The undesirable capacity loss after first cycle is universal among layered cathode materials,which results in the capacity and energy decay.The key to resolving this obstacle lies in understanding the effect and origi...The undesirable capacity loss after first cycle is universal among layered cathode materials,which results in the capacity and energy decay.The key to resolving this obstacle lies in understanding the effect and origin of specific active Li sites during discharge process.In this study,focusing on Ah-level pouch cells for reliability,an ultrahigh initial Coulombic efficiency(96.1%)is achieved in an archetypical Li-rich layered oxide material.Combining the structure and electrochemistry analysis,we demonstrate that the achievement of high-capacity reversibility is a kinetic effect,primarily related to the sluggish Li mobility during oxygen reduction.Activating oxygen reduction through small density would induce the oxygen framework contraction,which,according to Pauli repulsion,imposes a great repulsive force to hinder the transport of tetrahedral Li.The tetrahedral Li storage upon deep oxygen reduction is experimentally visualized and,more importantly,contributes to 6%Coulombic efficiency enhancement as well as 10%energy density improvement for pouch cells,which shows great potentials breaking through the capacity and energy limitation imposed by intercalation chemistry.展开更多
In the existing power system with a large-scale hydrogen storage system,there are problems such as low efficiency of electric-hydrogen-electricity conversion and single modeling of the hydrogen storage system.In order...In the existing power system with a large-scale hydrogen storage system,there are problems such as low efficiency of electric-hydrogen-electricity conversion and single modeling of the hydrogen storage system.In order to improve the hydrogen utilization rate of hydrogen storage system in the process of participating in the power grid operation,and speed up the process of electric-hydrogen-electricity conversion.This article provides a detailed introduction to the mathematical and electrical models of various components of the hydrogen storage unit,and also establishes a charging and discharging efficiency model that considers the temperature and internal gas partial pressure of the hydrogen storage unit.These models are of great significance for studying and optimizing gas storage technology.Through these models,the performance of gas storage units can be better understood and improved.These studies are very helpful for improving energy storage efficiency and sustainable development.The factors affecting the charge-discharge efficiency of hydrogen storage units are analyzed.By integrating the models of each unit and considering the capacity degradation of the hydrogen storage system,we can construct an efficiency model for a large hydrogen storage system and power conversion system.In addition,the simulation models of the hydrogen production system and hydrogen consumption system were established in MATLAB/Simulink.The accuracy and effectiveness of the simulation model were proved by comparing the output voltage variation curve of the simulation with the polarization curve of the typical hydrogen production system and hydrogen consumption system.The results show that the charge-discharge efficiency of the hydrogen storage unit increases with the increase of operating temperature,and H2 and O2 partial voltage have little influence on the charge-discharge efficiency.In the process of power conversion system converter rectification operation,its efficiency decreases with the increase of temperature,while in the process of inverter operation,power conversion system efficiency increases with the increase of temperature.Combined with the efficiency of each hydrogen storage unit and power conversion system converter,the upper limit of the capacity loss of different hydrogen storage units was set.The optimal charge-discharge efficiency of the hydrogen storage system was obtained by using the Cplex solver at 36.46%and 66.34%.展开更多
