Terahertz(THz)communication has been envisioned as a key enabling technology for sixthgeneration(6G).In this paper,we present an extensive THz channel measurement campaign for 6G wireless communications from 220 GHz t...Terahertz(THz)communication has been envisioned as a key enabling technology for sixthgeneration(6G).In this paper,we present an extensive THz channel measurement campaign for 6G wireless communications from 220 GHz to 330 GHz.Furthermore,the path loss is analyzed and modeled by using two single-frequency path loss models and a multiplefrequencies path loss model.It is found that at most frequency points,the measured path loss is larger than that in the free space.But at around 310 GHz,the propagation attenuation is relatively weaker compared to that in the free space.Also,the frequency dependence of path loss is observed and the frequency exponent of the multiple-frequencies path loss model is 2.1.Moreover,the cellular performance of THz communication systems is investigated by using the obtained path loss model.Simulation results indicate that the current inter-site distance(ISD)for the indoor scenario is too small for THz communications.Furthermore,the tremendous capacity gain can be obtained by using THz bands compared to using microwave bands and millimeter wave bands.Generally,this work can give an insight into the design and optimization of THz communication systems for 6G.展开更多
The path loss analysis model based on 5 rays in vacancy indoor environment is proposed. The relationship between multipath overlapping and the path loss is analyzed mathematically. Time-domain technique is introduced ...The path loss analysis model based on 5 rays in vacancy indoor environment is proposed. The relationship between multipath overlapping and the path loss is analyzed mathematically. Time-domain technique is introduced to compute reflection coefficient in a very short time interval. A 5 rays path loss calculation method, which is satisfactory accurate, is developed. 5 typical environments are involved to analyze and generalize the common path loss characteristics in vacancy indoor environment. The simulation result shows that the path loss can be characterized as 3 zones with different path loss exponent as distance between transmitter and receiver increasing.展开更多
In this paper,we aim to unlock the potential of intelligent reflecting surfaces(IRSs)in cognitive internet of things(loT).Considering that the secondary IoT devices send messages to the secondary access point(SAP)by s...In this paper,we aim to unlock the potential of intelligent reflecting surfaces(IRSs)in cognitive internet of things(loT).Considering that the secondary IoT devices send messages to the secondary access point(SAP)by sharing the spectrum with the primary network,the interference is introduced by the IoT devices to the primary access point(PAP)which profits from the IoT devices by pricing the interference power charged by them.A practical path loss model is adopted such that the IRSs deployed between the IoT devices and SAP serve as diffuse scatterers,but each reflected signal can be aligned with its own desired direction.Moreover,two transmission policies of the secondary network are investigated without/with a successive interference cancellation(SIC)technique.The signal-to-interference plus noise ratio(SINR)balancing is considered to overcome the nearfar effect of the IoT devices so as to allocate the resource fairly among them.We propose a Stackelberg game strategy to characterize the interaction between primary and secondary networks.For the proposed game,the Stackelberg equilibrium is analytically derived to optimally obtain the closed-form solution of the power allocation and interference pricing.Numerical results are demonstrated to validate the performance of the theoretical derivations.展开更多
Wideband IMT-Advanced mobile communication systems tend to operate in the high frequency bands due to a relatively large capacity available. Thus, Measurement and modelling methods of radio propaga- tion eharaeteristi...Wideband IMT-Advanced mobile communication systems tend to operate in the high frequency bands due to a relatively large capacity available. Thus, Measurement and modelling methods of radio propaga- tion eharaeteristics are proposed for the field test of Chinese 4th generation (4G) trial system. The mea- surement system is established for 3.5GHz based on the sophistieated measurement instruments and the virtual instrument teehnology. The characteristic parameters of radio propagation sueh as path loss (PL) exponent and shadow fading standard deviation are extracted from measurement data, which result in the path loss model finally. The comparisons with other existing international models results validate our mea- surement in terms of path loss model. Based on the analysis of the existing extension model assumed for the microwave frequency at 3.5GHz, we find that the Stanford University Interim (SUI) model fits very well with the measurement result in the hotspot scenario, while the COST 231 model is closer to the mea- surement result in the suburban scenario. This result provides a measurement-based channel referenee for the development of the future IMT-Advanced systems in China.展开更多
