In order to investigate the mechanism of the temperature oscillation in loop heat pipes,this paper investigated the movement of the phase interface as the changed input power by a mass-spring-damper model.The model wa...In order to investigate the mechanism of the temperature oscillation in loop heat pipes,this paper investigated the movement of the phase interface as the changed input power by a mass-spring-damper model.The model was solved with MATLAB and was used to explain the high-frequency and low-amplitude temperature oscillation.Temperature variation with the input power from 20 W to 75 W was investigated based on a LHP prototype in a literature.The model agreed well with the experimental data in the literature.The simulation results suggested that the movement of the liquid column was caused by the fluctuation of pressure difference applied on the liquid column and the stiffness coefficients of the vapor springs increasing with the input power.According to parameter analyses,the temperature oscillation at the outlet of the condenser can be weakened by increasing the mass of the liquid column and keeping the temperature at the outlet of the condenser steady.展开更多
Multiple loop heat pipe is a high-functional thermal transport device. This work was conducted to confirm the working performance of Multiple loop heat pipe under thermal vacuum ambience with the working fluid ammonia...Multiple loop heat pipe is a high-functional thermal transport device. This work was conducted to confirm the working performance of Multiple loop heat pipe under thermal vacuum ambience with the working fluid ammonia. Asmall multiple loop heat pipe with two evaporators and two ra- diators was designed and fabricated. Then thermal vacuum test was conducted. The heaters were fasten on both evaporators, both radiators, both compensation chambers. In the case that both evaporators were heated, the multiple loop heat pipe can transport 120/120 W for 1.5 m, in the case that only one evaporator was heated, evaporator 1 can transport 80 W for 1.5 m, while eva- porator 2 can transport 120 W for 1.5 m. Two flow regulators were installed near the confluence of liquid line to prevent uncondensed vapor penetrating into returning liquid when the tempera- ture difference exists between two radiators. In the case that the heat load at both evaporators were 40/40 W and one radiator was heated, the flow regulator1 can tolerate the 160 W of heat load which was supplied to radiator1 while the flow regulator2 can tolerate the 100 W of heat load which was supplied to radiator2. To demonstrate the multiple loop heat pipe’s startup behavior at lowheat load, each of the compensation chamber was preheated to change the initial distribution of liquid and vapor in the evaporator and compensation chamber, in the result, each evaporator can start up at 5W through preheating.展开更多
Thermal performance of a loop heat pipe with two evaporators and two condensers was examined using a lumped network model analysis. Thermosyphon-type vertical loop heat pipe and capillary-pump-type horizontal loop hea...Thermal performance of a loop heat pipe with two evaporators and two condensers was examined using a lumped network model analysis. Thermosyphon-type vertical loop heat pipe and capillary-pump-type horizontal loop heat pipe were calculated by examining the change of heating rate of two evaporators. Calculation results showed that the vapor and liquid flow rates in the loop heat pipe and the thermal conductance of the heat pipe changed significantly depending on the distribution ratio of the heating rate of the multiple evaporators. The thermal performance of the vertical loop heat pipe with two evaporators was also examined and experimental results of flow direction and thermal conductance of the heat pipe agreed with the analytical results. The lumped network model analysis is therefore considered accurate and preferable for the practical design of a loop heat pipe with multiple evaporators.展开更多
Loop Heat Pipe (LHP) performance strongly depends on the performance of a wick that is porous media inserted in an evaporator. In this paper, the visualization results of thermo-fluid behavior on the surface of the wi...Loop Heat Pipe (LHP) performance strongly depends on the performance of a wick that is porous media inserted in an evaporator. In this paper, the visualization results of thermo-fluid behavior on the surface of the wick with microscopic infrared thermography were reported. In this study, 2 different samples that simulated a part of wick in the evaporator were used. The wicks were made by different two materials: polytetrafluoroethylene (PTFE) and stainless steel (SUS). The pore radii of PTFE wick and SUS wick are 1.2 μm and 22.5 μm. The difference of thermo-fluid behavior that was caused by the difference of material was investigated. These two materials include 4 different properties: pore radius, thermal conductivity, permeability and porosity. In order to investigate the effect of the thermal conductivity on wick’s operating mode, the phase diagram on the q-k<sub>eff</sub> plane was made. Based on the temperature line profiles, two operating modes: mode of heat conduction and mode of convection were observed. The effective thermal conductivity of the porous media has strong effect on the operating modes. In addition, the difference of heat leak through the wick that was caused by the difference of the material was discussed.展开更多
A simple theoretical model of a heat pipe heat exchanger (HPHE) based on the ε-NTU method is presented. An iterative computer program was developed to predict the overall effectiveness of a counter-flow air-air loo...A simple theoretical model of a heat pipe heat exchanger (HPHE) based on the ε-NTU method is presented. An iterative computer program was developed to predict the overall effectiveness of a counter-flow air-air loop heat pipe heat exchanger (LHPHE). A thermal resistance network approach for a single thermosyphon was first considered to determine the overall heat transfer coefficients and the NTU's for the evaporator and condenser sections. The model incorporated previously determined evaporating and condensing coefficients. The overall effectiveness of the 6, 4 and 2 row LHPHE was then predicted. The theoretical overall effectiveness was compared with experimental data obtained from a R410a filled LHPHE. The experimental overall effectiveness results compared very well with the simulated values, The results showed that the 6 row arrangement performed better than the 4 or 2 row arrangement in the experiment.展开更多
