The efficiency of businesses is often hindered by the challenges encountered in traditional Supply Chain Manage-ment(SCM),which is characterized by elevated risks due to inadequate accountability and transparency.To a...The efficiency of businesses is often hindered by the challenges encountered in traditional Supply Chain Manage-ment(SCM),which is characterized by elevated risks due to inadequate accountability and transparency.To address these challenges and improve operations in green manufacturing,optimization algorithms play a crucial role in supporting decision-making processes.In this study,we propose a solution to the green lot size optimization issue by leveraging bio-inspired algorithms,notably the Stork Optimization Algorithm(SOA).The SOA draws inspiration from the hunting and winter migration strategies employed by storks in nature.The theoretical framework of SOA is elaborated and mathematically modeled through two distinct phases:exploration,based on migration simulation,and exploitation,based on hunting strategy simulation.To tackle the green lot size optimization issue,our methodology involved gathering real-world data,which was then transformed into a simplified function with multiple constraints aimed at optimizing total costs and minimizing CO_(2) emissions.This function served as input for the SOA model.Subsequently,the SOA model was applied to identify the optimal lot size that strikes a balance between cost-effectiveness and sustainability.Through extensive experimentation,we compared the performance of SOA with twelve established metaheuristic algorithms,consistently demonstrating that SOA outperformed the others.This study’s contribution lies in providing an effective solution to the sustainable lot-size optimization dilemma,thereby reducing environmental impact and enhancing supply chain efficiency.The simulation findings underscore that SOA consistently achieves superior outcomes compared to existing optimization methodologies,making it a promising approach for green manufacturing and sustainable supply chain management.展开更多
A mathematical model to determine the optimal production lot size for a deteriorating production system under an extended product inspection policy is developed. The last-K product inspection policy is considered so t...A mathematical model to determine the optimal production lot size for a deteriorating production system under an extended product inspection policy is developed. The last-K product inspection policy is considered so that the nonconforming items can be reduced, under which the last K products in a production lot are inspected and the nonconforming items from those inspected are reworked. Consider that the products produced towards the end of a production lot are more likely to be nonconforming, is proposed an extended product inspection policy for a deteriorating production system. That is, in a production lot, product inspections are performed among the middle K1 items and after inspections, all of the last K2 products are directly reworked without inspections. Our objective here is the joint optimization of the production lot size and the corresponding extended inspection policy such that the expected total cost per unit time is minimized. Since there is no closed form expression for our optimal policy, the existence for the optimal production inspection policy and an upper bound for the optimal lot size are obtained. Furthermore, an efficient solution procedure is provided to search for the optimal policy. Finally, numerical examples are given to illustrate the proposed model and indicate that the expected total cost per unit time of our product inspection model is less than that of the last-K inspection policy.展开更多
The classical EPQ model has been used for a long ti me and is widely accepted and implemented. Nevertheless, the analysis for finding an economic lot size has based on a number of unrealistic assumptions. A common unr...The classical EPQ model has been used for a long ti me and is widely accepted and implemented. Nevertheless, the analysis for finding an economic lot size has based on a number of unrealistic assumptions. A common unrealistic assumption in using EPQ is that all units produced are of good quali ty. The classical EPQ model shows that the optimal lot size will generate minimum ma nufacturing cost, thus producing minimum setup cost and inventory cost. However, this is only true if all products manufactured in the process are assumed to be of good quality (i.e. all products are within the specification limits). In rea lity this is not the case, therefore, it is necessary to consider the cost of im perfect quality items, because this cost can influence the economic lot size. Ma ny studies and recent papers have indicated that there is a significant relation ship between economic production lot size and process/product quality. However, their models included either the imperfect quality items (not necessarily de fective) which are to be sold at a discounted price or defective items which can be reworked or rejected. The aim of this paper is to provide a framework to integrate three different sit uations (discounted pricing/rework/reject) into a single model. 100% inspection is performed in order to distinguish the amount of good quality items, imper fect quality items and defective items in each lot. In this paper, a mathematica l model is developed, and a numerical example is presented to illustrate the sol ution procedures. It is found that the economic production lot size tends to inc rease as the average percentage of imperfect quality items and defectives (rejec ted items) increases.展开更多