In order to deploy short-range wireless communication devices in the primary transformer substation, a Maximum Inner Product(MIP) Method is proposed to extract the path-loss parameters in 110 kV and 220 kV primary tra...In order to deploy short-range wireless communication devices in the primary transformer substation, a Maximum Inner Product(MIP) Method is proposed to extract the path-loss parameters in 110 kV and 220 kV primary transformer substations. The maximum inner product of the testing data is calculated to find out the loss index n and the standard deviation σ, and then the pathloss models can be set up. By comparing the MIP with Minimum Mean Square estimation(MMSE) and Cumulative Sum(CUSUM), MIP can match the measured values best. In order to apply the MIP path-loss model, under the initial signal to noise ratio(SNR) at 5 dB and 10 dB, a ZigBee simulation system is constructed to validate the situation that bit error rate(BER) varies with distance. And the ZigBee devices with 5 units are tested in a 220 kV primary transformer substation. The result of the test proves that the path-loss model is accurate.展开更多
The railway mobile communication system is undergoing a smooth transition from the Global System for Mobile Communications-Railway(GSM-R)to the Railway 5G.In this paper,an empirical path loss model based on a large am...The railway mobile communication system is undergoing a smooth transition from the Global System for Mobile Communications-Railway(GSM-R)to the Railway 5G.In this paper,an empirical path loss model based on a large amount of measured data is established to predict the path loss in the Railway 5G marshalling yard scenario.According to the different characteristics of base station directional antennas,the antenna gain is verified.Then we propose the position of the breakpoint in the antenna propagation area,and based on the breakpoint segmentation,a large-scale statistical model for marshalling yards is established.展开更多
Path loss prediction models are vital for accurate signal propagation in wireless channels. Empirical and deterministic models used in path loss predictions have not produced optimal results. In this paper, we introdu...Path loss prediction models are vital for accurate signal propagation in wireless channels. Empirical and deterministic models used in path loss predictions have not produced optimal results. In this paper, we introduced machine learning algorithms to path loss predictions because it offers a flexible network architecture and extensive data can be used. We introduced support vector regression (SVR) and radial basis function (RBF) models to path loss predictions in the investigated environments. The SVR model was able to process several input parameters without introducing complexity to the network architecture. The RBF on its part provides a good function approximation. Hyperparameter tuning of the machine learning models was carried out in order to achieve optimal results. The performances of the SVR and RBF models were compared and result validated using the root-mean squared error (RMSE). The two machine learning algorithms were also compared with the Cost-231, SUI, Egli, Freespace, Cost-231 W-I models. The analytical models overpredicted path loss. Overall, the machine learning models predicted path loss with greater accuracy than the empirical models. The SVR model performed best across all the indices with RMSE values of 1.378 dB, 1.4523 dB, 2.1568 dB in rural, suburban and urban settings respectively and should therefore be adopted for signal propagation in the investigated environments and beyond.展开更多
A robust radio map is essential in implementing a fingerprint-based indoor positioning system(IPS).However,the offline site survey to manually construct the radio map is time-consuming and labour-intensive.Various int...A robust radio map is essential in implementing a fingerprint-based indoor positioning system(IPS).However,the offline site survey to manually construct the radio map is time-consuming and labour-intensive.Various interpolation techniques have been proposed to infer the virtual fingerprints to reduce the time and effort required for offline site surveys.This paper presents a novel fingerprint interpolator using a multi-path loss model(MPLM)to create the virtual fingerprints from the collected sample data based on different signal paths from different access points(APs).Based