The paper presents the results of development and investigation of a copper miniature loop heat pipe (LHP) with acetone as a working fluid. The device was equipped with a flat evaporator measuring 80 × 42 × ...The paper presents the results of development and investigation of a copper miniature loop heat pipe (LHP) with acetone as a working fluid. The device was equipped with a flat evaporator measuring 80 × 42 × 7 mm and vapor and liquid lines with an outside diameter of 3 mm, whose lengths were 145 mm and 175 mm, respectively. The LHP was tested at heat loads from 5 W to 60 W, different orientations in the gravity field and heat-sink temperatures from -40°C to +50°C. It is shown that the LHP retains its efficiency at all testing conditions. It is also mentioned that at a heat-sink temperature of +50°C the device operates in the mode of constant conductivity in the whole range of heat loads, and in this case a minimum thermal resistance of the “heat source-heat sink” system equal to 0.16°C/W is achieved, which is independent of the LHP orientation in the gravity field.展开更多
Heat transfer of a capillary evaporator in a loop heat pipe was analyzed through 3D numerical simulations to study the effects of the thermal conductivity of the wick, the contact area between the casing and the wick,...Heat transfer of a capillary evaporator in a loop heat pipe was analyzed through 3D numerical simulations to study the effects of the thermal conductivity of the wick, the contact area between the casing and the wick, and the subcooling in the compensation chamber (CC) on the thermal performance of the evaporator. A pore network model with a distribution of pore radii was used to simulate liquid flow in the porous structure of the wick. To obtain high accuracy, fine meshes were used at the boundaries among the casing, the wick, and the grooves. Distributions of temperature, pressure, and mass flow rate were compared for polytetra-fluoroethylene (PTFE) and stainless steel wicks. The thermal conductivity of the wick and the contact area between the casing and the wick significantly impacted thermal performance of the evaporator heat-transfer coefficient and the heat leak to the CC. The 3D analysis provided highly accurate values for the heat leak;in some cases, the heat leaks of PTFE and stainless steel wicks showed little differences. In general, the heat flux is concentrated at the boundaries between the casing, the wick, and the grooves;therefore, thermal performance can be optimized by increasing the length of the boundary.展开更多
This paper investigated the influence of geometric factors of vapor groove structures on the performance of flat evaporator of a loop heat pipe system. COMSOL multiphysics software was employed to simulate the heat tr...This paper investigated the influence of geometric factors of vapor groove structures on the performance of flat evaporator of a loop heat pipe system. COMSOL multiphysics software was employed to simulate the heat transfer in the evaporator with convex platforms of different shapes,sizes and area ratios(φ)between convex platforms and the heated surface. The maximum temperature and temperature distribution of each model were obtained. The results showed that the decrease of the size of platforms and the increase of φ can lower temperatures and improve temperature distribution homogeneity of the heated surface. Compared with circle and oval platforms,square platforms achieved lower temperature. The results also indicated that φ had the most significant impact on the performance of the evaporator.展开更多
Multiple loop heat pipes which have two evaporators and two condensers in one loop are a kind of active heat transfer device. Since they have two evaporators and two condensers, the operating mode also becomes multipl...Multiple loop heat pipes which have two evaporators and two condensers in one loop are a kind of active heat transfer device. Since they have two evaporators and two condensers, the operating mode also becomes multiple. This work discusses the cases that multiple loop heat pipes were operated with one condenser at high temperature and the other at low temperature. To avoid the high temperature returning liquid and keep the multiple loop heat pipes work properly, the flow regulator which was made of polyethylene was designed, fabricated and applied in this test. The effect of flow regulator was confirmed and analyzed. In the test that large temperature difference existed between two sinks, it can be found according to the result that the flow regulator worked effectively and prevented the high temperature vapor to enter the inlet of common liquid line, which can keep the evaporators and returning liquid to operate at low temperature. With the increment of heat loads and the temperature difference between two sinks, the pressure difference between two condensers became larger and larger. When the pressure difference was larger than the flow regulator’s capillary force, the flow regulator could not work properly because the high temperature vapor began to flow through the flow regulator. According to the test data, the flow regulator can work properly within the sinks’ temperature 0°C/60°C and the two evaporators’ heat load 30/30 W.展开更多
This paper presents and describes the test campaign of a low-cost Loop Heat Pipes (LHP) design. LHP have been around for many decades now. Their potential as passive heat transfer devices has been widely demonstrated ...This paper presents and describes the test campaign of a low-cost Loop Heat Pipes (LHP) design. LHP have been around for many decades now. Their potential as passive heat transfer devices has been widely demonstrated in numerous both ground- and space-based applications. One of the major disadvantages of LHP is their inherent high manufacturing cost;this is the main factor why LHP are still confined to niche/high end applications such as thermal management of spacecrafts. This paper proposes to use an alternative manufacturing design for the LHP evaporator, which is the main contributor to the overall LHP cost. Preliminary thermal results are also reported and briefly explained. Future work is needed to confirm the promising results discussed in this paper and address fully other issues such as tolerance of this LHP design to vibrations and accelerations typical of space missions.展开更多
