The active power loop flow(APLF)may be caused by impropriate network configuration,impropriate parameter settings,and/or stochastic bus powers.The power flow controllers,e.g.,the unified power flow controller(UPFC),ma...The active power loop flow(APLF)may be caused by impropriate network configuration,impropriate parameter settings,and/or stochastic bus powers.The power flow controllers,e.g.,the unified power flow controller(UPFC),may be the reason and the solution to the loop flows.In this paper,the critical existence condition of the APLF is newly integrated into the simultaneous power flow model for the system and UPFC.Compared with the existing method of alternatively solving the simultaneous power flow and sensitivity-based approaching to the critical existing condition,the integrated power flow needs less iterations and calculation time.Besides,with wind power fluctuation,the interval power flow(IPF)is introduced into the integrated power flow,and solved with the affine Krawcyzk iteration to make sure that the range of active power setting of the UPFC not yielding the APLF.Compared with Monte Carlo simulation,the IPF has the similar accuracy but less time.展开更多
With the continuous development of urban distribution network, most of the distribution network has formed a dual power supply mode. The traditional way of distribution network load operating mainly adopts the power m...With the continuous development of urban distribution network, most of the distribution network has formed a dual power supply mode. The traditional way of distribution network load operating mainly adopts the power method, while satisfied the requirements of the safety of power grid, but will cause external short time power outages, poor user experience, realizing the distribution network outage rearrangement of load is a necessary means to improve power supply reliability. This paper presents mathematical model of load transfer in distribution network. The differences of voltage of amplitude and phase angle on both sides are calculated by the power flow. According to the differential pressure to determine whether the loop can be closed at the loop operation, thereby improving the success rate of operation.展开更多
基金the National Natural Science Foundation of China(Grant No.51877061).
文摘The active power loop flow(APLF)may be caused by impropriate network configuration,impropriate parameter settings,and/or stochastic bus powers.The power flow controllers,e.g.,the unified power flow controller(UPFC),may be the reason and the solution to the loop flows.In this paper,the critical existence condition of the APLF is newly integrated into the simultaneous power flow model for the system and UPFC.Compared with the existing method of alternatively solving the simultaneous power flow and sensitivity-based approaching to the critical existing condition,the integrated power flow needs less iterations and calculation time.Besides,with wind power fluctuation,the interval power flow(IPF)is introduced into the integrated power flow,and solved with the affine Krawcyzk iteration to make sure that the range of active power setting of the UPFC not yielding the APLF.Compared with Monte Carlo simulation,the IPF has the similar accuracy but less time.
文摘With the continuous development of urban distribution network, most of the distribution network has formed a dual power supply mode. The traditional way of distribution network load operating mainly adopts the power method, while satisfied the requirements of the safety of power grid, but will cause external short time power outages, poor user experience, realizing the distribution network outage rearrangement of load is a necessary means to improve power supply reliability. This paper presents mathematical model of load transfer in distribution network. The differences of voltage of amplitude and phase angle on both sides are calculated by the power flow. According to the differential pressure to determine whether the loop can be closed at the loop operation, thereby improving the success rate of operation.