on the historical signal data,the poor signal paths are identified using their standard deviations.The proposed method reduces the positioning errors by smoothing out the wireless signal fluctuations and stabilizing the signals for those poor signal paths.By consideringmultipath signal propagations from different APs,the inherent noise from these signal paths can be alleviated.Firstly,locations of the signal data with standard deviations higher than the threshold are identified.The new fingerprints are then generated at these locations based on the proposed M-PLM interpolation function to replace the old fingerprints.The proposed technique interpolates virtual fingerprints based on good signal paths with more stable signals to improve the positioning performance.Experimental results show that the proposed scheme enhances the positioning accuracy by up to 44%compared to the conventional interpolation techniques such as the Inverse DistanceWeighting,Kriging,and single Path LossModel.As a result,we can overcome the site survey problems for IPS by building an accurate radio map with more reliable signals to improve indoor positioning performance.展开更多
In this paper,we develop and apply K-Nearest Neighbor algorithm to propagation pathloss regression.The path loss models present the dependency of attenuation value on distance using machine learning algorithms based o...In this paper,we develop and apply K-Nearest Neighbor algorithm to propagation pathloss regression.The path loss models present the dependency of attenuation value on distance using machine learning algorithms based on the experimental data.The algorithm is performed by choosing k nearest points and training dataset to find the optimal k value.The proposed method is applied to impove and adjust pathloss model at 28 GHz in Keangnam area,Hanoi,Vietnam.The experiments in both line-of-sight and non-line-of-sight scenarios used many combinations of transmit and receive antennas at different transmit antenna heights and random locations of receive antenna have been carried out using Wireless Insite Software.The results have been compared with 3GPP and NYU Wireless Path Loss Models in order to verify the performance of the proposed approach.展开更多
This paper proposes modifications to the tradional Ceiling Bounce Model and uses it to characterize diffuse indoor optical wireless channel by analyzing the effect of transceiver position on signal propagation propert...This paper proposes modifications to the tradional Ceiling Bounce Model and uses it to characterize diffuse indoor optical wireless channel by analyzing the effect of transceiver position on signal propagation properties. The modified approach uses a combination of the tradional ceiling bounce method and a statistical approach. The effects of different transmitter-receiver separations and height of the ceiling on path loss and delay spread are studied in detail.展开更多
Assessing plant water status is important for monitoring plant physiology. Radio signals are attenuated when passing through vegetation. Both analytical and empirical models developed for radio frequency (RF) loss thr...Assessing plant water status is important for monitoring plant physiology. Radio signals are attenuated when passing through vegetation. Both analytical and empirical models developed for radio frequency (RF) loss through vegetation have been dependent on experimental measurements and those measurements have been completed in specific situations. However, for models to be more broadly applicable across a broad range of vegetation types and constructs, basic electrical properties of the vegetation need to be characterised. Radio waves are affected especially by water and the relationship between water content in vegetation expressed as effective water path (EWP) in mm and measured RF loss (dB) at 2.4 GHz was investigated in this work. The EWP of eucalyptus leaves of varying amounts of leaf moisture (0% - 41.5%) ranged from 0 - 14 mm, respectively. When the model was compared with the actual RF loss there was a systematic offset equivalent to a residual leaf moisture content of 6.5% that was unaccounted for in the leaf moisture content determination (oven drying). This was attributed to bound water. When the model was adjusted for this amount of additional leaf water, the average RMSE in predicted RF loss was ±2.2 dB and was found to explain 89% of the variance in measured RF loss.展开更多