This paper presents fabrication and testing of a multiple-evaporator and multiple-condenser loop heat pipe (MLHP) with polytetrafluoroethylene (PTFE) porous media as wicks. The MLHP has two evaporators and two condens...This paper presents fabrication and testing of a multiple-evaporator and multiple-condenser loop heat pipe (MLHP) with polytetrafluoroethylene (PTFE) porous media as wicks. The MLHP has two evaporators and two condensers in a loop heat pipe in order to adapt to various changes of thermal condition in spacecraft. The PTFE porous media was used as the primary wicks to reduce heat leak from evaporators to compensation chambers. The tests were conducted under an atmospheric condition. In the tests that heat loads are applied to both evaporators, the MLHP was stably operated as with a LHP with a single evaporator and a single condenser. The relation between the sink temperature and the thermal resistance was experimentally evaluated. In the test with the heat load to one evaporator, the heat transfer from the heated evaporator to the unheated evaporator was confirmed. In the heat load switching test, in which the heat load is switched from one evaporator to another evaporator repeatedly, the MLHP could be stably operated. The loop operation with the large temperature difference between the heat sinks was also tested. From this result, the stable operation of the MLHP in the various conditions was demonstrated. It was also found that a flow regulator which prevents the uncondensed vapor from the condensers is required at the inlet of the common liquid line when one condenser has higher temperature and cannot condense the vapor in it.展开更多
The loop heat pipe(LHP)is an advanced,efficient two-phase heat transfer unit,whose operational performance may be affected by microgravity conditions in contrast to ground-based applications.The performance of on-orbi...The loop heat pipe(LHP)is an advanced,efficient two-phase heat transfer unit,whose operational performance may be affected by microgravity conditions in contrast to ground-based applications.The performance of on-orbit temperature data and ground test of a copper-propylene LHP with a condenser temperature range of 243.15 K to 303.15 K were employed to compared and analyzed.The LHP has successfully started up for more than 193 times with a good heat transfer performance and a stable start-up stabilization on-orbit under a complex orbital heating environment for more than eight months.With a small heat load(10.0W),the average start-up time is 110.0 s while the start-up temperature ranges from 5.71 K-12.78 K.The start-up time at large temperature differences in the high temperature zone will be higher than the time required for start-up at smaller temperature differences in the low one.When the condenser temperature is 250.0 K,the stable temperature difference on orbit is 3.83 K,which is generally consistent in heat transfer compared to 2.20 K in the ground test.In this paper,we can conclude that the on-orbit flight data up to now can provide a reference to the design of subsequent LHP space applications.展开更多
The present study fabricated a series of capillary wicks for loop heat pipes (LHPs), using two different methods, the cold-pressing sintering and direct loose sintering, and experimentally investigated the effect of d...The present study fabricated a series of capillary wicks for loop heat pipes (LHPs), using two different methods, the cold-pressing sintering and direct loose sintering, and experimentally investigated the effect of different methods, compositions and sintering parameters on their properties in terms of porosity, permeability and pore radius. Porosity and pore radius were measured by the Archimedes method and Scanning Electron Microscope (SEM), respectively. Permeability of the wicks was compared by calculation using empirical equation. Results show that capillary wicks were successfully fabricated by using two different methods; the optimal capillary wick was found to be sintered at 650°C for 30 min, using direct loose sintering technique, with 90% nickel and 10% copper. The wicks could reach the porosity of 70.07% and the permeability of 10?13 m2 order, with mean pore radius of 0.54 μm.展开更多
Loop heat pipes (LHPs) were designed for the alpha magnetic spectrometer (AMS-02) to dissipate heat from the cryocoolers. A bypass valve is applied to the LHP to keep the cryocooler temperature above its limit (...Loop heat pipes (LHPs) were designed for the alpha magnetic spectrometer (AMS-02) to dissipate heat from the cryocoolers. A bypass valve is applied to the LHP to keep the cryocooler temperature above its limit (-20℃) in cold environment. Extensive experiments were performed on operation characteristics of LHPs with the bypass valve for AMS-02 during thermal vacuum and thermal balance (TVTB) test. We found that the bypass valve can start up successfully in cold environment. With the bypass valve, the evaporator temperature is stable and can meet the requirement of the cryocooler. We analyzed three operating modes of the bypass valve. Set point temperature and regulation temperature shifts were observed and their relations with the bypass valve temperature were given.展开更多
As one of the key units of space CCD camera,the temperature range and stability of CCD components affect the image's indexes.Reasonable thermal design and robust thermal control devices are needed.One kind of temp...As one of the key units of space CCD camera,the temperature range and stability of CCD components affect the image's indexes.Reasonable thermal design and robust thermal control devices are needed.One kind of temperature control loop heat pipe(TCLHP) is designed,which highly meets the thermal control requirements of CCD components.In order to study the dynamic behaviors of heat and mass transfer of TCLHP,particularly in the orbital flight case,a transient numerical model is developed by using the well-established empirical correlations for flow models within three dimensional thermal modeling.The temperature control principle and details of mathematical model are presented.The model is used to study operating state,flow and heat characteristics based upon the analyses of variations of temperature,pressure and quality under different operating modes and external heat flux variations.The results indicate that TCLHP can satisfy the thermal control requirements of CCD components well,and always ensure good temperature stability and uniformity.By comparison between flight data and simulated results,it is found that the model is to be accurate to within 1℃.The model can be better used for predicting and understanding the transient performance of TCLHP.展开更多
