Due to a series of challenges such as low-orbit maintenance of satellites, the air-breathing electric propulsion has got widespread attention. Commonly, the radio frequency ion thruster is favored by low-orbit mission...Due to a series of challenges such as low-orbit maintenance of satellites, the air-breathing electric propulsion has got widespread attention. Commonly, the radio frequency ion thruster is favored by low-orbit missions due to its high specific impulse and efficiency. In this paper, the power transfer efficiency of the radio frequency ion thruster with different gas compositions is studied experimentally, which is obtained by measuring the radio frequency power and current of the antenna coil with and without discharge operation. The results show that increasing the turns of antenna coils can effectively improve the radio frequency power transfer efficiency, which is due to the improvement of Q factor. In pure N_2 discharge,with the increase of radio frequency power, the radio frequency power transfer efficiency first rises rapidly and then exhibits a less steep increasing trend. The radio frequency power transfer efficiency increases with the increase of gas pressure at relatively high power, while declines rapidly at relatively low power. In N_(2)/O_(2) discharge, increasing the N_(2) content at high power can improve the radio frequency power transfer efficiency, but the opposite was observed at low power. In order to give a better understanding of these trends, an analytic solution in limit cases is utilized, and a Langmuir probe was employed to measure the electron density. It is found that the evolution of radio frequency power transfer efficiency can be well explained by the variation of plasma resistance, which is related to the electron density and the effective electron collision frequency.展开更多
Traditional power supply method for moving electric railway vehicles is based on contact type power collection technology.This sometimes cannot meet the requirements of modern rail transportation.A new wireless power ...Traditional power supply method for moving electric railway vehicles is based on contact type power collection technology.This sometimes cannot meet the requirements of modern rail transportation.A new wireless power transfer(WPT)technology can offer significant benefits in modern rail transportation particularly in some stringent environments.This paper reviews the status and the development of rail transit power supply technology,and introduces a new challenging technology--inductive power transfer(IPT)technology for rail transit.Tesla established the underpinning of IPT technology and creatively and significantly demonstrated power transfer by using highly resonant tuned coils long time ago.However,only in recent years the IPT technology has been significantly improved including the transfer air-gap length,transfer efficiency,coupling factor,power transfer capability and so on.This is mainly due to innovative semiconductor switches,higher control frequency,better coil designs and high performance material,new track and vehicle construction techniques.Recent advances in IPT for rail transit and major milestones of the developments are summarized in this paper.Some important technical issues such as coupling coil structures,power supply schemes,segmentation switching techniques for long-distance power supply,and bidirectional IPT systems for braking energy feedback are discussed.展开更多