The body channel based wireless power transfer(BC-WPT)method utilizes the human body as the medium to transfer power for bioelectronics,which can achieve a lower transmission loss due to its higher conductivity.Howeve...The body channel based wireless power transfer(BC-WPT)method utilizes the human body as the medium to transfer power for bioelectronics,which can achieve a lower transmission loss due to its higher conductivity.However,except for the channel length,different on-body loca-tions of the transmitter and receiver also influence the power supply performance.This paper fo-cuses on the wrist-to-forehead path to show the potential of BC-WPT for the brain bioelectronics such as the brain computer interface device.The channel characteristics from 10 MHz to 60 MHz are measured by a vector network analyzer(VNA)and a prototype BC-WPT system with differ-ent copper electrodes and the lowest power loss locates between-22 dB and-33 dB.Furthermore,the minimum path loss limit is simulated in Advanced Design System(ADS)software and the low-est optimum path loss can reach nearly-13 dB.Finally,a rectifier circuit is also built at the receiv-er side to harvest d.c.voltage.The results show that the open-circuit voltage(OCV)can reach 1.75 V with the transmitter of 50Ωoutput impedance supplying 5V_(pp)sine voltage at 60 MHz when adopt-ing 1 cm-diameter circular electrodes.展开更多
Detection of plant water status is important for monitoring plant physiology. Previous studies showed that radio waves are attenuated when passing through vegetation such as trees, and models (both empirical and analy...Detection of plant water status is important for monitoring plant physiology. Previous studies showed that radio waves are attenuated when passing through vegetation such as trees, and models (both empirical and analytical) were developed. However, for models to be more broadly applicable across a broad range of vegetation types and constructs, basic electrical properties of the vegetation need to be characterised. In our previous work, a model was developed to calculate the RF loss through vegetation with varying water content. In this paper, the model was extended to calculate RF loss through tree canopies with or without an air gap. When the model was compared with the actual RF loss acquired using Eucalyptus <em>blakelyi</em> trees (with and without leaves), there was a systematic offset equivalent to a residual moisture content of 13% that was attributed to bound water. When the model was adjusted for the additional water content, the effective water path (EWP) was found to explain 72% of the variance in the measured RF loss.展开更多
When there are bigger obstacles in the indoor environment such as elevator, the radio waves basically can not penetrate it. The contribution of received signal strength by transmission and reflection will be greatly r...When there are bigger obstacles in the indoor environment such as elevator, the radio waves basically can not penetrate it. The contribution of received signal strength by transmission and reflection will be greatly reduced, and most of the time, the radio waves will reach the user by bypass diffraction. Therefore, the traditional path loss model is no longer applicable, and the improved model should be proposed. In this paper, we firstly proposed an indoor radio propagation model based on dominant path in which the received signal strength has nothing to do with the direct distance between user and access point, but is related to the length of dominant path. Then on the basis of dominant path model, the NLOS influence is considered in order to further improve the accuracy of dominant path model. Experimental results demonstrated that the proposed dominant path model can improve the accuracy of traditional path loss model remarkably.展开更多
基金supported by the National Science Fund for Distinguished Young Scholars(No.61925102)the National Key R&D Program of China(No.2020YFB1805002)the Key Project of State Key Lab of Networking and Switching Technology(No.NST20180105).
文摘Terahertz(THz)communication has been envisioned as a key enabling technology for sixthgeneration(6G).In this paper,we present an extensive THz channel measurement campaign for 6G wireless communications from 220 GHz to 330 GHz.Furthermore,the path loss is analyzed and modeled by using two single-frequency path loss models and a multiplefrequencies path loss model.It is found that at most frequency points,the measured path loss is larger than that in the free space.But at around 310 GHz,the propagation attenuation is relatively weaker compared to that in the free space.Also,the frequency dependence of path loss is observed and the frequency exponent of the multiple-frequencies path loss model is 2.1.Moreover,the cellular performance of THz communication systems is investigated by using the obtained path loss model.Simulation results indicate that the current inter-site distance(ISD)for the indoor scenario is too small for THz communications.Furthermore,the tremendous capacity gain can be obtained by using THz bands compared to using microwave bands and millimeter wave bands.Generally,this work can give an insight into the design and optimization of THz communication systems for 6G.