With the increasing market demand for high-performance lithium-ion batteries with high-capacity electrode materials,reducing the irreversible capacity loss in the initial cycle and compensating for the active lithium ...With the increasing market demand for high-performance lithium-ion batteries with high-capacity electrode materials,reducing the irreversible capacity loss in the initial cycle and compensating for the active lithium loss during the cycling process are critical challenges.In recent years,various prelithiation strategies have been developed to overcome these issues.Since these approaches are carried out under a wide range of conditions,it is essential to evaluate their suitability for large-scale commercial applications.In this review,these strategies are categorized based on different battery assembling stages that they are implemented in,including active material synthesis,the slurry mixing process,electrode pretreatment,and battery fabrication.Furthermore,their advantages and disadvantages in commercial production are discussed from the perspective of thermodynamics and kinetics.This review aims to provide guidance for the future development of prelithiation strategies toward commercialization,which will potentially promote the practical application of next-generation high-energy-density lithium-ion batteries.展开更多
A new insight into the constant current-constant voltage (CC-CV) charge protocol based on the spherical diffusion model was presented. From the model, the CV-charge process compensates, to a large extent, the capaci...A new insight into the constant current-constant voltage (CC-CV) charge protocol based on the spherical diffusion model was presented. From the model, the CV-charge process compensates, to a large extent, the capacity loss in the CC process, and the capacity loss increases with increasing the charging rate and decreases with increasing the lithium-ion diffusion coefficient and using a smaller r value (smaller particle-size and larger diffusion coefficient) and a lower charge rate will be helpful to decreasing the capacity loss. The results show that the CC and the CV charging processes, in some way, are complementary and the capacity loss during the CC charging process due to the large electrochemical polarization can be effectively compensated from the CV charging process.展开更多
Although research interest in aqueous metal-sulfur batteries(AMSs)has surged due to their intrinsic low cost and high capacity,the practical application of AMSs remains a considerable challenge because of the restrict...Although research interest in aqueous metal-sulfur batteries(AMSs)has surged due to their intrinsic low cost and high capacity,the practical application of AMSs remains a considerable challenge because of the restrictive cycling stability.To circumvent this issue,we propose an innovative and simple pre-copper strategy to realize a high-durability aqueous Cu-S battery.The precopper strategy can effectively promote a stable metal dissolution/deposition,compensate for charge carriers,and facilitate reaction kinetics during the subsequent process.As a result,the aqueous Cu-S battery when coupled with S-decorated porous Ti_(3)C_(2)(S-d-Ti_(3)C_(2))exhibits excellent electrochemical performance,delivering a highly reversible capacity of 1805.4 mAh·g^(-1)in the initial cycle at 0.8 A·g^(-1),impressive cycling stability with 90.2%capacity retention over 800 cycles,and ultralow polarization~0.08 V even at a high current density of 3.1 A·g^(-1).The findings obtained in this work could pave the way for the design of highperformance sulfur-based aqueous batteries,which fill the vacancy of the necessary metal anode,delivering merits in both cost and cycle life.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.52272253)“Lingyan”Research and Development Plan of Zhejiang Province(Grant No.2022C01071)+2 种基金Low Cost Cathode Material(Grant No.TC220H06P)the Natural Science Foundation of Ningbo(Grant No.202003N4030)the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2022299)
文摘The undesirable capacity loss after first cycle is universal among layered cathode materials,which results in the capacity and energy decay.The key to resolving this obstacle lies in understanding the effect and origin of specific active Li sites during discharge process.In this study,focusing on Ah-level pouch cells for reliability,an ultrahigh initial Coulombic efficiency(96.1%)is achieved in an archetypical Li-rich layered oxide material.Combining the structure and electrochemistry analysis,we demonstrate that the achievement of high-capacity reversibility is a kinetic effect,primarily related to the sluggish Li mobility during oxygen reduction.Activating oxygen reduction through small density would induce the oxygen framework contraction,which,according to Pauli repulsion,imposes a great repulsive force to hinder the transport of tetrahedral Li.The tetrahedral Li storage upon deep oxygen reduction is experimentally visualized and,more importantly,contributes to 6%Coulombic efficiency enhancement as well as 10%energy density improvement for pouch cells,which shows great potentials breaking through the capacity and energy limitation imposed by intercalation chemistry.
基金supported by the Jilin Province Higher Education TeachingReform Research Project Funding(Contract No.2020285O73B005E).
