By reviewing the mechanisms of drilling fluid lost circulation and its control in fractured formations, the applicability and working mechanisms of different kinds of lost circulation materials in plugging fractured f...By reviewing the mechanisms of drilling fluid lost circulation and its control in fractured formations, the applicability and working mechanisms of different kinds of lost circulation materials in plugging fractured formations have been summarized. Meanwhile, based on the types of lost circulation materials, the advantages, disadvantages, and application effects of corresponding plugging technologies have been analyzed to sort out the key problems existing in the current lost circulation control technologies. On this basis, the development direction of plugging technology for severe loss have been pointed out. It is suggested that that the lost circulation control technology should combine different disciplines such as geology, engineering and materials to realize integration, intelligence and systematization in the future. Five research aspects should be focused on:(1) the study on mechanisms of drilling fluid lost circulation and its control to provide basis for scientific selection of lost circulation material formulas, control methods and processes;(2) the research and development of self-adaptive lost circulation materials to improve the matching relationship between lost control materials and fracture scales;(3) the research and development of lost circulation materials with strong retention and strong filling in three-dimensional fracture space, to enhance the retention and filling capacities of materials in fractures and improve the lost circulation control effect;(4) the research and development of lost circulation materials with high temperature tolerance, to ensure the long-term plugging effect of deep high-temperature formations;(5) the study on digital and intelligent lost circulation control technology, to promote the development of lost circulation control technology to digital and intelligent direction.展开更多
Lost circulation of drilling fluid is one of the most common engineering problems in the drilling process of fractured formations.In this study,an oil-absorbing polymer gel synthesized using compound monomers with rig...Lost circulation of drilling fluid is one of the most common engineering problems in the drilling process of fractured formations.In this study,an oil-absorbing polymer gel synthesized using compound monomers with rigid and flexible chains was applied to control the oil-based drilling fluid loss while drilling.The microstructure,oil-absorbing performance,and plugging performance the gel was investigated.A large number of dense pores on the surface of the gel were observed,which allowed the oil molecules to enter the internal space of the gel.The initial oil absorption capacity of the gel was fast,and it increased with the increase in the temperature and decrease in the particle size,reaching 20.93 g/g at140℃.At a high temperature of 140℃,the bearing pressure capacity of the gel formula containing particles of different particle sizes reached 7.6 MPa for a fracture of a width of 3 mm,showing that the oil-absorbing gel have excellent plugging performance at high temperature.Plugging mechanism of the gel was investigated through visualized fracture plugging experiments.Results show that the dynamic migratio n,particle-swelling,particle-bridging,particle-aggregation,deformation-filling,and compaction-plugging contribute to the whole lost circulation control process,reflecting that the plugging performance can be effectively enhanced by improving the aggregation and filling degrees of the gel with different particle sizes.展开更多
Due to the complexity and variability of carbonate formation leakage zones, lost circulation prediction and control is one of the major challenges of carbonate drilling. It raises well-control risks and production exp...Due to the complexity and variability of carbonate formation leakage zones, lost circulation prediction and control is one of the major challenges of carbonate drilling. It raises well-control risks and production expenses. This research utilizes the H oilfield as an example, employs seismic features to analyze mud loss prediction, and produces a complete set of pre-drilling mud loss prediction solutions. Firstly, 16seismic attributes are calculated based on the post-stack seismic data, and the mud loss rate per unit footage is specified. The sample set is constructed by extracting each attribute from the seismic trace surrounding 15 typical wells, with a ratio of 8:2 between the training set and the test set. With the calibration results for mud loss rate per unit footage, the nonlinear mapping relationship between seismic attributes and mud loss rate per unit size is established using the mixed density network model.Then, the influence of the number of sub-Gausses and the uncertainty coefficient on the model's prediction is evaluated. Finally, the model is used in conjunction with downhole drilling conditions to assess the risk of mud loss in various layers and along the wellbore trajectory. The study demonstrates that the mean relative errors of the model for training data and test data are 6.9% and 7.5%, respectively, and that R2is 90% and 88%, respectively, for training data and test data. The accuracy and efficacy of mud loss prediction may be greatly enhanced by combining 16 seismic attributes with the mud loss rate per unit footage and applying machine learning methods. The mud loss prediction model based on the MDN model can not only predict the mud loss rate but also objectively evaluate the prediction based on the quality of the data and the model.展开更多
