This paper presents a method for optimizing a grid-connected photovoltaic system through an LCL filter. An algorithm based on particle swarm optimization (PSO) is used to determine the number of batteries, the number ...This paper presents a method for optimizing a grid-connected photovoltaic system through an LCL filter. An algorithm based on particle swarm optimization (PSO) is used to determine the number of batteries, the number of panels in series and in parallel, as well as to evaluate the joule losses due to cable heating and the switching losses of the multilevel inverters. This system is applied to a village named YAGOUA, located in the far north of Cameroon. The evaluation of the Joule effect and the switching losses as well as the regulation of the voltage level at the point of common coupling (PCC) are carried out in PVsyst and Matlab software, then at IEEE 33 bus. This algorithm reduced the Joule losses to 1.2% and the switching losses to 2.2%. A power of 210.4 MWh is produced, to be injected in the electrical network via an LCL filter. The THD calculation gave a rate of 3.015% in accordance with the 519 standards. Synchronization through the Phase Locked Loop (PLL) is performed. After the power was injected into the grid, the voltage and current remained in phase, showing the power factor correction and the efficiency of the filter. According to NASA meteorological data, the locality of YAGOUA gives the global solar irradiation forecast of 6.8 kW/m2.展开更多
针对异步电机三电平中点钳位(Neutral point clamped,NPC)整流–逆变驱动系统的高性能高效控制,搭建了三电平整流–逆变系统的预测与损耗模型,构建了包含中点电压平衡与损耗优化的代价函数,提出了一种基于序列并行结构的无权重系数模型...针对异步电机三电平中点钳位(Neutral point clamped,NPC)整流–逆变驱动系统的高性能高效控制,搭建了三电平整流–逆变系统的预测与损耗模型,构建了包含中点电压平衡与损耗优化的代价函数,提出了一种基于序列并行结构的无权重系数模型预测控制.策略在传统的序列模型预测控制中引入了直流母线中点电压和变换器开关频率控制,构建了包含多个控制目标的统一代价函数.根据整流–逆变系统在运行中对各控制目标的实际需求,将代价函数中的多个控制目标分为主要和次要控制目标并归类为两个序列优化集,对不同的序列集进行顺序优化.在相同的序列集内部,采用自适应并行寻优来选择最优开关状态,保证了同级序列内各控制目标的同步优化,避免了权重系数的设计.仿真和实验结果验证了该方法具有良好的控制性能和参数鲁棒性,并能有效控制中点电压波动和降低系统损耗.展开更多
文摘This paper presents a method for optimizing a grid-connected photovoltaic system through an LCL filter. An algorithm based on particle swarm optimization (PSO) is used to determine the number of batteries, the number of panels in series and in parallel, as well as to evaluate the joule losses due to cable heating and the switching losses of the multilevel inverters. This system is applied to a village named YAGOUA, located in the far north of Cameroon. The evaluation of the Joule effect and the switching losses as well as the regulation of the voltage level at the point of common coupling (PCC) are carried out in PVsyst and Matlab software, then at IEEE 33 bus. This algorithm reduced the Joule losses to 1.2% and the switching losses to 2.2%. A power of 210.4 MWh is produced, to be injected in the electrical network via an LCL filter. The THD calculation gave a rate of 3.015% in accordance with the 519 standards. Synchronization through the Phase Locked Loop (PLL) is performed. After the power was injected into the grid, the voltage and current remained in phase, showing the power factor correction and the efficiency of the filter. According to NASA meteorological data, the locality of YAGOUA gives the global solar irradiation forecast of 6.8 kW/m2.
文摘针对异步电机三电平中点钳位(Neutral point clamped,NPC)整流–逆变驱动系统的高性能高效控制,搭建了三电平整流–逆变系统的预测与损耗模型,构建了包含中点电压平衡与损耗优化的代价函数,提出了一种基于序列并行结构的无权重系数模型预测控制.策略在传统的序列模型预测控制中引入了直流母线中点电压和变换器开关频率控制,构建了包含多个控制目标的统一代价函数.根据整流–逆变系统在运行中对各控制目标的实际需求,将代价函数中的多个控制目标分为主要和次要控制目标并归类为两个序列优化集,对不同的序列集进行顺序优化.在相同的序列集内部,采用自适应并行寻优来选择最优开关状态,保证了同级序列内各控制目标的同步优化,避免了权重系数的设计.仿真和实验结果验证了该方法具有良好的控制性能和参数鲁棒性,并能有效控制中点电压波动和降低系统损耗.