The paper develops an algorithm that solves economic lot size problem in O(n~2) time in the Wagner-Whitin case. The algorithm is based on the standard dynamic programming approach which requires the computation of the...The paper develops an algorithm that solves economic lot size problem in O(n~2) time in the Wagner-Whitin case. The algorithm is based on the standard dynamic programming approach which requires the computation of the maximal relative benefit for some possible subplans of the production plan. In this algorithm the authors have studied the forward property and decomposition properties which can make computation easy. The proposed algorithm appears to perform quite reasonably for practical application.展开更多
鉴于实际生产中工人的能力和加工效率存在差异,本文提出了考虑工人差异性和刀具限制的多资源约束并行机分批调度问题,以最小化最大完工时间、最小化交付时间偏差为优化目标,构建了工人熟练度、刀具资源约束的混合整数线性规划模型,研究...鉴于实际生产中工人的能力和加工效率存在差异,本文提出了考虑工人差异性和刀具限制的多资源约束并行机分批调度问题,以最小化最大完工时间、最小化交付时间偏差为优化目标,构建了工人熟练度、刀具资源约束的混合整数线性规划模型,研究子批数量和大小、机器分配、工人分配、子批加工顺序之间的耦合关系,设计了一种改进的多目标混合灰狼-鲸鱼群算法(manyobjective hybrid grey wolf optimizer and whale swarm algorithm,MO-HGWSA).根据模型特点,设计了一种两阶段编码和解码方案表示问题的可行解;利用多种引导策略提高算法的进化效率;设计了局部搜索策略,增强算法的局部搜索能力.最后引入案例验证算法的有效性,结果表明本文所提算法在收敛性、分布性和解集支配关系方面均优于对比算法.展开更多
The capacitated lot sizing and scheduling problem that involves indetermining the production amounts and release dates for several items over a given planning horizonare given to meet dynamic order demand without incu...The capacitated lot sizing and scheduling problem that involves indetermining the production amounts and release dates for several items over a given planning horizonare given to meet dynamic order demand without incurring backloggings. The problem consideringovertime capacity is studied. The mathematical model is presented, and a genetic algorithm (GA)approach is developed to solve the problem. The initial solutions are generated after usingheuristic method. Capacity balancing procedure is employed to stipulate the feasibility of thesolutions. In addition, a technique based on Tabu search (TS) is inserted into the genetic algorithmdeal with the scheduled overtime and help the convergence of algorithm. Computational simulation isconducted to test the efficiency of the proposed hybrid approach, which turns out to improve boththe solution quality and execution speed.展开更多
Studies show that supply chain cooperation improves supply chain performance. However, it remains a challenge to develop and implement the realistic supply chain cooperation scheme. We investigate a two-echelon supply...Studies show that supply chain cooperation improves supply chain performance. However, it remains a challenge to develop and implement the realistic supply chain cooperation scheme. We investigate a two-echelon supply chain planning problem with capacity acquisition decision under asymmetric cost and demand information. A simple negotiation-based coordination mechanism is developed to synchronize production/order strategies of a supplier and a buyer. The coordination scheme shows how the supplier and the buyer modify their production and order policy in order to find a joint economic lot sizing plan, which saves the overall supply chain cost. The allocation of the cooperation benefit is determined by negotiation. Due to the complexity of the multiple periods, multiple level supply chain lot sizing with capacity decision, a heuristic algorithm is developed to find coordination solutions. Finally, the results of the numerical study indicate the performance of supply chain coordination scheme.展开更多
This paper presents an economic lot-sizing problem with perishable inventory and general economies of scale cost functions. For the case with backlogging allowed, a mathematical model is formulated, and several proper...This paper presents an economic lot-sizing problem with perishable inventory and general economies of scale cost functions. For the case with backlogging allowed, a mathematical model is formulated, and several properties of the optimal solutions are explored. With the help of these optimality properties, a polynomial time approximation algorithm is developed by a new method. The new method adopts a shift technique to obtain a feasible solution of subproblem and takes the optimal solution of the subproblem as an approximation solution of our problem. The worst case performance for the approximation algorithm is proven to be (4√2 + 5)/7. Finally, an instance illustrates that the bound is tight.展开更多