An experimental study was carried out in this article to investigate the transient operating performance of a Dual Compensation Chamber Loop Heat Pipe(DCCLHP) with Thermoelectric Cooler(TEC) under acceleration conditi...An experimental study was carried out in this article to investigate the transient operating performance of a Dual Compensation Chamber Loop Heat Pipe(DCCLHP) with Thermoelectric Cooler(TEC) under acceleration conditions and ammonia was selected as the working fluid.For the purpose of comparison, experimental work was conducted under terrestrial gravity.Sensitivity analysis was performed to explore the effect of several control parameters such as the heat load, acceleration magnitude and TEC assist on the startup and operating performance of the DCCLHP.Experimental results indicate that the DCCLHP can get to a steady-state operation when the heat load changes from 25 W to 300 W under terrestrial gravity.While under acceleration conditions, the DCCLHP can work at a high operating temperature or even fail to operate, which shows the acceleration effect plays a significant impact on the loop operation.The TEC assist with power of 10 W can improve the operating performance and reduce the operating temperature for the case of small heat load and acceleration magnitude.When the acceleration exceeds 3 g at large heat load, the effect of TEC assist on the operation at large heat load can be ignored.展开更多
At present,the structural design of a loop heat pipe(LHP)condenser mostly relies on experience.To analyze the condensation flow pattern in an LHP and to find a more accurate empirical correlation that can better guide...At present,the structural design of a loop heat pipe(LHP)condenser mostly relies on experience.To analyze the condensation flow pattern in an LHP and to find a more accurate empirical correlation that can better guide condenser design in existing empirical correlations,a test system was designed and fabricated to observe the condensation phenomenon in the condenser and to evaluate the LHP’s heat transfer performance.Since propylene has a wide temperature range to different temperature control requirements,it was chosen as the working fluid.In this paper,the condensation process in the condenser was observed,and the operating parameters of a propylene LHP were measured at 283 K.The condensation flow patterns in the 2.5 mm×2.5 mm channel mainly included stratified flow,wavy flow and intermittent flow.By comparing the experimental results with four typical condensation flow regime maps,it was found that the Breber and Cavallini flow regime maps can successfully predict most of the condensation flow patterns of the LHP even with ultra-small mass flux.In addition,four condensation heat transfer coefficient correlations were selected to compare the predicted values of heat transfer coefficient with the experimental results.The study showed that the predicted values from the correlation by Cavallini et al.matched 90%of the experimental values well with an error of less than 20%,and this correlation is recommended for highly accurate LHP design.展开更多
Aiming to improve the thermal characteristics of modern electronics, we experimentally study the performance of a stainless steel/water loop heat pipe(LHP) under natural cooling condition. The LHP heat transfer perfor...Aiming to improve the thermal characteristics of modern electronics, we experimentally study the performance of a stainless steel/water loop heat pipe(LHP) under natural cooling condition. The LHP heat transfer performance, including start-up performance, temperature oscillation and total thermal resistance at different heat loads and with different incline angles have been investigated systematically. Experimental results show that at an optimal heat load(i.e. 60 W) and with the LHP being inclined 60 to the horizontal plane, the total thermal resistance is lowered to be ~0.24 K/W, and the temperature of evaporator could be controlled steadily at around 90 C.展开更多
Cryogenic loop heat pipes are highly efficient heat transfer devices at cryogenic temperature range,which have promising application prospects in satellites,spacecrafts,electronics,and so on.Cooling down process is a ...Cryogenic loop heat pipes are highly efficient heat transfer devices at cryogenic temperature range,which have promising application prospects in satellites,spacecrafts,electronics,and so on.Cooling down process is a most critical process for a CLHP before startup.At present,secondary loop is a major way for a CLHP to fulfil cooling down and most studies are concentrated on heat transfer characteristics during normal operation.However,few investigations have been carried out on the cooling down process.In this paper,the cooling down process of a nitrogen-charged CLHP assisted with a secondary loop was experimentally investigated.A simple qualitative approach to estimate the cooling down time was proposed according to the law of conservation of energy.The two flow paths of the working fluid in the CLHP during the cooling down process were described.Experimental studies on the cooling down process with various secondary heat loads and working fluid inventory were presented in detail.With the increase of secondary heat load,the elapsed time of Stage III decreased significantly due to the larger mass flow rate in Path I.In addition,the effect of the working fluid inventory on the cooling down time was generally small in the range from 2.99 MPa to 3.80 MPa.However,with 2.80 MPa working fluid inventory,it required much longer cooling down time,which was because of the lack of liquid in the CLHP with low working fluid inventory.Moreover,the influence of gravity on the temperature variation of the components during the experiments was analyzed.This work is beneficial for better understanding of the cooling down process and optimizing of CLHPs.展开更多