By representing the Earth as a rotating spherical antenna several historic and scientific breakthroughs are achieved.Visualizing the Sun as a transmitter and the planets as receivers the solar system can be represente...By representing the Earth as a rotating spherical antenna several historic and scientific breakthroughs are achieved.Visualizing the Sun as a transmitter and the planets as receivers the solar system can be represented as a long wave radio system operating at Tremendously Low Frequency(TLF).Results again confirm that the“near-field”is Tesla’s“dynamic gravity”,better known to engineers as dynamic braking or to physicists as centripetal acceleration,or simply(g).Timewave theory is invented,and the relationship of reflected timewaves and time travel explored.A new law of the Sun is proposed as well as the merging of Einstein’s equation with acoustics and cosmic superstring theory.A new law of cosmic efficiency is also proposed that equates vibratory force and pressure with volume acceleration of the solar system.Lorentz force is broken down into centripetal and gravitational waves.Ten-dimensional cosmic superstring theory is espoused versus the aging three-dimensional Maxwellian model.Spherical antenna patterns for planets are presented and flux transfer frequency is calculated using distance to planets as wavelengths.The galactic grid operates at a Schumann Resonance of 7.83 Hz,which is derived from the science of dark energy and dark matter.The Sun and the planets are tuned to transmit and receive electrical power like resonating Tesla coils.The Earth’s stator winding has been modeled as a toroid tesla coil and the armature as a spherical armature.The equation for everything is born.展开更多
As an emerging research field,inductively coupled wireless power transfer(ICWPT) technology has attracted wide spread attention recently.In this paper,the maximum power transfer performances of four basic topologies l...As an emerging research field,inductively coupled wireless power transfer(ICWPT) technology has attracted wide spread attention recently.In this paper,the maximum power transfer performances of four basic topologies labeled as SS,SP,PS and PP are investigated.By modeling the equivalent circuits of these topologies in high frequency(HF),the primary resonance compensation capacitances for maximum power transfer capability are deduced.It is found that these capacitances fluctuate with load resistance change,which is disadvantageous to SP,PS and PP topologies and an obstacle to their practical applications as well.To solve this problem,a phase controlled inductor circuit is proposed.By adjusting the triggering angle,the real-time dynamic tuning control can be achieved to guarantee maximum power transfer.Finally,simulations and experiments show that the proposed method is of great effectiveness and reliability to solve the issue of resonance compensation capacitance fluctuation with load change and to guarantee the flexible applications of all topologies.展开更多
We develop a new kind of underwater inductive coupling power transfer(ICPT)system to evaluate wireless power transfer in autonomous underwater vehicle(AUV)docking applications.Parameters that determine the performance...We develop a new kind of underwater inductive coupling power transfer(ICPT)system to evaluate wireless power transfer in autonomous underwater vehicle(AUV)docking applications.Parameters that determine the performance of the system are systematically analyzed through mathematical methods.A circuit simulation model and a finite element analysis(FEA)simulation model are developed to study the power losses of the system,including copper loss in coils,semiconductor loss in circuits,and eddy current loss in transmission media.The characteristics of the power losses can provide guidelines to improve the efficiency of ICPT systems.Calculation results and simulation results are validated by relevant experiments of the prototype system.The output power of the prototype system is up to 45 W and the efficiency is up to 0.84.The preliminary results indicate that the efficiency will increase as the transmission power is raised by increasing the input voltage.When the output power reaches 500 W,the efficiency is expected to exceed 0.94.The efficiency can be further improved by choosing proper semiconductors and coils.The analysis methods prove effective in predicting the performance of similar ICPT systems and should be useful in designing new systems.展开更多