This paper addresses a single item dynamic lot-sizing model with inventory capacity and out-sourcing. The goal is to minimize the total costs of production, setup, inventory holding and out-sourcing. Two versions of a...This paper addresses a single item dynamic lot-sizing model with inventory capacity and out-sourcing. The goal is to minimize the total costs of production, setup, inventory holding and out-sourcing. Two versions of an out-sourcing model with time-varying costs are considered: stock out case and conservation case. Zero Inventory Order property has been found and some new properties are obtained in an optimal solution. Dynamic programming algorithms are developed to solve the problem in strongly polynomial time respectively. Furthermore, some numerical results demonstrate that the approach proposed is efficient and applicable.展开更多
In order to study the capacitated lot sizing problem for a supply chain of corporate multi-location factories to minimize the total costs of production, inventory and transportation under the system capacity restricti...In order to study the capacitated lot sizing problem for a supply chain of corporate multi-location factories to minimize the total costs of production, inventory and transportation under the system capacity restriction and product due date, while at the same time considering the menu distributed balance, the mathematical programming models are decomposed and reduced from the 3 levels into 2 levels according to the idea of just-in-time production. In order to overcome the premature convergence of ACA (ant colony algorithms), the idea of mute operation is adopted in genetic algorithms and a PACA (parallel ant colony algorithms) is proposed for supply chain optimization. Finally, an illustrative example is given, and a comparison is made with standard BAB (Branch and Bound) and PACA approach. The result shows that the latter is more effective and promising.展开更多
Our research focuses on the development of two cooperative approaches for resolution of the multi-item capacitated lot-sizing problems with time windows and setup times (MICLSP-TW-ST). In this paper we combine variabl...Our research focuses on the development of two cooperative approaches for resolution of the multi-item capacitated lot-sizing problems with time windows and setup times (MICLSP-TW-ST). In this paper we combine variable neighborhood search and accurate mixed integer programming (VNS-MIP) to solve MICLSP-TW-ST. It concerns so a particularly important and difficult problem in production planning. This problem is NP-hard in the strong sense. Moreover, it is very difficult to solve with an exact method;it is for that reason we have made use of the approximate methods. We improved the variable neighborhood search (VNS) algorithm, which is efficient for solving hard combinatorial optimization problems. This problem can be viewed as an optimization problem with mixed variables (binary variables and real variables). The new VNS algorithm was tested against 540 benchmark problems. The performance of most of our approaches was satisfactory and performed better than the algorithms already proposed in the literature.展开更多
In this article, we propose novel reformulations for capacitated lot sizing problem. These reformulations are the result of reducing the number of variables (by eliminating the backorder variable) or increasing the nu...In this article, we propose novel reformulations for capacitated lot sizing problem. These reformulations are the result of reducing the number of variables (by eliminating the backorder variable) or increasing the number of constraints (time capacity constraints) in the standard problem formulation. These reformulations are expected to reduce the computational time complexity of the problem. Their computational efficiency is evaluated later in this article through numerical analysis on randomly generated problems.展开更多
We reduce lot sizing problem with (a) Set Up, Production, Shortage and Inventory Costs to lot sizing problem with (b) Set Up, Production, and Inventory Costs. For lot sizing problem (as in (b)), Pochet and Wolsey [1] ...We reduce lot sizing problem with (a) Set Up, Production, Shortage and Inventory Costs to lot sizing problem with (b) Set Up, Production, and Inventory Costs. For lot sizing problem (as in (b)), Pochet and Wolsey [1] have given already integral polyhedral with polynomial separation where a linear program yield “integer” solutions. Thus problem (b) which we have created can be more easily solved by methods available in literature. Also with the removal of shortage variables is an additional computational advantage.展开更多
It is shown that when backorders, setup times and dynamic demand are included in capacitated lot sizing problem, the resulting classical formulation and one of the transportation formulations of the problem (referred ...It is shown that when backorders, setup times and dynamic demand are included in capacitated lot sizing problem, the resulting classical formulation and one of the transportation formulations of the problem (referred to as CLSP_BS) are equivalent. And it is shown that both the formulations are “weak” formulations (as opposed to “strong” formulation). The other transportation version is a strong formulation of CLSP_BS. Extensive computational studies are presented for medium and large sized problems. In case of medium-sized problems, strong formulation produces better LP bounds, and takes lesser number of branch-and-bound (B&B) nodes and less CPU time to solve the problem optimally. However for large-sized problems strong formulation takes more time to solve the problem optimally, defeating the benefit of strength of bounds. This essentially is because of excessive increase in the number of constraints for the large sized problems. Hybrid formulations are proposed where only few most promising strong constraints are added to the weak formulation. Hybrid formulation emerges as the best performer against the strong and weak formulations. This concept of hybrid formulation can efficiently solve a variety of complex real life large-sized problems.展开更多