Loop heat pipes(LHPs)are attractive two-phase thermal control devices for satellites,electronics and many other applications.They are capable of transporting heat efficiently for long distances up to several meters at...Loop heat pipes(LHPs)are attractive two-phase thermal control devices for satellites,electronics and many other applications.They are capable of transporting heat efficiently for long distances up to several meters at any orientation.This paper investigated the heat transfer characteristics of loop heat pipes with long distances and small diameter transport lines.Small stainless steel tubes of 2 mm and 3 mm in inner diameters were chosen as liquid lines and vapor lines of the LHPs.The local thermal resistances in the evaporator of the 6 m-LHP were researched and analyzed,which indicated that the thermal resistance between the aluminum block and the vapor in the vapor channel accounted for a major proportion of the total thermal resistance.The effect of heat sink temperatures on the performance of the 6 m-LHP were compared with 10°C,15°C,20°C and 25°C cooling water temperatures.Moreover,the thermal characteristics of LHPs with transport distances of 2 m and 16 m were also experimentally investigated.The 16 m-LHP could achieve a heat transfer capacity of 100 W and the 2 m-LHP could reach more than 339 W,on the premise of the evaporator temperature below 100°C.The thermal resistance of the 2 m-LHP could achieve 0.125°C/W.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.51276012)
文摘In order to investigate the mechanism of the temperature oscillation in loop heat pipes,this paper investigated the movement of the phase interface as the changed input power by a mass-spring-damper model.The model was solved with MATLAB and was used to explain the high-frequency and low-amplitude temperature oscillation.Temperature variation with the input power from 20 W to 75 W was investigated based on a LHP prototype in a literature.The model agreed well with the experimental data in the literature.The simulation results suggested that the movement of the liquid column was caused by the fluctuation of pressure difference applied on the liquid column and the stiffness coefficients of the vapor springs increasing with the input power.According to parameter analyses,the temperature oscillation at the outlet of the condenser can be weakened by increasing the mass of the liquid column and keeping the temperature at the outlet of the condenser steady.
文摘Multiple loop heat pipe is a high-functional thermal transport device. This work was conducted to confirm the working performance of Multiple loop heat pipe under thermal vacuum ambience with the working fluid ammonia. Asmall multiple loop heat pipe with two evaporators and two ra- diators was designed and fabricated. Then thermal vacuum test was conducted. The heaters were fasten on both evaporators, both radiators, both compensation chambers. In the case that both evaporators were heated, the multiple loop heat pipe can transport 120/120 W for 1.5 m, in the case that only one evaporator was heated, evaporator 1 can transport 80 W for 1.5 m, while eva- porator 2 can transport 120 W for 1.5 m. Two flow regulators were installed near the confluence of liquid line to prevent uncondensed vapor penetrating into returning liquid when the tempera- ture difference exists between two radiators. In the case that the heat load at both evaporators were 40/40 W and one radiator was heated, the flow regulator1 can tolerate the 160 W of heat load which was supplied to radiator1 while the flow regulator2 can tolerate the 100 W of heat load which was supplied to radiator2. To demonstrate the multiple loop heat pipe’s startup behavior at lowheat load, each of the compensation chamber was preheated to change the initial distribution of liquid and vapor in the evaporator and compensation chamber, in the result, each evaporator can start up at 5W through preheating.
文摘Thermal performance of a loop heat pipe with two evaporators and two condensers was examined using a lumped network model analysis. Thermosyphon-type vertical loop heat pipe and capillary-pump-type horizontal loop heat pipe were calculated by examining the change of heating rate of two evaporators. Calculation results showed that the vapor and liquid flow rates in the loop heat pipe and the thermal conductance of the heat pipe changed significantly depending on the distribution ratio of the heating rate of the multiple evaporators. The thermal performance of the vertical loop heat pipe with two evaporators was also examined and experimental results of flow direction and thermal conductance of the heat pipe agreed with the analytical results. The lumped network model analysis is therefore considered accurate and preferable for the practical design of a loop heat pipe with multiple evaporators.
文摘Loop Heat Pipe (LHP) performance strongly depends on the performance of a wick that is porous media inserted in an evaporator. In this paper, the visualization results of thermo-fluid behavior on the surface of the wick with microscopic infrared thermography were reported. In this study, 2 different samples that simulated a part of wick in the evaporator were used. The wicks were made by different two materials: polytetrafluoroethylene (PTFE) and stainless steel (SUS). The pore radii of PTFE wick and SUS wick are 1.2 μm and 22.5 μm. The difference of thermo-fluid behavior that was caused by the difference of material was investigated. These two materials include 4 different properties: pore radius, thermal conductivity, permeability and porosity. In order to investigate the effect of the thermal conductivity on wick’s operating mode, the phase diagram on the q-k<sub>eff</sub> plane was made. Based on the temperature line profiles, two operating modes: mode of heat conduction and mode of convection were observed. The effective thermal conductivity of the porous media has strong effect on the operating modes. In addition, the difference of heat leak through the wick that was caused by the difference of the material was discussed.