In the process of production or processing of materials by various methods,there is a need for a large volume of water of the required quality.Today in many regions of the world,there is an acute problem of providing ...In the process of production or processing of materials by various methods,there is a need for a large volume of water of the required quality.Today in many regions of the world,there is an acute problem of providing industry with water of a required quality.Its solution is an urgent and difficult task.The water quality of surface water bodies is formed by a combination of a large number of both natural and anthropogenic factors,and is often significantly heterogeneous not only in the water area,but also in depth.As a rule,the water supply of large industrial enterprises is located along the river network.Mergers are the most important nodes of river systems.Understanding the mechanism of transport of pollutants at the confluence of rivers is critical for assessing water quality.In recent years,thanks to the data of satellite images,the interest of researchers in the phenomenon of mixing the waters of merging rivers has increased.The nature of the merger is influenced by the formation of transverse circulation.Within the framework of this work,a study of vorticity,as well as the width of the mixing zone,depending on the distance from the confluence,the speeds of the merging rivers and the angle of confluence was carried out.Since the consumer properties of water are largely determined by its chemical and physical indicators,the intensity of mixing,determined largely by the nature of the secondary circulation,is of fundamental importance for assessing the distribution of hydrochemical indicators of water quality in the mixing zone.These characteristics are important not only for organizing water intake for drinking and technical purposes with the best consumer properties,but also for organizing an effective monitoring system for confluence zones.展开更多
The well-known“lost circulation”problem refers to the uncontrolled flow of whole mud into a formation.In order to address the problem related to the paucity of available data,in the present study,a model is introduc...The well-known“lost circulation”problem refers to the uncontrolled flow of whole mud into a formation.In order to address the problem related to the paucity of available data,in the present study,a model is introduced for the lost-circulation risk sample profile of a drilled well.The model is built taking into account effective data(the Block L).Then,using a three-dimensional geological modeling software,relying on the variation function and sequential Gaussian simulation method,a three-dimensional block lost-circulation risk model is introduced able to provide relevant information for regional analyses.展开更多
Loss of drilling fluids in large porous and fractured zones inevitably up-regulates the overall cost of drilling.As a type of acid-soluble cement,magnesium oxysulfate(MOS)cement is arousing huge attention for the less...Loss of drilling fluids in large porous and fractured zones inevitably up-regulates the overall cost of drilling.As a type of acid-soluble cement,magnesium oxysulfate(MOS)cement is arousing huge attention for the less hygroscopic nature and less damaging to steel casings compared with magnesium oxychloride(MOC)cement.The present study developed MOS cement as a fast setting,high strength and acid-soluble lost circulation material to reduce the problem of losses.As suggested in this study,a higher strength of MOS cement at 70℃could be achieved by elevating M_(g)O/MgSO_(4)·7 H_(2)O molar ratio or downregulating H_(2)O/MgSO_(4)·7 H_(2)O molar ratio.Boric acid and borax could act as effective retarders.Plugging slurry based on MOS cement could effectively block the simulated porous loss zones exhibiting a diameter from 1.24 mm to 1.55 mm,as well as the fractured loss zones with a width from 2 mm to 5 mm and bearing a pressure difference up to 8 MPa.Permeability recovery test demonstrated that it facilitated future oil and gas production.The successful field application in the Junggar Basin,Xinjiang,China verified the significant plugging effect of MOS cement for severe loss problems.展开更多
Lost circulation is one of the most important concerns of the drilling industry, causing excessive expenditure and increasing the non-productive drilling time. In this study, various lost circulation materials(LCMs) w...Lost circulation is one of the most important concerns of the drilling industry, causing excessive expenditure and increasing the non-productive drilling time. In this study, various lost circulation materials(LCMs) were used to control the lost circulation of two types of drilling fluids, bentonite mud and a new eco-friendly mud, named RIA-X, which has a remarkable effect on decreasing the amount of lost circulation in fractured and highly permeable reservoirs. The Bridging Material Test(BMT) apparatus was used to investigate the effectiveness of various LCMs in fractures of various sizes and to select the LCM and combination with the best performance. The use of three-dimensional fractures is one of the most notable points of this work, which makes the experimental conditions similar to those of real wells. The lost control performance of the new eco-friendly LCMs in RIA-X mud was tested in field. The outcomes show that the designed LCMs are able to control severe lost circulation that regular processes such as cementing or drilling with foam cannot deal with.展开更多
Focused on the lost circulation control in deep naturally fractured reservoirs, the multiscale structure of fracture plugging zone is proposed based on the theory of granular matter mechanics, and the structural failu...Focused on the lost circulation control in deep naturally fractured reservoirs, the multiscale structure of fracture plugging zone is proposed based on the theory of granular matter mechanics, and the structural failure pattern of plugging zone is developed to reveal the plugging zone failure mechanisms in deep, high temperature, high pressure, and high in-situ stress environment. Based on the fracture plugging zone strength model, key performance parameters are determined for the optimal selection of loss control material(LCM). Laboratory fracture plugging experiments with new LCM are carried out to evaluate the effect of the key performance parameters of LCM on fracture plugging quality. LCM selection strategy for fractured reservoirs is developed. The results show that the force chain formed by LCMs determines the pressure stabilization of macro-scale fracture plugging zone. Friction failure and shear failure are the two major failure patterns of fracture plugging zone. The strength of force chain depends on the performance of micro-scale LCM, and the LCM key performance parameters include particle size distribution, fiber aspect ratio, friction coefficient, compressive strength, soluble ability and high temperature resistance. Results of lab experiments and field test show that lost circulation control quality can be effectively improved with the optimal material selection based on the extracted key performance parameters of LCMs.展开更多