This work presents an optimization model to support decisions during production planning and control in the personal protective equipment (PPE) industry (in particular, gloves). A case study was carried out at a Brazi...This work presents an optimization model to support decisions during production planning and control in the personal protective equipment (PPE) industry (in particular, gloves). A case study was carried out at a Brazilian company with the aim of increasing productivity and improving customer service with respect to meeting deadlines. In this case study, the mixed integer linear programming model of Luche (2009) was revisited. A new model for single-stage lot sizing was applied to the production scheduling of gloves. Optimizing this scheduling was not a simple task because of the scale of the equipment setup time, the diversity of the products and the deadlines for the orders. The model was implemented in GAMS IDE and solved by CPLEX 12. The model and the associated heuristic produce better solutions than those currently used by the company.展开更多
In flexible job-shop batch scheduling problem, the optimal lot-size of different process is not always the same because of different processing time and set-up time. Even for the same process of the same workpiece, th...In flexible job-shop batch scheduling problem, the optimal lot-size of different process is not always the same because of different processing time and set-up time. Even for the same process of the same workpiece, the choice of machine also affects the optimal lot-size. In addition, different choices of lot-size between the constrained processes will impact the manufacture efficiency. Considering that each process has its own appropriate lot-size, we put forward the concept of scheduling with lot-splitting based on process and set up the scheduling model of lot-splitting to critical path process as the core. The model could update the set of batch process and machine selection strategy dynamically to determine processing route and arrange proper lot-size for different processes, to achieve the purpose of optimizing the makespan and reducing the processing batches effectively. The experiment results show that, comparing with lot-splitting scheduling scheme based on workpiece, this model optimizes the makespan and improves the utilization efficiency of the machine. It also greatly decreases the machined batches (42%) and reduces the complexity of shop scheduling production management.展开更多
基金This research is funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan,Grant No.AP19674517.
文摘The efficiency of businesses is often hindered by the challenges encountered in traditional Supply Chain Manage-ment(SCM),which is characterized by elevated risks due to inadequate accountability and transparency.To address these challenges and improve operations in green manufacturing,optimization algorithms play a crucial role in supporting decision-making processes.In this study,we propose a solution to the green lot size optimization issue by leveraging bio-inspired algorithms,notably the Stork Optimization Algorithm(SOA).The SOA draws inspiration from the hunting and winter migration strategies employed by storks in nature.The theoretical framework of SOA is elaborated and mathematically modeled through two distinct phases:exploration,based on migration simulation,and exploitation,based on hunting strategy simulation.To tackle the green lot size optimization issue,our methodology involved gathering real-world data,which was then transformed into a simplified function with multiple constraints aimed at optimizing total costs and minimizing CO_(2) emissions.This function served as input for the SOA model.Subsequently,the SOA model was applied to identify the optimal lot size that strikes a balance between cost-effectiveness and sustainability.Through extensive experimentation,we compared the performance of SOA with twelve established metaheuristic algorithms,consistently demonstrating that SOA outperformed the others.This study’s contribution lies in providing an effective solution to the sustainable lot-size optimization dilemma,thereby reducing environmental impact and enhancing supply chain efficiency.The simulation findings underscore that SOA consistently achieves superior outcomes compared to existing optimization methodologies,making it a promising approach for green manufacturing and sustainable supply chain management.