文摘A simple theoretical model of a heat pipe heat exchanger (HPHE) based on the ε-NTU method is presented. An iterative computer program was developed to predict the overall effectiveness of a counter-flow air-air loop heat pipe heat exchanger (LHPHE). A thermal resistance network approach for a single thermosyphon was first considered to determine the overall heat transfer coefficients and the NTU's for the evaporator and condenser sections. The model incorporated previously determined evaporating and condensing coefficients. The overall effectiveness of the 6, 4 and 2 row LHPHE was then predicted. The theoretical overall effectiveness was compared with experimental data obtained from a R410a filled LHPHE. The experimental overall effectiveness results compared very well with the simulated values, The results showed that the 6 row arrangement performed better than the 4 or 2 row arrangement in the experiment.
文摘The paper presents the results of development and investigation of a copper miniature loop heat pipe (LHP) with acetone as a working fluid. The device was equipped with a flat evaporator measuring 80 × 42 × 7 mm and vapor and liquid lines with an outside diameter of 3 mm, whose lengths were 145 mm and 175 mm, respectively. The LHP was tested at heat loads from 5 W to 60 W, different orientations in the gravity field and heat-sink temperatures from -40°C to +50°C. It is shown that the LHP retains its efficiency at all testing conditions. It is also mentioned that at a heat-sink temperature of +50°C the device operates in the mode of constant conductivity in the whole range of heat loads, and in this case a minimum thermal resistance of the “heat source-heat sink” system equal to 0.16°C/W is achieved, which is independent of the LHP orientation in the gravity field.
文摘Heat transfer of a capillary evaporator in a loop heat pipe was analyzed through 3D numerical simulations to study the effects of the thermal conductivity of the wick, the contact area between the casing and the wick, and the subcooling in the compensation chamber (CC) on the thermal performance of the evaporator. A pore network model with a distribution of pore radii was used to simulate liquid flow in the porous structure of the wick. To obtain high accuracy, fine meshes were used at the boundaries among the casing, the wick, and the grooves. Distributions of temperature, pressure, and mass flow rate were compared for polytetra-fluoroethylene (PTFE) and stainless steel wicks. The thermal conductivity of the wick and the contact area between the casing and the wick significantly impacted thermal performance of the evaporator heat-transfer coefficient and the heat leak to the CC. The 3D analysis provided highly accurate values for the heat leak;in some cases, the heat leaks of PTFE and stainless steel wicks showed little differences. In general, the heat flux is concentrated at the boundaries between the casing, the wick, and the grooves;therefore, thermal performance can be optimized by increasing the length of the boundary.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51276012)
文摘This paper investigated the influence of geometric factors of vapor groove structures on the performance of flat evaporator of a loop heat pipe system. COMSOL multiphysics software was employed to simulate the heat transfer in the evaporator with convex platforms of different shapes,sizes and area ratios(φ)between convex platforms and the heated surface. The maximum temperature and temperature distribution of each model were obtained. The results showed that the decrease of the size of platforms and the increase of φ can lower temperatures and improve temperature distribution homogeneity of the heated surface. Compared with circle and oval platforms,square platforms achieved lower temperature. The results also indicated that φ had the most significant impact on the performance of the evaporator.
文摘Multiple loop heat pipes which have two evaporators and two condensers in one loop are a kind of active heat transfer device. Since they have two evaporators and two condensers, the operating mode also becomes multiple. This work discusses the cases that multiple loop heat pipes were operated with one condenser at high temperature and the other at low temperature. To avoid the high temperature returning liquid and keep the multiple loop heat pipes work properly, the flow regulator which was made of polyethylene was designed, fabricated and applied in this test. The effect of flow regulator was confirmed and analyzed. In the test that large temperature difference existed between two sinks, it can be found according to the result that the flow regulator worked effectively and prevented the high temperature vapor to enter the inlet of common liquid line, which can keep the evaporators and returning liquid to operate at low temperature. With the increment of heat loads and the temperature difference between two sinks, the pressure difference between two condensers became larger and larger. When the pressure difference was larger than the flow regulator’s capillary force, the flow regulator could not work properly because the high temperature vapor began to flow through the flow regulator. According to the test data, the flow regulator can work properly within the sinks’ temperature 0°C/60°C and the two evaporators’ heat load 30/30 W.
文摘This paper presents and describes the test campaign of a low-cost Loop Heat Pipes (LHP) design. LHP have been around for many decades now. Their potential as passive heat transfer devices has been widely demonstrated in numerous both ground- and space-based applications. One of the major disadvantages of LHP is their inherent high manufacturing cost;this is the main factor why LHP are still confined to niche/high end applications such as thermal management of spacecrafts. This paper proposes to use an alternative manufacturing design for the LHP evaporator, which is the main contributor to the overall LHP cost. Preliminary thermal results are also reported and briefly explained. Future work is needed to confirm the promising results discussed in this paper and address fully other issues such as tolerance of this LHP design to vibrations and accelerations typical of space missions.