基金This project was supported by the key programof the Nationed Natural Science Foundation of China (60432040)
文摘The path loss analysis model based on 5 rays in vacancy indoor environment is proposed. The relationship between multipath overlapping and the path loss is analyzed mathematically. Time-domain technique is introduced to compute reflection coefficient in a very short time interval. A 5 rays path loss calculation method, which is satisfactory accurate, is developed. 5 typical environments are involved to analyze and generalize the common path loss characteristics in vacancy indoor environment. The simulation result shows that the path loss can be characterized as 3 zones with different path loss exponent as distance between transmitter and receiver increasing.
基金This work was supported by the U.K.Engineering and Physical Sciences Research Council under Grants EP/P008402/2 and EP/R001588/1.
文摘In this paper,we aim to unlock the potential of intelligent reflecting surfaces(IRSs)in cognitive internet of things(loT).Considering that the secondary IoT devices send messages to the secondary access point(SAP)by sharing the spectrum with the primary network,the interference is introduced by the IoT devices to the primary access point(PAP)which profits from the IoT devices by pricing the interference power charged by them.A practical path loss model is adopted such that the IRSs deployed between the IoT devices and SAP serve as diffuse scatterers,but each reflected signal can be aligned with its own desired direction.Moreover,two transmission policies of the secondary network are investigated without/with a successive interference cancellation(SIC)technique.The signal-to-interference plus noise ratio(SINR)balancing is considered to overcome the nearfar effect of the IoT devices so as to allocate the resource fairly among them.We propose a Stackelberg game strategy to characterize the interaction between primary and secondary networks.For the proposed game,the Stackelberg equilibrium is analytically derived to optimally obtain the closed-form solution of the power allocation and interference pricing.Numerical results are demonstrated to validate the performance of the theoretical derivations.
基金supported by the High Technology Research and Development Programme of China(2007AA01Z278)
文摘Wideband IMT-Advanced mobile communication systems tend to operate in the high frequency bands due to a relatively large capacity available. Thus, Measurement and modelling methods of radio propaga- tion eharaeteristics are proposed for the field test of Chinese 4th generation (4G) trial system. The mea- surement system is established for 3.5GHz based on the sophistieated measurement instruments and the virtual instrument teehnology. The characteristic parameters of radio propagation sueh as path loss (PL) exponent and shadow fading standard deviation are extracted from measurement data, which result in the path loss model finally. The comparisons with other existing international models results validate our mea- surement in terms of path loss model. Based on the analysis of the existing extension model assumed for the microwave frequency at 3.5GHz, we find that the Stanford University Interim (SUI) model fits very well with the measurement result in the hotspot scenario, while the COST 231 model is closer to the mea- surement result in the suburban scenario. This result provides a measurement-based channel referenee for the development of the future IMT-Advanced systems in China.
基金the scientific project supported by the National Natural Science Foundation of China (No. 61571063)supported by the Beijing Municipal Natural Science Foundation (No. 3182028)
文摘In order to deploy short-range wireless communication devices in the primary transformer substation, a Maximum Inner Product(MIP) Method is proposed to extract the path-loss parameters in 110 kV and 220 kV primary transformer substations. The maximum inner product of the testing data is calculated to find out the loss index n and the standard deviation σ, and then the pathloss models can be set up. By comparing the MIP with Minimum Mean Square estimation(MMSE) and Cumulative Sum(CUSUM), MIP can match the measured values best. In order to apply the MIP path-loss model, under the initial signal to noise ratio(SNR) at 5 dB and 10 dB, a ZigBee simulation system is constructed to validate the situation that bit error rate(BER) varies with distance. And the ZigBee devices with 5 units are tested in a 220 kV primary transformer substation. The result of the test proves that the path-loss model is accurate.
基金supported in part by the Fundamental Research Funds for the Central Universities under Grant No.2022JBXT001in part by NS⁃FC under Grant No.62171021+1 种基金in part by the Project of China State Rail⁃way Group under Grant No.P2021G012in part by ZTE Industry⁃University⁃Institute Cooperation Funds under Grant No.I21L00220.