基金supported by the National Natural Science Foundation of China(60874034).
文摘A mathematical model to determine the optimal production lot size for a deteriorating production system under an extended product inspection policy is developed. The last-K product inspection policy is considered so that the nonconforming items can be reduced, under which the last K products in a production lot are inspected and the nonconforming items from those inspected are reworked. Consider that the products produced towards the end of a production lot are more likely to be nonconforming, is proposed an extended product inspection policy for a deteriorating production system. That is, in a production lot, product inspections are performed among the middle K1 items and after inspections, all of the last K2 products are directly reworked without inspections. Our objective here is the joint optimization of the production lot size and the corresponding extended inspection policy such that the expected total cost per unit time is minimized. Since there is no closed form expression for our optimal policy, the existence for the optimal production inspection policy and an upper bound for the optimal lot size are obtained. Furthermore, an efficient solution procedure is provided to search for the optimal policy. Finally, numerical examples are given to illustrate the proposed model and indicate that the expected total cost per unit time of our product inspection model is less than that of the last-K inspection policy.
文摘The classical EPQ model has been used for a long ti me and is widely accepted and implemented. Nevertheless, the analysis for finding an economic lot size has based on a number of unrealistic assumptions. A common unrealistic assumption in using EPQ is that all units produced are of good quali ty. The classical EPQ model shows that the optimal lot size will generate minimum ma nufacturing cost, thus producing minimum setup cost and inventory cost. However, this is only true if all products manufactured in the process are assumed to be of good quality (i.e. all products are within the specification limits). In rea lity this is not the case, therefore, it is necessary to consider the cost of im perfect quality items, because this cost can influence the economic lot size. Ma ny studies and recent papers have indicated that there is a significant relation ship between economic production lot size and process/product quality. However, their models included either the imperfect quality items (not necessarily de fective) which are to be sold at a discounted price or defective items which can be reworked or rejected. The aim of this paper is to provide a framework to integrate three different sit uations (discounted pricing/rework/reject) into a single model. 100% inspection is performed in order to distinguish the amount of good quality items, imper fect quality items and defective items in each lot. In this paper, a mathematica l model is developed, and a numerical example is presented to illustrate the sol ution procedures. It is found that the economic production lot size tends to inc rease as the average percentage of imperfect quality items and defectives (rejec ted items) increases.
文摘The paper develops an algorithm that solves economic lot size problem in O(n~2) time in the Wagner-Whitin case. The algorithm is based on the standard dynamic programming approach which requires the computation of the maximal relative benefit for some possible subplans of the production plan. In this algorithm the authors have studied the forward property and decomposition properties which can make computation easy. The proposed algorithm appears to perform quite reasonably for practical application.
文摘鉴于实际生产中工人的能力和加工效率存在差异,本文提出了考虑工人差异性和刀具限制的多资源约束并行机分批调度问题,以最小化最大完工时间、最小化交付时间偏差为优化目标,构建了工人熟练度、刀具资源约束的混合整数线性规划模型,研究子批数量和大小、机器分配、工人分配、子批加工顺序之间的耦合关系,设计了一种改进的多目标混合灰狼-鲸鱼群算法(manyobjective hybrid grey wolf optimizer and whale swarm algorithm,MO-HGWSA).根据模型特点,设计了一种两阶段编码和解码方案表示问题的可行解;利用多种引导策略提高算法的进化效率;设计了局部搜索策略,增强算法的局部搜索能力.最后引入案例验证算法的有效性,结果表明本文所提算法在收敛性、分布性和解集支配关系方面均优于对比算法.