文摘This paper presents fabrication and testing of a multiple-evaporator and multiple-condenser loop heat pipe (MLHP) with polytetrafluoroethylene (PTFE) porous media as wicks. The MLHP has two evaporators and two condensers in a loop heat pipe in order to adapt to various changes of thermal condition in spacecraft. The PTFE porous media was used as the primary wicks to reduce heat leak from evaporators to compensation chambers. The tests were conducted under an atmospheric condition. In the tests that heat loads are applied to both evaporators, the MLHP was stably operated as with a LHP with a single evaporator and a single condenser. The relation between the sink temperature and the thermal resistance was experimentally evaluated. In the test with the heat load to one evaporator, the heat transfer from the heated evaporator to the unheated evaporator was confirmed. In the heat load switching test, in which the heat load is switched from one evaporator to another evaporator repeatedly, the MLHP could be stably operated. The loop operation with the large temperature difference between the heat sinks was also tested. From this result, the stable operation of the MLHP in the various conditions was demonstrated. It was also found that a flow regulator which prevents the uncondensed vapor from the condensers is required at the inlet of the common liquid line when one condenser has higher temperature and cannot condense the vapor in it.
文摘The loop heat pipe(LHP)is an advanced,efficient two-phase heat transfer unit,whose operational performance may be affected by microgravity conditions in contrast to ground-based applications.The performance of on-orbit temperature data and ground test of a copper-propylene LHP with a condenser temperature range of 243.15 K to 303.15 K were employed to compared and analyzed.The LHP has successfully started up for more than 193 times with a good heat transfer performance and a stable start-up stabilization on-orbit under a complex orbital heating environment for more than eight months.With a small heat load(10.0W),the average start-up time is 110.0 s while the start-up temperature ranges from 5.71 K-12.78 K.The start-up time at large temperature differences in the high temperature zone will be higher than the time required for start-up at smaller temperature differences in the low one.When the condenser temperature is 250.0 K,the stable temperature difference on orbit is 3.83 K,which is generally consistent in heat transfer compared to 2.20 K in the ground test.In this paper,we can conclude that the on-orbit flight data up to now can provide a reference to the design of subsequent LHP space applications.
基金Supported by Shandong Provincial Program of Science and Technology Develop-ment(Grant No.2007GG1HZ06004)
文摘The present study fabricated a series of capillary wicks for loop heat pipes (LHPs), using two different methods, the cold-pressing sintering and direct loose sintering, and experimentally investigated the effect of different methods, compositions and sintering parameters on their properties in terms of porosity, permeability and pore radius. Porosity and pore radius were measured by the Archimedes method and Scanning Electron Microscope (SEM), respectively. Permeability of the wicks was compared by calculation using empirical equation. Results show that capillary wicks were successfully fabricated by using two different methods; the optimal capillary wick was found to be sintered at 650°C for 30 min, using direct loose sintering technique, with 90% nickel and 10% copper. The wicks could reach the porosity of 70.07% and the permeability of 10?13 m2 order, with mean pore radius of 0.54 μm.
基金supported by the Major Project of Technology Transfer of Shandong Province (Grant No. 2009ZHZX1A1105)
文摘Loop heat pipes (LHPs) were designed for the alpha magnetic spectrometer (AMS-02) to dissipate heat from the cryocoolers. A bypass valve is applied to the LHP to keep the cryocooler temperature above its limit (-20℃) in cold environment. Extensive experiments were performed on operation characteristics of LHPs with the bypass valve for AMS-02 during thermal vacuum and thermal balance (TVTB) test. We found that the bypass valve can start up successfully in cold environment. With the bypass valve, the evaporator temperature is stable and can meet the requirement of the cryocooler. We analyzed three operating modes of the bypass valve. Set point temperature and regulation temperature shifts were observed and their relations with the bypass valve temperature were given.
文摘As one of the key units of space CCD camera,the temperature range and stability of CCD components affect the image's indexes.Reasonable thermal design and robust thermal control devices are needed.One kind of temperature control loop heat pipe(TCLHP) is designed,which highly meets the thermal control requirements of CCD components.In order to study the dynamic behaviors of heat and mass transfer of TCLHP,particularly in the orbital flight case,a transient numerical model is developed by using the well-established empirical correlations for flow models within three dimensional thermal modeling.The temperature control principle and details of mathematical model are presented.The model is used to study operating state,flow and heat characteristics based upon the analyses of variations of temperature,pressure and quality under different operating modes and external heat flux variations.The results indicate that TCLHP can satisfy the thermal control requirements of CCD components well,and always ensure good temperature stability and uniformity.By comparison between flight data and simulated results,it is found that the model is to be accurate to within 1℃.The model can be better used for predicting and understanding the transient performance of TCLHP.
基金the financial supports from the Fundamental Research Funds for the Central Universities of China(YWF-14-HKXY-019)。
文摘An experimental study was carried out in this article to investigate the transient operating performance of a Dual Compensation Chamber Loop Heat Pipe(DCCLHP) with Thermoelectric Cooler(TEC) under acceleration conditions and ammonia was selected as the working fluid.For the purpose of comparison, experimental work was conducted under terrestrial gravity.Sensitivity analysis was performed to explore the effect of several control parameters such as the heat load, acceleration magnitude and TEC assist on the startup and operating performance of the DCCLHP.Experimental results indicate that the DCCLHP can get to a steady-state operation when the heat load changes from 25 W to 300 W under terrestrial gravity.While under acceleration conditions, the DCCLHP can work at a high operating temperature or even fail to operate, which shows the acceleration effect plays a significant impact on the loop operation.The TEC assist with power of 10 W can improve the operating performance and reduce the operating temperature for the case of small heat load and acceleration magnitude.When the acceleration exceeds 3 g at large heat load, the effect of TEC assist on the operation at large heat load can be ignored.