To effectively solve the problem of lost circulation and well kick frequently occurring during the drilling of abnormally high temperature and pressure fractured-vuggy reservoirs in the Tazhong block, a rigid particle...To effectively solve the problem of lost circulation and well kick frequently occurring during the drilling of abnormally high temperature and pressure fractured-vuggy reservoirs in the Tazhong block, a rigid particle material, GZD, with high temperature tolerance, high rigidity(> 8 MPa) and low abrasiveness has been selected based on geological characteristics of the theft zones in the reservoirs. Through static pressure sealing experiments, its dosage when used alone and when used in combination with lignin fiber, elastic material SQD-98 and calcium carbonate were optimized, and the formula of a new type(SXM-I) of compound lost circulation material with high temperature tolerance and high strength was formed. Its performance was evaluated by compatibility test, static sealing experiment and sand bed plugging experiment. The test results show that it has good compatibility with drilling fluid used commonly and is able to plug fractures and vugs, the sealed fractures are able to withstand the static pressure of more than 9 MPa and the cumulative leakage is 13.4 mL. The mud filtrate invasion depth is only 2.5 cm in 30 min when the sand bed is made of particles with sizes between 10 mesh and 20 mesh. Overall, with good sealing property and high temperature and high pressure tolerance, the lost circulation material provides strong technical support for the safety drilling in the block.展开更多
Lost circulations have presented great challenges to the petroleum industry, causing great expenditures of cash and time to fighting the problem. Probably the most problematic situations are the naturally fractured fo...Lost circulations have presented great challenges to the petroleum industry, causing great expenditures of cash and time to fighting the problem. Probably the most problematic situations are the naturally fractured formations where the operator may face total loss with no mud return in the annular. The voids or large fracture encountered in this case are often far too large to be plugged with conventional Lost Circulation Material. This paper will give a detailed introduction on a novel composite gel material usable to control severe losses and pressurization sealing. The plugging mechanics of this new composite gel material, which is different from conventional lost circulation materials, were elaborated as well. In addition, the properties of the new composite gel material such as thermostability, sealing strength and bearing resistance are characterized with specific experimental devices. The experimental results proved that the breakdown pressure of the new plugging reached more than 20MPa, and the maximum degraded temperature can be exceed 130℃. The field application at 4 wells in Puguang gas field, SINOPEC, demonstrated that the new composite gel material solved the serious loss in Ordovician carbonate fractured formation successfully and guaranteed the following completion cement operation smoothly. The composite gel sealing slurries, which was easily prepared on site, gives remarkable properties regarding pumping through drill pipes, adjustment of setting time and excellent sealing strength of the lost zone sealing, additionally, the whole pressurization sealing process was complicated within only ten hours. The on-site results show that the plugging ratio of the new composite gel was reached 100%, and the success rate of sealing operation kept above 80%.Thus the new LCM can guarantee safe drilling jobs and save operation cost more effectively.展开更多
Failure to manage and minimize lost circulation can greatly increase the cost of drilling and the risk of well abandonment.Many lost circulation remedial procedures are not working as planned because the locations of ...Failure to manage and minimize lost circulation can greatly increase the cost of drilling and the risk of well abandonment.Many lost circulation remedial procedures are not working as planned because the locations of loss zones are incorrectly estimated.The lack of this critical piece of information prevents treatments from being applied directly to the points of losses and, thus,resulting in low efficiency and extended NPT (non-productive time). This paper presents an integrated method for identifying thelocations of loss zones with continuous temperature measurement data enabled by drilling microchip technology. A transient thermalmodel in predicting the temperature profiles in the wellbore and formation during mud loss is developed as a forward calculationprocedure of the loss zone mapping method. For a deep well with moderate to severe loss, there are significant changes in the mudcirculating temperature profiles as mud loss persists. Certain characteristics ofwellbore thermal behavior are evaluated and identifiedas good indicators of loss zones. Case studies are conducted to demonstrate the practical applications of the method in both onshoreand offshore drilling applications. The results from these case studies are important in setting cement plugs, applying expandabletubular systems, and spotting LCM (lost circulation material) pills. Additional uses of this method include identifying highlypermeable zones for reservoir or formation evaluation purposes. This method can be used as a routine monitoring process performedregularly without any interference of the drilling operations at the time.展开更多
