进行微观表面形貌的测量,获得了适用于制作中红外积分球的内腔表面制作工艺。BRDF测试结果显示,制作的内腔表面接近朗伯反射表面。测试了积分球探测器样品的光谱与电学性能,经过表面粗糙化处理并蒸镀金属反射膜,样品的光谱波段适应性好,光强衰减比为0.0674,经计算,积分球内腔壁的反射率为96.4%;同时,低温积分球的引入,使探测器芯片的噪声由3.5×10^(-12)A·Hz^(-1/2)降低至1.0×10^(-12)A·Hz^(-1/2)。