文摘In the existing power system with a large-scale hydrogen storage system,there are problems such as low efficiency of electric-hydrogen-electricity conversion and single modeling of the hydrogen storage system.In order to improve the hydrogen utilization rate of hydrogen storage system in the process of participating in the power grid operation,and speed up the process of electric-hydrogen-electricity conversion.This article provides a detailed introduction to the mathematical and electrical models of various components of the hydrogen storage unit,and also establishes a charging and discharging efficiency model that considers the temperature and internal gas partial pressure of the hydrogen storage unit.These models are of great significance for studying and optimizing gas storage technology.Through these models,the performance of gas storage units can be better understood and improved.These studies are very helpful for improving energy storage efficiency and sustainable development.The factors affecting the charge-discharge efficiency of hydrogen storage units are analyzed.By integrating the models of each unit and considering the capacity degradation of the hydrogen storage system,we can construct an efficiency model for a large hydrogen storage system and power conversion system.In addition,the simulation models of the hydrogen production system and hydrogen consumption system were established in MATLAB/Simulink.The accuracy and effectiveness of the simulation model were proved by comparing the output voltage variation curve of the simulation with the polarization curve of the typical hydrogen production system and hydrogen consumption system.The results show that the charge-discharge efficiency of the hydrogen storage unit increases with the increase of operating temperature,and H2 and O2 partial voltage have little influence on the charge-discharge efficiency.In the process of power conversion system converter rectification operation,its efficiency decreases with the increase of temperature,while in the process of inverter operation,power conversion system efficiency increases with the increase of temperature.Combined with the efficiency of each hydrogen storage unit and power conversion system converter,the upper limit of the capacity loss of different hydrogen storage units was set.The optimal charge-discharge efficiency of the hydrogen storage system was obtained by using the Cplex solver at 36.46%and 66.34%.
基金Soft Science Research Project of Guangdong Province,Grant/Award Number:2017B030301013Shenzhen Science and Technology Research Grant,Grant/Award Number:JCYJ20200109140416788。
文摘With the increasing market demand for high-performance lithium-ion batteries with high-capacity electrode materials,reducing the irreversible capacity loss in the initial cycle and compensating for the active lithium loss during the cycling process are critical challenges.In recent years,various prelithiation strategies have been developed to overcome these issues.Since these approaches are carried out under a wide range of conditions,it is essential to evaluate their suitability for large-scale commercial applications.In this review,these strategies are categorized based on different battery assembling stages that they are implemented in,including active material synthesis,the slurry mixing process,electrode pretreatment,and battery fabrication.Furthermore,their advantages and disadvantages in commercial production are discussed from the perspective of thermodynamics and kinetics.This review aims to provide guidance for the future development of prelithiation strategies toward commercialization,which will potentially promote the practical application of next-generation high-energy-density lithium-ion batteries.
基金Projects(20676152, 20876178) supported by the National Natural Science Foundation of China
文摘A new insight into the constant current-constant voltage (CC-CV) charge protocol based on the spherical diffusion model was presented. From the model, the CV-charge process compensates, to a large extent, the capacity loss in the CC process, and the capacity loss increases with increasing the charging rate and decreases with increasing the lithium-ion diffusion coefficient and using a smaller r value (smaller particle-size and larger diffusion coefficient) and a lower charge rate will be helpful to decreasing the capacity loss. The results show that the CC and the CV charging processes, in some way, are complementary and the capacity loss during the CC charging process due to the large electrochemical polarization can be effectively compensated from the CV charging process.
基金We appreciate support from the National Natural Science Foundation of China(Nos.22005315 and22179109)Central Universities Fundamental Research Funds(No.SWU-KR22002)Chongqing Natural Science Foundation(No.cstc2020jcyjzdxmX0010).
文摘Although research interest in aqueous metal-sulfur batteries(AMSs)has surged due to their intrinsic low cost and high capacity,the practical application of AMSs remains a considerable challenge because of the restrictive cycling stability.To circumvent this issue,we propose an innovative and simple pre-copper strategy to realize a high-durability aqueous Cu-S battery.The precopper strategy can effectively promote a stable metal dissolution/deposition,compensate for charge carriers,and facilitate reaction kinetics during the subsequent process.As a result,the aqueous Cu-S battery when coupled with S-decorated porous Ti_(3)C_(2)(S-d-Ti_(3)C_(2))exhibits excellent electrochemical performance,delivering a highly reversible capacity of 1805.4 mAh·g^(-1)in the initial cycle at 0.8 A·g^(-1),impressive cycling stability with 90.2%capacity retention over 800 cycles,and ultralow polarization~0.08 V even at a high current density of 3.1 A·g^(-1).The findings obtained in this work could pave the way for the design of highperformance sulfur-based aqueous batteries,which fill the vacancy of the necessary metal anode,delivering merits in both cost and cycle life.