Dynamical behaviors and stability properties of a flat space Friedmann-Robertson-Walker universe filled with pressureless dark matter and viscous dark energy are studied in the context of standard classical and loop q...Dynamical behaviors and stability properties of a flat space Friedmann-Robertson-Walker universe filled with pressureless dark matter and viscous dark energy are studied in the context of standard classical and loop quantum cosmology. Assuming that the dark energy has a constant bulk viscosity, it is found that the bulk viscosity effects influence only the quintessence model case leading to the existence of a viscous late time attractor solution of de- Sitter type, whereas the quantum geometry effects influence the phantom model case where the big rip singularity is removed. Moreover, our results of the Hubble parameter as a function of the redshift are in good agreement with the more recent data.展开更多
We investigate the cosmological model of viscous modified Chaplygin gas (VMCG) in classical and loop quantum cosmology (LQC). Firstly, we constrain its equation of state parameters in the framework of standard cos...We investigate the cosmological model of viscous modified Chaplygin gas (VMCG) in classical and loop quantum cosmology (LQC). Firstly, we constrain its equation of state parameters in the framework of standard cosmology from Union 2.1 SNe Ia data. Then, we probe the dynamical stability of this model in a universe filled with VMCG and baryonic fluid in LQC background. It is found that the model is very suitable with (χ2/d.o.f = 0.974) and gives a good prediction of the current values of the deceleration parameter q0 =∈ (-0.60, -0.57) and the effective state parameter ωeff∈ (-0.76, -0.74) that is consistent with the recent observational data. The model can also predict the time crossing when (ρDE ≈ Pmatter) at z = 0.75 and can solve the coincidence problem. In LQC background, the Big Bang singularity found in classical cosmology ceases to exist and is replaced by a bounce when the Hubble parameter vanishes at ρtot≈ρc.展开更多
The alternative dynamics of loop quantum cosmology is examined by the path integral formulation.We consider the spatially flat FRW models with a massless scalar field,where the alternative quantizations inherit more f...The alternative dynamics of loop quantum cosmology is examined by the path integral formulation.We consider the spatially flat FRW models with a massless scalar field,where the alternative quantizations inherit more features from full loop quantum gravity.The path integrals can be formulated in both timeless and deparameterized frameworks.It turns out that the effective Hamiltonians derived from the two different viewpoints are equivalent to each other.Moreover,the first-order modified Friedmann equations are derived and predict quantum bounces for contracting universe,which coincide with those obtained in canonical theory.展开更多
Recently,a de-Sitter epoch has been found in the new model of loop quantum cosmology,which is governed by the scalar constraint with both Euclidean and Lorentz terms.The singularity free bounce in the new LQC model an...Recently,a de-Sitter epoch has been found in the new model of loop quantum cosmology,which is governed by the scalar constraint with both Euclidean and Lorentz terms.The singularity free bounce in the new LQC model and the emergent cosmology constant strongly suggest that the effective stress-energy tensor induced by quantum corrections must violate the standard energy conditions.In this study,we perform an explicit calculation to analyze the behaviors of specific representative energy conditions,i.e.,average null,strong,and dominant energy conditions.We reveal that the average null energy condition is violated at all times,while the dominant energy condition is violated only at a period around the bounce point.The strong energy condition is violated not only at a period around the bounce point but also in the whole period from the bounce point to the classical phase corresponding to the de Sitter period.Our results will shed some light on the construction of a wormhole and time machine,which usually require exotic matter to violate energy conditions.展开更多
In this paper,we study the dynamics of k-essence in loop quantum cosmology(LQC).The study indicates that the loop quantum gravity(LQG)effect plays a key role only in the early epoch of the universe and is diluted in t...In this paper,we study the dynamics of k-essence in loop quantum cosmology(LQC).The study indicates that the loop quantum gravity(LQG)effect plays a key role only in the early epoch of the universe and is diluted in the later stages.The fixed points in LQC are basically consistent with those in standard Friedmann-Robertson-Walker(FRW)cosmology.For most of the attractor solutions,the stability conditions in L Q C are in agreement with those for the standard FRW universe.For some special fixed points,however,tighter constraints are imposed thanks to the LQG effect.展开更多
We have studied the tachyon intermediate and logamediate warm inflation in loop quantum cosmological background by taking the dissipative co-efficient Γ = Γ_0(where Γ_0 is a constant) in "intermediate" in...We have studied the tachyon intermediate and logamediate warm inflation in loop quantum cosmological background by taking the dissipative co-efficient Γ = Γ_0(where Γ_0 is a constant) in "intermediate" inflation and Γ = V(φ),(where V(φ) is the potential of tachyonic field) in "logamediate" inflation. We have assumed slow-roll condition to construct scalar field φ, potential V, N-folds, etc. Various slow-roll parameters have also been obtained.We have analyzed the stability of this model through graphical representations.展开更多
基金Supported by the Algerian Ministry of Education and ResearchDGRSDT
文摘Dynamical behaviors and stability properties of a flat space Friedmann-Robertson-Walker universe filled with pressureless dark matter and viscous dark energy are studied in the context of standard classical and loop quantum cosmology. Assuming that the dark energy has a constant bulk viscosity, it is found that the bulk viscosity effects influence only the quintessence model case leading to the existence of a viscous late time attractor solution of de- Sitter type, whereas the quantum geometry effects influence the phantom model case where the big rip singularity is removed. Moreover, our results of the Hubble parameter as a function of the redshift are in good agreement with the more recent data.