A coupled CFD-DEM method is used to simulate the formation process of fracture plugging zone.A photo-elastic system characterizing mesoscale force chain network developed by our own is used to model the pressure evolu...A coupled CFD-DEM method is used to simulate the formation process of fracture plugging zone.A photo-elastic system characterizing mesoscale force chain network developed by our own is used to model the pressure evolution in fracture plugging zone to reveal the evolution mechanism of the structure of fracture plugging zone.A theoretical basis is provided for improving the lost circulation control effect in fractured reservoirs and novel methods are proposed for selecting loss control materials and designing loss control formula.CFD-DEM simulation results show that bridging probability is the key factor determining the formation of fracture plugging zone and fracture plugging efficiency.Critical and absolute bridging concentrations are proposed as the key indexes for loss control formula design.With the increase of absolute bridging concentration,the governing factor of bridging is changed from material grain size to the combination of material grain size and friction force.Results of photo-elastic experiments show that mesoscale force chain network is the intrinsic factor affecting the evolution of pressure exerting on the fracture plugging zone and determines the macroscopic strength of fracture plugging zone.Performance parameters of loss control material affect the force chain network structure and the ratio of stronger force chain,and further impact the stability and strength of fracture plugging zone.Based on the study results,the loss control formula is optimized and new-type loss control material is designed.Laboratory experiments results show that the fracture plugging efficiency and strength is effectively improved.展开更多
Blockage in water-dominated flow pipelines due to hydrate reformation has been suggested as a potential safety issue during the hydrate production.In this work,flow velocity-dependent hydrate formation features are in...Blockage in water-dominated flow pipelines due to hydrate reformation has been suggested as a potential safety issue during the hydrate production.In this work,flow velocity-dependent hydrate formation features are investigated in a fluid circulation system with a total length of 39 m.A 9-m section pipe is transparent consisted of two complete rectangular loops.By means of pressurization with gas-saturated water,the system can gradually reach the equilibrium conditions.The result shows that the hydrates are delayed to appear as floccules or thin films covering the methane bubbles.When the circulation velocity is below 750 rpm,hydrate is finally deposited as a“hydrate bed”at upmost of inner wall,narrowing the flow channel of the pipeline.Nevertheless,no plugging is observed during all the experimental runs.The five stages of hydrate deposition are proposed based on the experimental results.It is also revealed that a higher driving pressure is needed at a lower flow rate.The driving force of hydrate formation from gas and water obtained by melting hydrate is higher than that from fresh water with no previous hydrate history.The authors hope that this work will be beneficial for the flow assurance of the following oceanic field hydrate recovery trials.展开更多
[Objective]The research aimed to analyze formation reason of " 0902" blizzard in northeast China. [Method]By using timely observation data,NCEP reanalysis data and Doppler radar data at Baishan station,blizzard proc...[Objective]The research aimed to analyze formation reason of " 0902" blizzard in northeast China. [Method]By using timely observation data,NCEP reanalysis data and Doppler radar data at Baishan station,blizzard process in southeast part of northeast China during 12-13 February,2009 was analyzed. [Result]Snowfall zone of the blizzard process was wide,snowfall was more,snowfall gradient was big,and snowfall time relatively concentrated. These characteristics reflected that the blizzard process had significant convection characteristics. Baroclinic disturbance at high-altitude straight frontal zone and ground warm frontogenesis caused by eastward movement and northward advancement of North China low vortex at low altitude were the circulation characteristics in the process. Water vapor from the sea went northward as southwest airflow,and strongly converged in blizzard zone,which provided sufficient water vapor condition for the blizzard. Before heavy snowfall occurred,there was accumulation process of heat and energy. Conditional symmetric instability was main unstable mechanism of the blizzard. During heavy snowfall period,ascending branch of secondary vertical circulation at exit zone of high-altitude jet coupled with ascending branch of secondary vertical circulation of warm frontegenesis at low layer,inducing strong development of the vertical motion. Doppler radar intensity echo revealed that it was easy to generate blizzard in the area where echo intensity was consistently above 20 dBz. Strong wind velocity convergence zone at radical velocity field especially adverse wind zone was favorable for the generation of blizzard. [Conclusion]The research could provide reference for blizzard forecast in northeast China.展开更多
The mass transfer of Rhodamine 6G from the droplet to the continuous phase in a coaxial micro-channel is studied using micro-LIF(Laser-Induced Fluorescence).The mass distribution inside droplet is measured and visuali...The mass transfer of Rhodamine 6G from the droplet to the continuous phase in a coaxial micro-channel is studied using micro-LIF(Laser-Induced Fluorescence).The mass distribution inside droplet is measured and visualized.The experimental results affirm that there exists the internal circulation inside the droplet and it could enhance the convective mass transfer.The stagnant center of vortices is also observed.The extraction fraction could reach 40%80%.In order to establish the mass transfer model,different flow rates of the dispersed and continuous phase are adopted.The high continuous phase flow rate and low dispersed phase flow rate are both beneficial to enhance mass transfer by expediting the internal circulation.A modified mass transfer model is found to calculate the extraction fraction.A good agreement between the model and experiment in various conditions demonstrates that the mass transfer model in this work is reliable and feasible.展开更多
