Predictions on the ripple loss of neutral beam fast ions on EAST are investigated with a guiding center code, including both ripple and collisional effects. A 6% to 16% loss of neutral beam ions is predicted for typic...Predictions on the ripple loss of neutral beam fast ions on EAST are investigated with a guiding center code, including both ripple and collisional effects. A 6% to 16% loss of neutral beam ions is predicted for typical EAST experiments, and a synergistic enhancement of fast ion loss is found for toroidal field (TF) ripples with collisions. The lost ions are strongly localized and will cause a maximum heat load of - 0.05 MW/m^2 on the first wall.展开更多
This research applies experimental measurements and NUBEAM,ONETWO and TRANSP modules to investigate the shine-through(ST)loss ratio and beam heating percentage of neutral beam injection on EAST.Measurements and simula...This research applies experimental measurements and NUBEAM,ONETWO and TRANSP modules to investigate the shine-through(ST)loss ratio and beam heating percentage of neutral beam injection on EAST.Measurements and simulations confirm that the ST loss ratio increases linearly with beam energy,and decreases exponentially with plasma density.Moreover,using the multi-step fitting method,we present analytical quantitative expressions of ST loss ratio and beam heating percentage,which are valuable for the high parameter long-pulse experiments of EAST.展开更多
Neutral beam injection heating is one of the main auxiliary heating methods in controllable nuclear fusion research. In the EAST neutral beam injector, a water flow calorimetry (WFC) system is applied to measure the...Neutral beam injection heating is one of the main auxiliary heating methods in controllable nuclear fusion research. In the EAST neutral beam injector, a water flow calorimetry (WFC) system is applied to measure the heat load on the electrode system of the ion source and the heat loading components of the beamline. Due to the heat loss in the return water pipe, there are some measuring errors for the current WFC system. In this paper, the errors were measured experimentally and analyzed theoretically, which lay a basis for the exact calculation of beam power deposition distribution and neutralization efficiency.展开更多
基金supported by National Natural Science Foundation of China (Nos.10975160,11175211)
文摘Predictions on the ripple loss of neutral beam fast ions on EAST are investigated with a guiding center code, including both ripple and collisional effects. A 6% to 16% loss of neutral beam ions is predicted for typical EAST experiments, and a synergistic enhancement of fast ion loss is found for toroidal field (TF) ripples with collisions. The lost ions are strongly localized and will cause a maximum heat load of - 0.05 MW/m^2 on the first wall.
基金Supported by the Collaborative Innovation Program of Hefei Science Center,CAS (Grant No.2019HSC-CIP015)the National Natural Science Foundation of China (Grant Nos.11875290,1170529,11875253,and 11975276)+2 种基金the Fundamental Research Funds for the Central Universities (Grant No.WK3420000004)the Anhui Provincial Natural Science Foundation (Grant No.2008085J04)the National Key Research and Development Program of China (Grant No.2019YFE03020004)。
文摘This research applies experimental measurements and NUBEAM,ONETWO and TRANSP modules to investigate the shine-through(ST)loss ratio and beam heating percentage of neutral beam injection on EAST.Measurements and simulations confirm that the ST loss ratio increases linearly with beam energy,and decreases exponentially with plasma density.Moreover,using the multi-step fitting method,we present analytical quantitative expressions of ST loss ratio and beam heating percentage,which are valuable for the high parameter long-pulse experiments of EAST.
基金supported by the National Magnetic Confinement Fusion Science Program of China(No.2013GB101001)the International Science&Technology Cooperation Program of China(No.2014DFG61950)
文摘Neutral beam injection heating is one of the main auxiliary heating methods in controllable nuclear fusion research. In the EAST neutral beam injector, a water flow calorimetry (WFC) system is applied to measure the heat load on the electrode system of the ion source and the heat loading components of the beamline. Due to the heat loss in the return water pipe, there are some measuring errors for the current WFC system. In this paper, the errors were measured experimentally and analyzed theoretically, which lay a basis for the exact calculation of beam power deposition distribution and neutralization efficiency.