针对感应耦合电能传输(Inductive Coupled Power Transfer,ICPT)系统应用场景中的信号反向传输需求,提出了一种基于LCL-S谐振拓扑的注入信号式ICPT电能信号共享通道系统。运用交流阻抗法对所提出的系统的电能通道与信号通道分别进行了...针对感应耦合电能传输(Inductive Coupled Power Transfer,ICPT)系统应用场景中的信号反向传输需求,提出了一种基于LCL-S谐振拓扑的注入信号式ICPT电能信号共享通道系统。运用交流阻抗法对所提出的系统的电能通道与信号通道分别进行了理论分析,建立了数学模型。以负载得到的电压恒定为前提,兼顾信号调制解调结构的影响,分析计算了系统参数,并搭建了MATLAB/Simulink验证模型。仿真结果表明,信号传递电路引入后,负载可以实现恒压,系统能量传输正常,在保证能量传输的情况下,可以实现信号的反向传输。最后按照仿真模型搭建了实际电路,验证了所提出的系统的可行性。展开更多
相较于传统注入式同步无线电能和数据传输(Simultaneous Wireless Power and Data Transfer,SWPDT),“共口径”SWPDT方案具有电能传输功率大、转换效率高、数据传输速率高、可靠性好的优点。针对共口径集成后高压大功率电能传输通道与...相较于传统注入式同步无线电能和数据传输(Simultaneous Wireless Power and Data Transfer,SWPDT),“共口径”SWPDT方案具有电能传输功率大、转换效率高、数据传输速率高、可靠性好的优点。针对共口径集成后高压大功率电能传输通道与通信链路强耦合导致通信速率下降乃至失败的问题,结合D型传能松耦合变压器,提出基于耦合电感的双边LCC拓扑、DD型通信线圈及滤波网络协同设计的解耦设计技术,实现传能线圈谐波优化和电能-通信空域解耦,提升了通信链路通带阻抗匹配和带外抑制能力,增强了与传能线圈的频域解耦。分析了功率传输链路和数据传输链路的设计及解耦实现原理,构建了一台270 V输入、270 V/3 kW恒压输出、传能30 mm的SWPDT原理样机。实验结果证明了所提解耦设计技术的可行性和先进性,在实现94.89%电能转换效率的同时可实现50 Mb/s的高速数据同步传输。展开更多
在感应电能传输(Inductive Power Transfer,IPT)中,耦合线圈是必不可少的器件。对于一对耦合线圈而言,耦合系数(k)是表征它们耦合程度的关键参量,通过对耦合系数进行优化可以有效地提升感应电能传输系统的效率。提出了一种通用的设计方...在感应电能传输(Inductive Power Transfer,IPT)中,耦合线圈是必不可少的器件。对于一对耦合线圈而言,耦合系数(k)是表征它们耦合程度的关键参量,通过对耦合系数进行优化可以有效地提升感应电能传输系统的效率。提出了一种通用的设计方案来提高一对轴向放置的平面圆形线圈的耦合系数。耦合系数首先通过丝电流法计算得到,基于此分析并归纳了三条为一对轴向平面圆形线圈尺寸设计的规则。第一条规则,一对垂直放置的满布互耦线圈当它们的外径和传输距离给定时,总可以取得最大耦合系数;其次,当其中一个线圈的空心率给定时,另一线圈的空心率不宜选取过大,否则耦合系数将会快速衰减;第三条,为了取得最优耦合系数,一对互耦线圈的的尺寸往往不同,并同时给出了一个经验公式,用于在一定距离下,当一个线圈的外径一定时来确定另一线圈的外径。展开更多
针对感应耦合电能传输(inductively coupled power transfer,ICPT)系统能效(传输功率和效率)优化问题,分析了互感耦合参数对4种典型拓扑结构ICPT系统能效的影响,并优化互感以提高系统的功率传输能力,同时,对优化得到的互感耦合参数的适...针对感应耦合电能传输(inductively coupled power transfer,ICPT)系统能效(传输功率和效率)优化问题,分析了互感耦合参数对4种典型拓扑结构ICPT系统能效的影响,并优化互感以提高系统的功率传输能力,同时,对优化得到的互感耦合参数的适用条件给出了限制;此外,针对原边采用串联补偿拓扑结构的ICPT系统在最大功率传输条件下,系统效率偏低的现象,提出一种新的系统综合评价指标。在满足系统输出功率的基础上,该指标综合考虑了系统效率、成本和可靠性等其他因素。通过在该指标下对系统的互感耦合参数进行优化,在满足功率传输的基础上,实现了ICPT系统的全局最优设计。最后,通过仿真和实验研究,证明了理论分析的正确性。展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12005031 and 12275041)the Natural Science Fund from the Interdisciplinary Project of Dalian University(Grant No.DLUXK-2023-QN-001)。
文摘Due to a series of challenges such as low-orbit maintenance of satellites, the air-breathing electric propulsion has got widespread attention. Commonly, the radio frequency ion thruster is favored by low-orbit missions due to its high specific impulse and efficiency. In this paper, the power transfer efficiency of the radio frequency ion thruster with different gas compositions is studied experimentally, which is obtained by measuring the radio frequency power and current of the antenna coil with and without discharge operation. The results show that increasing the turns of antenna coils can effectively improve the radio frequency power transfer efficiency, which is due to the improvement of Q factor. In pure N_2 discharge,with the increase of radio frequency power, the radio frequency power transfer efficiency first rises rapidly and then exhibits a less steep increasing trend. The radio frequency power transfer efficiency increases with the increase of gas pressure at relatively high power, while declines rapidly at relatively low power. In N_(2)/O_(2) discharge, increasing the N_(2) content at high power can improve the radio frequency power transfer efficiency, but the opposite was observed at low power. In order to give a better understanding of these trends, an analytic solution in limit cases is utilized, and a Langmuir probe was employed to measure the electron density. It is found that the evolution of radio frequency power transfer efficiency can be well explained by the variation of plasma resistance, which is related to the electron density and the effective electron collision frequency.
基金This work was supported in part by the National Key R&D Program of China under Grant 2017YFB1201003.