Circulation industry has increasingly grown into one of the leading industries of the national economy. For Shanxi province, the development of circulation industry provides new ideas for changing its mode of economic...Circulation industry has increasingly grown into one of the leading industries of the national economy. For Shanxi province, the development of circulation industry provides new ideas for changing its mode of economic growth. However, its current development situation shows that Shanxi province's circulation industry is still less competitive for lack of fully understanding and exercising its leading role. On the basis of the analysis of its current development situation and contribution, the paper puts forward the main problems existing in Shanxi province's circulation industry.展开更多
基金Supported by National Natural Science Foundation of China(51991361,52074327,U1762212)Major Engineering Technology Field Tes Project of CNPC(2020F-45)。
文摘By reviewing the mechanisms of drilling fluid lost circulation and its control in fractured formations, the applicability and working mechanisms of different kinds of lost circulation materials in plugging fractured formations have been summarized. Meanwhile, based on the types of lost circulation materials, the advantages, disadvantages, and application effects of corresponding plugging technologies have been analyzed to sort out the key problems existing in the current lost circulation control technologies. On this basis, the development direction of plugging technology for severe loss have been pointed out. It is suggested that that the lost circulation control technology should combine different disciplines such as geology, engineering and materials to realize integration, intelligence and systematization in the future. Five research aspects should be focused on:(1) the study on mechanisms of drilling fluid lost circulation and its control to provide basis for scientific selection of lost circulation material formulas, control methods and processes;(2) the research and development of self-adaptive lost circulation materials to improve the matching relationship between lost control materials and fracture scales;(3) the research and development of lost circulation materials with strong retention and strong filling in three-dimensional fracture space, to enhance the retention and filling capacities of materials in fractures and improve the lost circulation control effect;(4) the research and development of lost circulation materials with high temperature tolerance, to ensure the long-term plugging effect of deep high-temperature formations;(5) the study on digital and intelligent lost circulation control technology, to promote the development of lost circulation control technology to digital and intelligent direction.
基金financially supported by the National Natural Science Foundation of China(Grant 52074327,51991361)the Natural Science Foundation of Shandong Province,China(ZR2020QE107)
文摘Lost circulation of drilling fluid is one of the most common engineering problems in the drilling process of fractured formations.In this study,an oil-absorbing polymer gel synthesized using compound monomers with rigid and flexible chains was applied to control the oil-based drilling fluid loss while drilling.The microstructure,oil-absorbing performance,and plugging performance the gel was investigated.A large number of dense pores on the surface of the gel were observed,which allowed the oil molecules to enter the internal space of the gel.The initial oil absorption capacity of the gel was fast,and it increased with the increase in the temperature and decrease in the particle size,reaching 20.93 g/g at140℃.At a high temperature of 140℃,the bearing pressure capacity of the gel formula containing particles of different particle sizes reached 7.6 MPa for a fracture of a width of 3 mm,showing that the oil-absorbing gel have excellent plugging performance at high temperature.Plugging mechanism of the gel was investigated through visualized fracture plugging experiments.Results show that the dynamic migratio n,particle-swelling,particle-bridging,particle-aggregation,deformation-filling,and compaction-plugging contribute to the whole lost circulation control process,reflecting that the plugging performance can be effectively enhanced by improving the aggregation and filling degrees of the gel with different particle sizes.
基金the financially supported by the National Natural Science Foundation of China(Grant No.52104013)the China Postdoctoral Science Foundation(Grant No.2022T150724)。
文摘Due to the complexity and variability of carbonate formation leakage zones, lost circulation prediction and control is one of the major challenges of carbonate drilling. It raises well-control risks and production expenses. This research utilizes the H oilfield as an example, employs seismic features to analyze mud loss prediction, and produces a complete set of pre-drilling mud loss prediction solutions. Firstly, 16seismic attributes are calculated based on the post-stack seismic data, and the mud loss rate per unit footage is specified. The sample set is constructed by extracting each attribute from the seismic trace surrounding 15 typical wells, with a ratio of 8:2 between the training set and the test set. With the calibration results for mud loss rate per unit footage, the nonlinear mapping relationship between seismic attributes and mud loss rate per unit size is established using the mixed density network model.Then, the influence of the number of sub-Gausses and the uncertainty coefficient on the model's prediction is evaluated. Finally, the model is used in conjunction with downhole drilling conditions to assess the risk of mud loss in various layers and along the wellbore trajectory. The study demonstrates that the mean relative errors of the model for training data and test data are 6.9% and 7.5%, respectively, and that R2is 90% and 88%, respectively, for training data and test data. The accuracy and efficacy of mud loss prediction may be greatly enhanced by combining 16 seismic attributes with the mud loss rate per unit footage and applying machine learning methods. The mud loss prediction model based on the MDN model can not only predict the mud loss rate but also objectively evaluate the prediction based on the quality of the data and the model.
基金financial support from the Government of the Perm Territory within the Framework of Scientific Project No.S-26/828the Ministry of Science and High Education of Russia(Theme No.121031700169-1).