文摘The railway mobile communication system is undergoing a smooth transition from the Global System for Mobile Communications-Railway(GSM-R)to the Railway 5G.In this paper,an empirical path loss model based on a large amount of measured data is established to predict the path loss in the Railway 5G marshalling yard scenario.According to the different characteristics of base station directional antennas,the antenna gain is verified.Then we propose the position of the breakpoint in the antenna propagation area,and based on the breakpoint segmentation,a large-scale statistical model for marshalling yards is established.
文摘Path loss prediction models are vital for accurate signal propagation in wireless channels. Empirical and deterministic models used in path loss predictions have not produced optimal results. In this paper, we introduced machine learning algorithms to path loss predictions because it offers a flexible network architecture and extensive data can be used. We introduced support vector regression (SVR) and radial basis function (RBF) models to path loss predictions in the investigated environments. The SVR model was able to process several input parameters without introducing complexity to the network architecture. The RBF on its part provides a good function approximation. Hyperparameter tuning of the machine learning models was carried out in order to achieve optimal results. The performances of the SVR and RBF models were compared and result validated using the root-mean squared error (RMSE). The two machine learning algorithms were also compared with the Cost-231, SUI, Egli, Freespace, Cost-231 W-I models. The analytical models overpredicted path loss. Overall, the machine learning models predicted path loss with greater accuracy than the empirical models. The SVR model performed best across all the indices with RMSE values of 1.378 dB, 1.4523 dB, 2.1568 dB in rural, suburban and urban settings respectively and should therefore be adopted for signal propagation in the investigated environments and beyond.
基金funded by the Ministry of Higher EducationMalaysia under the Fundamental Research Grant Scheme(FRGS)with grant number FRGS/1/2019/ICT02/MMU/02/1.
文摘A robust radio map is essential in implementing a fingerprint-based indoor positioning system(IPS).However,the offline site survey to manually construct the radio map is time-consuming and labour-intensive.Various interpolation techniques have been proposed to infer the virtual fingerprints to reduce the time and effort required for offline site surveys.This paper presents a novel fingerprint interpolator using a multi-path loss model(MPLM)to create the virtual fingerprints from the collected sample data based on different signal paths from different access points(APs).Based on the historical signal data,the poor signal paths are identified using their standard deviations.The proposed method reduces the positioning errors by smoothing out the wireless signal fluctuations and stabilizing the signals for those poor signal paths.By consideringmultipath signal propagations from different APs,the inherent noise from these signal paths can be alleviated.Firstly,locations of the signal data with standard deviations higher than the threshold are identified.The new fingerprints are then generated at these locations based on the proposed M-PLM interpolation function to replace the old fingerprints.The proposed technique interpolates virtual fingerprints based on good signal paths with more stable signals to improve the positioning performance.Experimental results show that the proposed scheme enhances the positioning accuracy by up to 44%compared to the conventional interpolation techniques such as the Inverse DistanceWeighting,Kriging,and single Path LossModel.As a result,we can overcome the site survey problems for IPS by building an accurate radio map with more reliable signals to improve indoor positioning performance.
基金This work is carried out in the framework of the project supported by the Department of Science and Technology of Kien Giang,Vietnam.The authors would like to thank them for supporting this research。
文摘In this paper,we develop and apply K-Nearest Neighbor algorithm to propagation pathloss regression.The path loss models present the dependency of attenuation value on distance using machine learning algorithms based on the experimental data.The algorithm is performed by choosing k nearest points and training dataset to find the optimal k value.The proposed method is applied to impove and adjust pathloss model at 28 GHz in Keangnam area,Hanoi,Vietnam.The experiments in both line-of-sight and non-line-of-sight scenarios used many combinations of transmit and receive antennas at different transmit antenna heights and random locations of receive antenna have been carried out using Wireless Insite Software.The results have been compared with 3GPP and NYU Wireless Path Loss Models in order to verify the performance of the proposed approach.