文摘Traditional power supply method for moving electric railway vehicles is based on contact type power collection technology.This sometimes cannot meet the requirements of modern rail transportation.A new wireless power transfer(WPT)technology can offer significant benefits in modern rail transportation particularly in some stringent environments.This paper reviews the status and the development of rail transit power supply technology,and introduces a new challenging technology--inductive power transfer(IPT)technology for rail transit.Tesla established the underpinning of IPT technology and creatively and significantly demonstrated power transfer by using highly resonant tuned coils long time ago.However,only in recent years the IPT technology has been significantly improved including the transfer air-gap length,transfer efficiency,coupling factor,power transfer capability and so on.This is mainly due to innovative semiconductor switches,higher control frequency,better coil designs and high performance material,new track and vehicle construction techniques.Recent advances in IPT for rail transit and major milestones of the developments are summarized in this paper.Some important technical issues such as coupling coil structures,power supply schemes,segmentation switching techniques for long-distance power supply,and bidirectional IPT systems for braking energy feedback are discussed.
文摘By representing the Earth as a rotating spherical antenna several historic and scientific breakthroughs are achieved.Visualizing the Sun as a transmitter and the planets as receivers the solar system can be represented as a long wave radio system operating at Tremendously Low Frequency(TLF).Results again confirm that the“near-field”is Tesla’s“dynamic gravity”,better known to engineers as dynamic braking or to physicists as centripetal acceleration,or simply(g).Timewave theory is invented,and the relationship of reflected timewaves and time travel explored.A new law of the Sun is proposed as well as the merging of Einstein’s equation with acoustics and cosmic superstring theory.A new law of cosmic efficiency is also proposed that equates vibratory force and pressure with volume acceleration of the solar system.Lorentz force is broken down into centripetal and gravitational waves.Ten-dimensional cosmic superstring theory is espoused versus the aging three-dimensional Maxwellian model.Spherical antenna patterns for planets are presented and flux transfer frequency is calculated using distance to planets as wavelengths.The galactic grid operates at a Schumann Resonance of 7.83 Hz,which is derived from the science of dark energy and dark matter.The Sun and the planets are tuned to transmit and receive electrical power like resonating Tesla coils.The Earth’s stator winding has been modeled as a toroid tesla coil and the armature as a spherical armature.The equation for everything is born.
基金supported by the National High-Tech Research & Development Program of China ("863" Program) (Grant No. 2012AA050210)the National Natural Science Foundation of China (Grant No. 51177011)+1 种基金the Research Innovation Program for College Graduates of Jiangsu Province (Grant No. CXZZ11_0150)Scholarship Award for Excellent Doctoral Student granted by Ministry of Education of China
文摘As an emerging research field,inductively coupled wireless power transfer(ICWPT) technology has attracted wide spread attention recently.In this paper,the maximum power transfer performances of four basic topologies labeled as SS,SP,PS and PP are investigated.By modeling the equivalent circuits of these topologies in high frequency(HF),the primary resonance compensation capacitances for maximum power transfer capability are deduced.It is found that these capacitances fluctuate with load resistance change,which is disadvantageous to SP,PS and PP topologies and an obstacle to their practical applications as well.To solve this problem,a phase controlled inductor circuit is proposed.By adjusting the triggering angle,the real-time dynamic tuning control can be achieved to guarantee maximum power transfer.Finally,simulations and experiments show that the proposed method is of great effectiveness and reliability to solve the issue of resonance compensation capacitance fluctuation with load change and to guarantee the flexible applications of all topologies.