文摘In the process of production or processing of materials by various methods,there is a need for a large volume of water of the required quality.Today in many regions of the world,there is an acute problem of providing industry with water of a required quality.Its solution is an urgent and difficult task.The water quality of surface water bodies is formed by a combination of a large number of both natural and anthropogenic factors,and is often significantly heterogeneous not only in the water area,but also in depth.As a rule,the water supply of large industrial enterprises is located along the river network.Mergers are the most important nodes of river systems.Understanding the mechanism of transport of pollutants at the confluence of rivers is critical for assessing water quality.In recent years,thanks to the data of satellite images,the interest of researchers in the phenomenon of mixing the waters of merging rivers has increased.The nature of the merger is influenced by the formation of transverse circulation.Within the framework of this work,a study of vorticity,as well as the width of the mixing zone,depending on the distance from the confluence,the speeds of the merging rivers and the angle of confluence was carried out.Since the consumer properties of water are largely determined by its chemical and physical indicators,the intensity of mixing,determined largely by the nature of the secondary circulation,is of fundamental importance for assessing the distribution of hydrochemical indicators of water quality in the mixing zone.These characteristics are important not only for organizing water intake for drinking and technical purposes with the best consumer properties,but also for organizing an effective monitoring system for confluence zones.
文摘The well-known“lost circulation”problem refers to the uncontrolled flow of whole mud into a formation.In order to address the problem related to the paucity of available data,in the present study,a model is introduced for the lost-circulation risk sample profile of a drilled well.The model is built taking into account effective data(the Block L).Then,using a three-dimensional geological modeling software,relying on the variation function and sequential Gaussian simulation method,a three-dimensional block lost-circulation risk model is introduced able to provide relevant information for regional analyses.
基金supported by the National Natural Science Foundation(Grant No.51874329 and Grant No.52004297 and Grant No.51991361)the National Natural Science Innovation Population of China(Grant No.51821092)+1 种基金the Strategic Cooperation Technology Projects of CNPC and CUPB(Grant No.ZLZX2020-01)Cooperation projects of CCDC and CUPB(CQ2021B-33-Z2-3)。
文摘Loss of drilling fluids in large porous and fractured zones inevitably up-regulates the overall cost of drilling.As a type of acid-soluble cement,magnesium oxysulfate(MOS)cement is arousing huge attention for the less hygroscopic nature and less damaging to steel casings compared with magnesium oxychloride(MOC)cement.The present study developed MOS cement as a fast setting,high strength and acid-soluble lost circulation material to reduce the problem of losses.As suggested in this study,a higher strength of MOS cement at 70℃could be achieved by elevating M_(g)O/MgSO_(4)·7 H_(2)O molar ratio or downregulating H_(2)O/MgSO_(4)·7 H_(2)O molar ratio.Boric acid and borax could act as effective retarders.Plugging slurry based on MOS cement could effectively block the simulated porous loss zones exhibiting a diameter from 1.24 mm to 1.55 mm,as well as the fractured loss zones with a width from 2 mm to 5 mm and bearing a pressure difference up to 8 MPa.Permeability recovery test demonstrated that it facilitated future oil and gas production.The successful field application in the Junggar Basin,Xinjiang,China verified the significant plugging effect of MOS cement for severe loss problems.
文摘Lost circulation is one of the most important concerns of the drilling industry, causing excessive expenditure and increasing the non-productive drilling time. In this study, various lost circulation materials(LCMs) were used to control the lost circulation of two types of drilling fluids, bentonite mud and a new eco-friendly mud, named RIA-X, which has a remarkable effect on decreasing the amount of lost circulation in fractured and highly permeable reservoirs. The Bridging Material Test(BMT) apparatus was used to investigate the effectiveness of various LCMs in fractures of various sizes and to select the LCM and combination with the best performance. The use of three-dimensional fractures is one of the most notable points of this work, which makes the experimental conditions similar to those of real wells. The lost control performance of the new eco-friendly LCMs in RIA-X mud was tested in field. The outcomes show that the designed LCMs are able to control severe lost circulation that regular processes such as cementing or drilling with foam cannot deal with.
基金Supported by the National Natural Science Foundation of China(Grant No.51604236)Science and Technology Program of Sichuan Province(Grant No.2018JY0436)the Sichuan Province Youth Science and Technology Innovation Team Project(Grant No.2016TD0016)
文摘Focused on the lost circulation control in deep naturally fractured reservoirs, the multiscale structure of fracture plugging zone is proposed based on the theory of granular matter mechanics, and the structural failure pattern of plugging zone is developed to reveal the plugging zone failure mechanisms in deep, high temperature, high pressure, and high in-situ stress environment. Based on the fracture plugging zone strength model, key performance parameters are determined for the optimal selection of loss control material(LCM). Laboratory fracture plugging experiments with new LCM are carried out to evaluate the effect of the key performance parameters of LCM on fracture plugging quality. LCM selection strategy for fractured reservoirs is developed. The results show that the force chain formed by LCMs determines the pressure stabilization of macro-scale fracture plugging zone. Friction failure and shear failure are the two major failure patterns of fracture plugging zone. The strength of force chain depends on the performance of micro-scale LCM, and the LCM key performance parameters include particle size distribution, fiber aspect ratio, friction coefficient, compressive strength, soluble ability and high temperature resistance. Results of lab experiments and field test show that lost circulation control quality can be effectively improved with the optimal material selection based on the extracted key performance parameters of LCMs.