文摘This paper proposes modifications to the tradional Ceiling Bounce Model and uses it to characterize diffuse indoor optical wireless channel by analyzing the effect of transceiver position on signal propagation properties. The modified approach uses a combination of the tradional ceiling bounce method and a statistical approach. The effects of different transmitter-receiver separations and height of the ceiling on path loss and delay spread are studied in detail.
文摘Assessing plant water status is important for monitoring plant physiology. Radio signals are attenuated when passing through vegetation. Both analytical and empirical models developed for radio frequency (RF) loss through vegetation have been dependent on experimental measurements and those measurements have been completed in specific situations. However, for models to be more broadly applicable across a broad range of vegetation types and constructs, basic electrical properties of the vegetation need to be characterised. Radio waves are affected especially by water and the relationship between water content in vegetation expressed as effective water path (EWP) in mm and measured RF loss (dB) at 2.4 GHz was investigated in this work. The EWP of eucalyptus leaves of varying amounts of leaf moisture (0% - 41.5%) ranged from 0 - 14 mm, respectively. When the model was compared with the actual RF loss there was a systematic offset equivalent to a residual leaf moisture content of 6.5% that was unaccounted for in the leaf moisture content determination (oven drying). This was attributed to bound water. When the model was adjusted for this amount of additional leaf water, the average RMSE in predicted RF loss was ±2.2 dB and was found to explain 89% of the variance in measured RF loss.
文摘The body channel based wireless power transfer(BC-WPT)method utilizes the human body as the medium to transfer power for bioelectronics,which can achieve a lower transmission loss due to its higher conductivity.However,except for the channel length,different on-body loca-tions of the transmitter and receiver also influence the power supply performance.This paper fo-cuses on the wrist-to-forehead path to show the potential of BC-WPT for the brain bioelectronics such as the brain computer interface device.The channel characteristics from 10 MHz to 60 MHz are measured by a vector network analyzer(VNA)and a prototype BC-WPT system with differ-ent copper electrodes and the lowest power loss locates between-22 dB and-33 dB.Furthermore,the minimum path loss limit is simulated in Advanced Design System(ADS)software and the low-est optimum path loss can reach nearly-13 dB.Finally,a rectifier circuit is also built at the receiv-er side to harvest d.c.voltage.The results show that the open-circuit voltage(OCV)can reach 1.75 V with the transmitter of 50Ωoutput impedance supplying 5V_(pp)sine voltage at 60 MHz when adopt-ing 1 cm-diameter circular electrodes.
文摘Detection of plant water status is important for monitoring plant physiology. Previous studies showed that radio waves are attenuated when passing through vegetation such as trees, and models (both empirical and analytical) were developed. However, for models to be more broadly applicable across a broad range of vegetation types and constructs, basic electrical properties of the vegetation need to be characterised. In our previous work, a model was developed to calculate the RF loss through vegetation with varying water content. In this paper, the model was extended to calculate RF loss through tree canopies with or without an air gap. When the model was compared with the actual RF loss acquired using Eucalyptus <em>blakelyi</em> trees (with and without leaves), there was a systematic offset equivalent to a residual moisture content of 13% that was attributed to bound water. When the model was adjusted for the additional water content, the effective water path (EWP) was found to explain 72% of the variance in the measured RF loss.
文摘When there are bigger obstacles in the indoor environment such as elevator, the radio waves basically can not penetrate it. The contribution of received signal strength by transmission and reflection will be greatly reduced, and most of the time, the radio waves will reach the user by bypass diffraction. Therefore, the traditional path loss model is no longer applicable, and the improved model should be proposed. In this paper, we firstly proposed an indoor radio propagation model based on dominant path in which the received signal strength has nothing to do with the direct distance between user and access point, but is related to the length of dominant path. Then on the basis of dominant path model, the NLOS influence is considered in order to further improve the accuracy of dominant path model. Experimental results demonstrated that the proposed dominant path model can improve the accuracy of traditional path loss model remarkably.