基金This project is supported by National Natural Science Foundation of China (No.70071017, No.60074011) the Open-lab of Manufacturing System Engineering, Xi'an Jiaotong University, China.
文摘The capacitated lot sizing and scheduling problem that involves indetermining the production amounts and release dates for several items over a given planning horizonare given to meet dynamic order demand without incurring backloggings. The problem consideringovertime capacity is studied. The mathematical model is presented, and a genetic algorithm (GA)approach is developed to solve the problem. The initial solutions are generated after usingheuristic method. Capacity balancing procedure is employed to stipulate the feasibility of thesolutions. In addition, a technique based on Tabu search (TS) is inserted into the genetic algorithmdeal with the scheduled overtime and help the convergence of algorithm. Computational simulation isconducted to test the efficiency of the proposed hybrid approach, which turns out to improve boththe solution quality and execution speed.
基金supported by the National Natural Science Foundation of China (70701008)
文摘Studies show that supply chain cooperation improves supply chain performance. However, it remains a challenge to develop and implement the realistic supply chain cooperation scheme. We investigate a two-echelon supply chain planning problem with capacity acquisition decision under asymmetric cost and demand information. A simple negotiation-based coordination mechanism is developed to synchronize production/order strategies of a supplier and a buyer. The coordination scheme shows how the supplier and the buyer modify their production and order policy in order to find a joint economic lot sizing plan, which saves the overall supply chain cost. The allocation of the cooperation benefit is determined by negotiation. Due to the complexity of the multiple periods, multiple level supply chain lot sizing with capacity decision, a heuristic algorithm is developed to find coordination solutions. Finally, the results of the numerical study indicate the performance of supply chain coordination scheme.
基金supported by National Natural Science Foundation of China (No. 10671108 and 70971076)Found for the Doctoral Program of Higher Education of Ministry of Education of China (No. 20070446001)+1 种基金Innovation Planning Project of Shandong Province (No. SDYY06034)Foundation of Qufu Normal University (No. XJZ200849)
文摘This paper presents an economic lot-sizing problem with perishable inventory and general economies of scale cost functions. For the case with backlogging allowed, a mathematical model is formulated, and several properties of the optimal solutions are explored. With the help of these optimality properties, a polynomial time approximation algorithm is developed by a new method. The new method adopts a shift technique to obtain a feasible solution of subproblem and takes the optimal solution of the subproblem as an approximation solution of our problem. The worst case performance for the approximation algorithm is proven to be (4√2 + 5)/7. Finally, an instance illustrates that the bound is tight.
文摘This paper addresses a single item dynamic lot-sizing model with inventory capacity and out-sourcing. The goal is to minimize the total costs of production, setup, inventory holding and out-sourcing. Two versions of an out-sourcing model with time-varying costs are considered: stock out case and conservation case. Zero Inventory Order property has been found and some new properties are obtained in an optimal solution. Dynamic programming algorithms are developed to solve the problem in strongly polynomial time respectively. Furthermore, some numerical results demonstrate that the approach proposed is efficient and applicable.
文摘In order to study the capacitated lot sizing problem for a supply chain of corporate multi-location factories to minimize the total costs of production, inventory and transportation under the system capacity restriction and product due date, while at the same time considering the menu distributed balance, the mathematical programming models are decomposed and reduced from the 3 levels into 2 levels according to the idea of just-in-time production. In order to overcome the premature convergence of ACA (ant colony algorithms), the idea of mute operation is adopted in genetic algorithms and a PACA (parallel ant colony algorithms) is proposed for supply chain optimization. Finally, an illustrative example is given, and a comparison is made with standard BAB (Branch and Bound) and PACA approach. The result shows that the latter is more effective and promising.