基金Supported by the China National Science and Technology Major Project(2011ZX05042-002-001)
文摘To effectively solve the problem of lost circulation and well kick frequently occurring during the drilling of abnormally high temperature and pressure fractured-vuggy reservoirs in the Tazhong block, a rigid particle material, GZD, with high temperature tolerance, high rigidity(> 8 MPa) and low abrasiveness has been selected based on geological characteristics of the theft zones in the reservoirs. Through static pressure sealing experiments, its dosage when used alone and when used in combination with lignin fiber, elastic material SQD-98 and calcium carbonate were optimized, and the formula of a new type(SXM-I) of compound lost circulation material with high temperature tolerance and high strength was formed. Its performance was evaluated by compatibility test, static sealing experiment and sand bed plugging experiment. The test results show that it has good compatibility with drilling fluid used commonly and is able to plug fractures and vugs, the sealed fractures are able to withstand the static pressure of more than 9 MPa and the cumulative leakage is 13.4 mL. The mud filtrate invasion depth is only 2.5 cm in 30 min when the sand bed is made of particles with sizes between 10 mesh and 20 mesh. Overall, with good sealing property and high temperature and high pressure tolerance, the lost circulation material provides strong technical support for the safety drilling in the block.
文摘Lost circulations have presented great challenges to the petroleum industry, causing great expenditures of cash and time to fighting the problem. Probably the most problematic situations are the naturally fractured formations where the operator may face total loss with no mud return in the annular. The voids or large fracture encountered in this case are often far too large to be plugged with conventional Lost Circulation Material. This paper will give a detailed introduction on a novel composite gel material usable to control severe losses and pressurization sealing. The plugging mechanics of this new composite gel material, which is different from conventional lost circulation materials, were elaborated as well. In addition, the properties of the new composite gel material such as thermostability, sealing strength and bearing resistance are characterized with specific experimental devices. The experimental results proved that the breakdown pressure of the new plugging reached more than 20MPa, and the maximum degraded temperature can be exceed 130℃. The field application at 4 wells in Puguang gas field, SINOPEC, demonstrated that the new composite gel material solved the serious loss in Ordovician carbonate fractured formation successfully and guaranteed the following completion cement operation smoothly. The composite gel sealing slurries, which was easily prepared on site, gives remarkable properties regarding pumping through drill pipes, adjustment of setting time and excellent sealing strength of the lost zone sealing, additionally, the whole pressurization sealing process was complicated within only ten hours. The on-site results show that the plugging ratio of the new composite gel was reached 100%, and the success rate of sealing operation kept above 80%.Thus the new LCM can guarantee safe drilling jobs and save operation cost more effectively.
文摘Failure to manage and minimize lost circulation can greatly increase the cost of drilling and the risk of well abandonment.Many lost circulation remedial procedures are not working as planned because the locations of loss zones are incorrectly estimated.The lack of this critical piece of information prevents treatments from being applied directly to the points of losses and, thus,resulting in low efficiency and extended NPT (non-productive time). This paper presents an integrated method for identifying thelocations of loss zones with continuous temperature measurement data enabled by drilling microchip technology. A transient thermalmodel in predicting the temperature profiles in the wellbore and formation during mud loss is developed as a forward calculationprocedure of the loss zone mapping method. For a deep well with moderate to severe loss, there are significant changes in the mudcirculating temperature profiles as mud loss persists. Certain characteristics ofwellbore thermal behavior are evaluated and identifiedas good indicators of loss zones. Case studies are conducted to demonstrate the practical applications of the method in both onshoreand offshore drilling applications. The results from these case studies are important in setting cement plugs, applying expandabletubular systems, and spotting LCM (lost circulation material) pills. Additional uses of this method include identifying highlypermeable zones for reservoir or formation evaluation purposes. This method can be used as a routine monitoring process performedregularly without any interference of the drilling operations at the time.
