期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Loss characteristics of helical-core fiber
1
作者 王会司 关春颖 +2 位作者 高迪 史金辉 苑立波 《Optoelectronics Letters》 EI 2012年第4期280-283,共4页
A special optical fiber is investigated, which has a helical core in the cylindrical cladding. The beam propagation method (BPM) is used for analyzing the impacts of the geometric and physical parameters on the prop... A special optical fiber is investigated, which has a helical core in the cylindrical cladding. The beam propagation method (BPM) is used for analyzing the impacts of the geometric and physical parameters on the properties of mode losses of the helical-core fiber. The propagation loss is 0.32 dB/m for the fundamental mode and the propagation loss is 20.95 dB/m for the LPu mode in the wavelength range of 1050-1065 nm when the core diameter is 19 μm, the pitch of the core's helix is 2.66 mm, and the offset of the helix core from the center of the fiber axis is 31 μm. The core diameter of the single-mode helical-core fiber well exceeds that of the conventional large-mode-area fiber. The helical-core fiber can provide the effec- tive large-mode-area single-mode operation without coiling fiber or selecting excitation mode. 展开更多
关键词 Beam propagation method Optical fibers Core diameters Excitation mode Fiber axis Fundamental modes Large mode area fiber loss characteristics Mode loss Physical parameters Propagation loss Single mode Single mode operation Special optical fibers Wavelength ranges
原文传递
Influence of intra-cavity loss on transmission characteristics of fiber Bragg grating Fabry–Perot cavity 被引量:2
2
作者 王迪 丁孟 +5 位作者 皮浩洋 李璇 杨飞 叶青 蔡海文 魏芳 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第2期380-384,共5页
A theoretical model of the fiber Bragg grating Fabry–Perot(FBG-FP) transmission spectrum considering loss of FBG and intra-cavity fiber is presented. Several types of FBG-FPs are inscribed experimentally, and their... A theoretical model of the fiber Bragg grating Fabry–Perot(FBG-FP) transmission spectrum considering loss of FBG and intra-cavity fiber is presented. Several types of FBG-FPs are inscribed experimentally, and their spectra are measured.The results confirm that weak intra-cavity loss is enhanced at the resonance transmission peak, that is, loss of transmission peaks is observably larger than other wavelengths. For FBG-FPs with multi resonance peaks, when the resonance peak wavelength is closer to the Bragg wavelength, the more significant loss effect of resonance transmission peak is exhibited.The measured spectra are fitted with the presented theoretical model. The fitted coefficient of determinations are near 1,which proves the validity of the theoretical model. This study can be applied to measure FBG loss more accurately, without a reference light. It can play an important role in FBG and FBG-FP writing process optimization and application parameter optimization. 展开更多
关键词 fiber Bragg grating Fabry–Perot cavity intra-cavity loss transmission characteristics
下载PDF
Entropy Production Analysis for Hump Characteristics of a Pump Turbine Model 被引量:4
3
作者 LI Deyou GONG Ruzhi +3 位作者 WANG Hongjie XIANG Gaoming WEI Xianzhu QIN Daqing 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第4期803-812,共10页
The hump characteristic is one of the main problems for the stable operation of pump turbines in pump mode.However,traditional methods cannot reflect directly the energy dissipation in the hump region.In this paper,3D... The hump characteristic is one of the main problems for the stable operation of pump turbines in pump mode.However,traditional methods cannot reflect directly the energy dissipation in the hump region.In this paper,3D simulations are carried out using the SST k-ω turbulence model in pump mode under different guide vane openings.The numerical results agree with the experimental data.The entropy production theory is introduced to determine the flow losses in the whole passage,based on the numerical simulation.The variation of entropy production under different guide vane openings is presented.The results show that entropy production appears to be a wave,with peaks under different guide vane openings,which correspond to wave troughs in the external characteristic curves.Entropy production mainly happens in the runner,guide vanes and stay vanes for a pump turbine in pump mode.Finally,entropy production rate distribution in the runner,guide vanes and stay vanes is analyzed for four points under the 18 mm guide vane opening in the hump region.The analysis indicates that the losses of the runner and guide vanes lead to hump characteristics.In addition,the losses mainly occur in the runner inlet near the band and on the suction surface of the blades.In the guide vanes and stay vanes,the losses come from pressure surface of the guide vanes and the wake effects of the vanes.A new insight-entropy production analysis is carried out in this paper in order to find the causes of hump characteristics in a pump turbine,and it could provide some basic theoretical guidance for the loss analysis of hydraulic machinery. 展开更多
关键词 fluid machinery pump turbine entropy production hump characteristics loss
下载PDF
Experimental investigation of loss and gain characteristics of an abnormal In_xGa_(1-x)As/GaAs quantum well structure 被引量:3
4
作者 贾燕 于庆南 +6 位作者 李芳 王明清 卢苇 张建 张星 宁永强 吴坚 《Chinese Optics Letters》 SCIE EI CAS CSCD 2018年第1期57-61,共5页
In this Letter, the loss and gain characteristics of an unconventional InxGa1-xAs∕Ga As asymmetrical step well structure consisting of variable indium contents of InxGa1-xAs materials are measured and analyzed for th... In this Letter, the loss and gain characteristics of an unconventional InxGa1-xAs∕Ga As asymmetrical step well structure consisting of variable indium contents of InxGa1-xAs materials are measured and analyzed for the first time, to the best of our knowledge. This special well structure is formed based on the indium-rich effect from the material growth process. The loss and gain are obtained by optical pumping and photoluminescence(PL)spectrum measurement at dual facets of an edge-emitting device. Unlike conventional quasi-rectangle wells, the asymmetrical step well may lead to a hybrid strain configuration containing both compressive and tensile strains and, thus, special loss and gain characteristics. The results will be very helpful in the development of multiple wavelength In Ga As-based semiconductor lasers. 展开更多
关键词 In AS x)As/GaAs quantum well structure Experimental investigation of loss and gain characteristics of an abnormal In_xGa
原文传递
Characteristics of motorized spindle supported by active magnetic bearings 被引量:6
5
作者 Xie Zhenyu Yu Kun +2 位作者 Wen Liantang Wang Xiao Zhou Hongkai 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第6期1619-1624,共6页
A motorized spindle supported by active magnetic bearings(AMBs) is generally used for ultra-high-speed machining. Iron loss of radial AMB is very great owing to high rotation speed, and it will cause severe thermal ... A motorized spindle supported by active magnetic bearings(AMBs) is generally used for ultra-high-speed machining. Iron loss of radial AMB is very great owing to high rotation speed, and it will cause severe thermal deformation. The problem is particularly serious on the occasion of large power application, such as all electric aero-engine. In this study, a prototype motorized spindle supported by five degree-of-freedom AMBs is developed. Homopolar and heteropolar AMBs are independently adopted as radial bearings. The influences of the two types of radial AMBs on the dynamic characteristics of the motorized spindle are comparatively investigated by theoretical analysis, test modal analysis and actual operation of the system. The iron loss of the two types of radial AMBs is analyzed by finite element software and verified through run-down experiments of the system. The results show that the structures of AMB have less influence on the dynamic characteristics of the motorized spindle. However, the homopolar structure can effectively reduce the iron loss of the radial AMB and it is useful for improving the overall performance of the motorized spindle. 展开更多
关键词 Dynamic characteristics Finite element analysis loss Magnetic bearings Modal analysis Spindle design
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部