文摘Our research focuses on the development of two cooperative approaches for resolution of the multi-item capacitated lot-sizing problems with time windows and setup times (MICLSP-TW-ST). In this paper we combine variable neighborhood search and accurate mixed integer programming (VNS-MIP) to solve MICLSP-TW-ST. It concerns so a particularly important and difficult problem in production planning. This problem is NP-hard in the strong sense. Moreover, it is very difficult to solve with an exact method;it is for that reason we have made use of the approximate methods. We improved the variable neighborhood search (VNS) algorithm, which is efficient for solving hard combinatorial optimization problems. This problem can be viewed as an optimization problem with mixed variables (binary variables and real variables). The new VNS algorithm was tested against 540 benchmark problems. The performance of most of our approaches was satisfactory and performed better than the algorithms already proposed in the literature.
文摘In this article, we propose novel reformulations for capacitated lot sizing problem. These reformulations are the result of reducing the number of variables (by eliminating the backorder variable) or increasing the number of constraints (time capacity constraints) in the standard problem formulation. These reformulations are expected to reduce the computational time complexity of the problem. Their computational efficiency is evaluated later in this article through numerical analysis on randomly generated problems.
文摘We reduce lot sizing problem with (a) Set Up, Production, Shortage and Inventory Costs to lot sizing problem with (b) Set Up, Production, and Inventory Costs. For lot sizing problem (as in (b)), Pochet and Wolsey [1] have given already integral polyhedral with polynomial separation where a linear program yield “integer” solutions. Thus problem (b) which we have created can be more easily solved by methods available in literature. Also with the removal of shortage variables is an additional computational advantage.
文摘It is shown that when backorders, setup times and dynamic demand are included in capacitated lot sizing problem, the resulting classical formulation and one of the transportation formulations of the problem (referred to as CLSP_BS) are equivalent. And it is shown that both the formulations are “weak” formulations (as opposed to “strong” formulation). The other transportation version is a strong formulation of CLSP_BS. Extensive computational studies are presented for medium and large sized problems. In case of medium-sized problems, strong formulation produces better LP bounds, and takes lesser number of branch-and-bound (B&B) nodes and less CPU time to solve the problem optimally. However for large-sized problems strong formulation takes more time to solve the problem optimally, defeating the benefit of strength of bounds. This essentially is because of excessive increase in the number of constraints for the large sized problems. Hybrid formulations are proposed where only few most promising strong constraints are added to the weak formulation. Hybrid formulation emerges as the best performer against the strong and weak formulations. This concept of hybrid formulation can efficiently solve a variety of complex real life large-sized problems.
文摘This work presents an optimization model to support decisions during production planning and control in the personal protective equipment (PPE) industry (in particular, gloves). A case study was carried out at a Brazilian company with the aim of increasing productivity and improving customer service with respect to meeting deadlines. In this case study, the mixed integer linear programming model of Luche (2009) was revisited. A new model for single-stage lot sizing was applied to the production scheduling of gloves. Optimizing this scheduling was not a simple task because of the scale of the equipment setup time, the diversity of the products and the deadlines for the orders. The model was implemented in GAMS IDE and solved by CPLEX 12. The model and the associated heuristic produce better solutions than those currently used by the company.
基金Supported by National Key Technology R&D Program(No.2013BAJ06B)
文摘In flexible job-shop batch scheduling problem, the optimal lot-size of different process is not always the same because of different processing time and set-up time. Even for the same process of the same workpiece, the choice of machine also affects the optimal lot-size. In addition, different choices of lot-size between the constrained processes will impact the manufacture efficiency. Considering that each process has its own appropriate lot-size, we put forward the concept of scheduling with lot-splitting based on process and set up the scheduling model of lot-splitting to critical path process as the core. The model could update the set of batch process and machine selection strategy dynamically to determine processing route and arrange proper lot-size for different processes, to achieve the purpose of optimizing the makespan and reducing the processing batches effectively. The experiment results show that, comparing with lot-splitting scheduling scheme based on workpiece, this model optimizes the makespan and improves the utilization efficiency of the machine. It also greatly decreases the machined batches (42%) and reduces the complexity of shop scheduling production management.