基金Supported by the National Natural Science Foundation of China(51604236)Open Fund of the State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(PLN201913)+1 种基金Science and Technology Planning Project of the Sichuan Province,China(2018JY0436)Sichuan Youth Science and Technology Innovation Research Team Project for Unconventional Oil and Gas Reservoir Protection(2016TD0016)。
文摘A coupled CFD-DEM method is used to simulate the formation process of fracture plugging zone.A photo-elastic system characterizing mesoscale force chain network developed by our own is used to model the pressure evolution in fracture plugging zone to reveal the evolution mechanism of the structure of fracture plugging zone.A theoretical basis is provided for improving the lost circulation control effect in fractured reservoirs and novel methods are proposed for selecting loss control materials and designing loss control formula.CFD-DEM simulation results show that bridging probability is the key factor determining the formation of fracture plugging zone and fracture plugging efficiency.Critical and absolute bridging concentrations are proposed as the key indexes for loss control formula design.With the increase of absolute bridging concentration,the governing factor of bridging is changed from material grain size to the combination of material grain size and friction force.Results of photo-elastic experiments show that mesoscale force chain network is the intrinsic factor affecting the evolution of pressure exerting on the fracture plugging zone and determines the macroscopic strength of fracture plugging zone.Performance parameters of loss control material affect the force chain network structure and the ratio of stronger force chain,and further impact the stability and strength of fracture plugging zone.Based on the study results,the loss control formula is optimized and new-type loss control material is designed.Laboratory experiments results show that the fracture plugging efficiency and strength is effectively improved.
基金funded by the National Natural Science Foundation of China(42076217,41976205)Shandong Provincial Taishan Scholars Special Expert Project (ts201712079)+1 种基金Marine Geological Survey Program (DD20190231)Shandong Natural Science Foundation(ZR2017BD024)。
文摘Blockage in water-dominated flow pipelines due to hydrate reformation has been suggested as a potential safety issue during the hydrate production.In this work,flow velocity-dependent hydrate formation features are investigated in a fluid circulation system with a total length of 39 m.A 9-m section pipe is transparent consisted of two complete rectangular loops.By means of pressurization with gas-saturated water,the system can gradually reach the equilibrium conditions.The result shows that the hydrates are delayed to appear as floccules or thin films covering the methane bubbles.When the circulation velocity is below 750 rpm,hydrate is finally deposited as a“hydrate bed”at upmost of inner wall,narrowing the flow channel of the pipeline.Nevertheless,no plugging is observed during all the experimental runs.The five stages of hydrate deposition are proposed based on the experimental results.It is also revealed that a higher driving pressure is needed at a lower flow rate.The driving force of hydrate formation from gas and water obtained by melting hydrate is higher than that from fresh water with no previous hydrate history.The authors hope that this work will be beneficial for the flow assurance of the following oceanic field hydrate recovery trials.
文摘[Objective]The research aimed to analyze formation reason of " 0902" blizzard in northeast China. [Method]By using timely observation data,NCEP reanalysis data and Doppler radar data at Baishan station,blizzard process in southeast part of northeast China during 12-13 February,2009 was analyzed. [Result]Snowfall zone of the blizzard process was wide,snowfall was more,snowfall gradient was big,and snowfall time relatively concentrated. These characteristics reflected that the blizzard process had significant convection characteristics. Baroclinic disturbance at high-altitude straight frontal zone and ground warm frontogenesis caused by eastward movement and northward advancement of North China low vortex at low altitude were the circulation characteristics in the process. Water vapor from the sea went northward as southwest airflow,and strongly converged in blizzard zone,which provided sufficient water vapor condition for the blizzard. Before heavy snowfall occurred,there was accumulation process of heat and energy. Conditional symmetric instability was main unstable mechanism of the blizzard. During heavy snowfall period,ascending branch of secondary vertical circulation at exit zone of high-altitude jet coupled with ascending branch of secondary vertical circulation of warm frontegenesis at low layer,inducing strong development of the vertical motion. Doppler radar intensity echo revealed that it was easy to generate blizzard in the area where echo intensity was consistently above 20 dBz. Strong wind velocity convergence zone at radical velocity field especially adverse wind zone was favorable for the generation of blizzard. [Conclusion]The research could provide reference for blizzard forecast in northeast China.
基金the National Natural Science Foundation of China(21991100,21991101)for this work.
文摘The mass transfer of Rhodamine 6G from the droplet to the continuous phase in a coaxial micro-channel is studied using micro-LIF(Laser-Induced Fluorescence).The mass distribution inside droplet is measured and visualized.The experimental results affirm that there exists the internal circulation inside the droplet and it could enhance the convective mass transfer.The stagnant center of vortices is also observed.The extraction fraction could reach 40%80%.In order to establish the mass transfer model,different flow rates of the dispersed and continuous phase are adopted.The high continuous phase flow rate and low dispersed phase flow rate are both beneficial to enhance mass transfer by expediting the internal circulation.A modified mass transfer model is found to calculate the extraction fraction.A good agreement between the model and experiment in various conditions demonstrates that the mass transfer model in this work is reliable and feasible.
文摘Circulation industry has increasingly grown into one of the leading industries of the national economy. For Shanxi province, the development of circulation industry provides new ideas for changing its mode of economic growth. However, its current development situation shows that Shanxi province's circulation industry is still less competitive for lack of fully understanding and exercising its leading role. On the basis of the analysis of its current development situation and contribution, the paper puts forward the main problems existing in Shanxi province's circulation industry.