基金Project supported by the National High-Tech R&D Program of China(No.2013AA09A414)the National Natural Science Foundation of China(No.51221004)the Interdisciplinary Research Foundation of Zhejiang University(No.2012HY003A)
文摘We develop a new kind of underwater inductive coupling power transfer(ICPT)system to evaluate wireless power transfer in autonomous underwater vehicle(AUV)docking applications.Parameters that determine the performance of the system are systematically analyzed through mathematical methods.A circuit simulation model and a finite element analysis(FEA)simulation model are developed to study the power losses of the system,including copper loss in coils,semiconductor loss in circuits,and eddy current loss in transmission media.The characteristics of the power losses can provide guidelines to improve the efficiency of ICPT systems.Calculation results and simulation results are validated by relevant experiments of the prototype system.The output power of the prototype system is up to 45 W and the efficiency is up to 0.84.The preliminary results indicate that the efficiency will increase as the transmission power is raised by increasing the input voltage.When the output power reaches 500 W,the efficiency is expected to exceed 0.94.The efficiency can be further improved by choosing proper semiconductors and coils.The analysis methods prove effective in predicting the performance of similar ICPT systems and should be useful in designing new systems.
文摘针对感应耦合电能传输(Inductive Coupled Power Transfer,ICPT)系统应用场景中的信号反向传输需求,提出了一种基于LCL-S谐振拓扑的注入信号式ICPT电能信号共享通道系统。运用交流阻抗法对所提出的系统的电能通道与信号通道分别进行了理论分析,建立了数学模型。以负载得到的电压恒定为前提,兼顾信号调制解调结构的影响,分析计算了系统参数,并搭建了MATLAB/Simulink验证模型。仿真结果表明,信号传递电路引入后,负载可以实现恒压,系统能量传输正常,在保证能量传输的情况下,可以实现信号的反向传输。最后按照仿真模型搭建了实际电路,验证了所提出的系统的可行性。
文摘相较于传统注入式同步无线电能和数据传输(Simultaneous Wireless Power and Data Transfer,SWPDT),“共口径”SWPDT方案具有电能传输功率大、转换效率高、数据传输速率高、可靠性好的优点。针对共口径集成后高压大功率电能传输通道与通信链路强耦合导致通信速率下降乃至失败的问题,结合D型传能松耦合变压器,提出基于耦合电感的双边LCC拓扑、DD型通信线圈及滤波网络协同设计的解耦设计技术,实现传能线圈谐波优化和电能-通信空域解耦,提升了通信链路通带阻抗匹配和带外抑制能力,增强了与传能线圈的频域解耦。分析了功率传输链路和数据传输链路的设计及解耦实现原理,构建了一台270 V输入、270 V/3 kW恒压输出、传能30 mm的SWPDT原理样机。实验结果证明了所提解耦设计技术的可行性和先进性,在实现94.89%电能转换效率的同时可实现50 Mb/s的高速数据同步传输。
文摘在感应电能传输(Inductive Power Transfer,IPT)中,耦合线圈是必不可少的器件。对于一对耦合线圈而言,耦合系数(k)是表征它们耦合程度的关键参量,通过对耦合系数进行优化可以有效地提升感应电能传输系统的效率。提出了一种通用的设计方案来提高一对轴向放置的平面圆形线圈的耦合系数。耦合系数首先通过丝电流法计算得到,基于此分析并归纳了三条为一对轴向平面圆形线圈尺寸设计的规则。第一条规则,一对垂直放置的满布互耦线圈当它们的外径和传输距离给定时,总可以取得最大耦合系数;其次,当其中一个线圈的空心率给定时,另一线圈的空心率不宜选取过大,否则耦合系数将会快速衰减;第三条,为了取得最优耦合系数,一对互耦线圈的的尺寸往往不同,并同时给出了一个经验公式,用于在一定距离下,当一个线圈的外径一定时来确定另一线圈的外径。
文摘针对感应耦合电能传输(inductively coupled power transfer,ICPT)系统能效(传输功率和效率)优化问题,分析了互感耦合参数对4种典型拓扑结构ICPT系统能效的影响,并优化互感以提高系统的功率传输能力,同时,对优化得到的互感耦合参数的适用条件给出了限制;此外,针对原边采用串联补偿拓扑结构的ICPT系统在最大功率传输条件下,系统效率偏低的现象,提出一种新的系统综合评价指标。在满足系统输出功率的基础上,该指标综合考虑了系统效率、成本和可靠性等其他因素。通过在该指标下对系统的互感耦合参数进行优化,在满足功率传输的基础上,实现了ICPT系统的全局最优设计。最后,通过仿真和实验研究,证明了理论分析的正确性。