基金The work is supported by the National Natural Science Foundation of China(No.51776121).
文摘At present,the structural design of a loop heat pipe(LHP)condenser mostly relies on experience.To analyze the condensation flow pattern in an LHP and to find a more accurate empirical correlation that can better guide condenser design in existing empirical correlations,a test system was designed and fabricated to observe the condensation phenomenon in the condenser and to evaluate the LHP’s heat transfer performance.Since propylene has a wide temperature range to different temperature control requirements,it was chosen as the working fluid.In this paper,the condensation process in the condenser was observed,and the operating parameters of a propylene LHP were measured at 283 K.The condensation flow patterns in the 2.5 mm×2.5 mm channel mainly included stratified flow,wavy flow and intermittent flow.By comparing the experimental results with four typical condensation flow regime maps,it was found that the Breber and Cavallini flow regime maps can successfully predict most of the condensation flow patterns of the LHP even with ultra-small mass flux.In addition,four condensation heat transfer coefficient correlations were selected to compare the predicted values of heat transfer coefficient with the experimental results.The study showed that the predicted values from the correlation by Cavallini et al.matched 90%of the experimental values well with an error of less than 20%,and this correlation is recommended for highly accurate LHP design.
基金supported by the Guangdong Science and Technology Project(2012A080304002)the CAS Key Laboratory of Renew-able Energy Foundation(y207j7)+2 种基金the Zhuhai Science and Technology Project(2012D0501990019)the Guangzhou Science and Technology Project(2013J4300001)the CAS"100 Talents"Program(FJ)
文摘Aiming to improve the thermal characteristics of modern electronics, we experimentally study the performance of a stainless steel/water loop heat pipe(LHP) under natural cooling condition. The LHP heat transfer performance, including start-up performance, temperature oscillation and total thermal resistance at different heat loads and with different incline angles have been investigated systematically. Experimental results show that at an optimal heat load(i.e. 60 W) and with the LHP being inclined 60 to the horizontal plane, the total thermal resistance is lowered to be ~0.24 K/W, and the temperature of evaporator could be controlled steadily at around 90 C.
基金supported by the National Natural Science Foundation of China(No.51606207)Youth Innovation Promotion Association,CAS,China(No.2018036)partially supported by Beijing Municipal Natural Science Foundation(No.3202033)。
文摘Cryogenic loop heat pipes are highly efficient heat transfer devices at cryogenic temperature range,which have promising application prospects in satellites,spacecrafts,electronics,and so on.Cooling down process is a most critical process for a CLHP before startup.At present,secondary loop is a major way for a CLHP to fulfil cooling down and most studies are concentrated on heat transfer characteristics during normal operation.However,few investigations have been carried out on the cooling down process.In this paper,the cooling down process of a nitrogen-charged CLHP assisted with a secondary loop was experimentally investigated.A simple qualitative approach to estimate the cooling down time was proposed according to the law of conservation of energy.The two flow paths of the working fluid in the CLHP during the cooling down process were described.Experimental studies on the cooling down process with various secondary heat loads and working fluid inventory were presented in detail.With the increase of secondary heat load,the elapsed time of Stage III decreased significantly due to the larger mass flow rate in Path I.In addition,the effect of the working fluid inventory on the cooling down time was generally small in the range from 2.99 MPa to 3.80 MPa.However,with 2.80 MPa working fluid inventory,it required much longer cooling down time,which was because of the lack of liquid in the CLHP with low working fluid inventory.Moreover,the influence of gravity on the temperature variation of the components during the experiments was analyzed.This work is beneficial for better understanding of the cooling down process and optimizing of CLHPs.
基金partially supported by the National Natural Science Foundation of China(No.51606207)Youth Innovation Promotion Association,CAS,China(No.2018036)。
文摘Loop heat pipes(LHPs)are attractive two-phase thermal control devices for satellites,electronics and many other applications.They are capable of transporting heat efficiently for long distances up to several meters at any orientation.This paper investigated the heat transfer characteristics of loop heat pipes with long distances and small diameter transport lines.Small stainless steel tubes of 2 mm and 3 mm in inner diameters were chosen as liquid lines and vapor lines of the LHPs.The local thermal resistances in the evaporator of the 6 m-LHP were researched and analyzed,which indicated that the thermal resistance between the aluminum block and the vapor in the vapor channel accounted for a major proportion of the total thermal resistance.The effect of heat sink temperatures on the performance of the 6 m-LHP were compared with 10°C,15°C,20°C and 25°C cooling water temperatures.Moreover,the thermal characteristics of LHPs with transport distances of 2 m and 16 m were also experimentally investigated.The 16 m-LHP could achieve a heat transfer capacity of 100 W and the 2 m-LHP could reach more than 339 W,on the premise of the evaporator temperature below 100°C.The thermal resistance of the 2 m-LHP could achieve 0.125°C/W.