基金Supported by the Algerian Ministry of Education and Research and DGRSDT
文摘We investigate the cosmological model of viscous modified Chaplygin gas (VMCG) in classical and loop quantum cosmology (LQC). Firstly, we constrain its equation of state parameters in the framework of standard cosmology from Union 2.1 SNe Ia data. Then, we probe the dynamical stability of this model in a universe filled with VMCG and baryonic fluid in LQC background. It is found that the model is very suitable with (χ2/d.o.f = 0.974) and gives a good prediction of the current values of the deceleration parameter q0 =∈ (-0.60, -0.57) and the effective state parameter ωeff∈ (-0.76, -0.74) that is consistent with the recent observational data. The model can also predict the time crossing when (ρDE ≈ Pmatter) at z = 0.75 and can solve the coincidence problem. In LQC background, the Big Bang singularity found in classical cosmology ceases to exist and is replaced by a bounce when the Hubble parameter vanishes at ρtot≈ρc.
基金Supported by National Natural Science Foundation of China under Grant No. 10975017the Fundamental Research Funds for the Central Universities
文摘The alternative dynamics of loop quantum cosmology is examined by the path integral formulation.We consider the spatially flat FRW models with a massless scalar field,where the alternative quantizations inherit more features from full loop quantum gravity.The path integrals can be formulated in both timeless and deparameterized frameworks.It turns out that the effective Hamiltonians derived from the two different viewpoints are equivalent to each other.Moreover,the first-order modified Friedmann equations are derived and predict quantum bounces for contracting universe,which coincide with those obtained in canonical theory.
基金Supported by the National Natural Science Foundation of China(NSFC)(11775082,12047519,11875006,11961131013)China Postdoctoral Science Foundation(2021M691072)。
文摘Recently,a de-Sitter epoch has been found in the new model of loop quantum cosmology,which is governed by the scalar constraint with both Euclidean and Lorentz terms.The singularity free bounce in the new LQC model and the emergent cosmology constant strongly suggest that the effective stress-energy tensor induced by quantum corrections must violate the standard energy conditions.In this study,we perform an explicit calculation to analyze the behaviors of specific representative energy conditions,i.e.,average null,strong,and dominant energy conditions.We reveal that the average null energy condition is violated at all times,while the dominant energy condition is violated only at a period around the bounce point.The strong energy condition is violated not only at a period around the bounce point but also in the whole period from the bounce point to the classical phase corresponding to the de Sitter period.Our results will shed some light on the construction of a wormhole and time machine,which usually require exotic matter to violate energy conditions.
基金Supported by the Natural Science Foundation of China(11775036)Fok Ying Tung Education Foundation(171006)Jian-Pin Wu is also supported by Top Talent Support Program from Yangzhou University.
文摘In this paper,we study the dynamics of k-essence in loop quantum cosmology(LQC).The study indicates that the loop quantum gravity(LQG)effect plays a key role only in the early epoch of the universe and is diluted in the later stages.The fixed points in LQC are basically consistent with those in standard Friedmann-Robertson-Walker(FRW)cosmology.For most of the attractor solutions,the stability conditions in L Q C are in agreement with those for the standard FRW universe.For some special fixed points,however,tighter constraints are imposed thanks to the LQG effect.
文摘We have studied the tachyon intermediate and logamediate warm inflation in loop quantum cosmological background by taking the dissipative co-efficient Γ = Γ_0(where Γ_0 is a constant) in "intermediate" inflation and Γ = V(φ),(where V(φ) is the potential of tachyonic field) in "logamediate" inflation. We have assumed slow-roll condition to construct scalar field φ, potential V, N-folds, etc. Various slow-roll parameters have also been obtained.We have analyzed the stability of this model through graphical representations.