A low-energy plasma electrolytic oxidation(LePEO)technique is developed to simultaneously improve energy efficiency and anti-corrosion.Ionic liquids(1-butyl-3-methylimidazole tetrafluoroborate(BmimBF_(4)))as sustainab...A low-energy plasma electrolytic oxidation(LePEO)technique is developed to simultaneously improve energy efficiency and anti-corrosion.Ionic liquids(1-butyl-3-methylimidazole tetrafluoroborate(BmimBF_(4)))as sustainable corrosion inhibitors are chosen to investigate the corrosion inhibition behavior of ionic liquid(ILs)during the LePEO process for LA91 magnesium-lithium(Mg-Li)alloy.Results show that the ionic liquid BmimBF_(4)participates in the LePEO coating formation process,causing an increment in coating thickness and surface roughness.The low conductivity of the ionic liquid is responsible for the voltage and breakdown voltage increases during the LePEO with IL process(LePEO-IL).After adding BmimBF_(4),corrosion current density decreases from 1.159×10^(−4)A·cm^(−2)to 8.143×10^(−6)A·cm^(−2).The impedance modulus increases to 1.048×10^(4)Ω·cm^(−2)and neutral salt spray remains intact for 24 h.The superior corrosion resistance of the LePEO coating assisted by ionic liquid could be mainly attributed to its compact and thick barrier layer and physical absorption of ionic liquid.The ionic liquid-assisted LePEO technique provides a promising approach to reducing energy consumption and improving film performance.展开更多
In this study,the extruded Mg-Zn-Mn-Ce-Ca alloy tube with a low compression anisotropy along the ED,45ED and TD was prepared.The effect of the second phases,initial texture and deformation behavior on this low mechani...In this study,the extruded Mg-Zn-Mn-Ce-Ca alloy tube with a low compression anisotropy along the ED,45ED and TD was prepared.The effect of the second phases,initial texture and deformation behavior on this low mechanical anisotropy was investigated.The results revealed that the alloy tube contains the high content(Mg1-xZnx)11Ce phase and the low content of Mg12Ce phase.These second phases are respectively incoherent and coherent with the Mg matrix,and their influence can be ignored.Additionally,the alloy tube exhibited a weak basal fiber texture,where the c-axis was aligned along the 0°∼30°tilt from TD to ED.Such a texture made the initial deformation(at 1.0%∼1.6%strain)of the three samples controlled by comparable basalslip.As deformation progressed(1.6∼9.0%strain),larger amounts of ETWs nucleated and gradually approached saturation in the three samples,re-orienting the c-axis to a 0°∼±30°deviation with respect to the loading directions.Meanwhile,the prismatic and pyramidal<c+a>slips replaced the dominant deformation progressively until fracture.Eventually,the similar deformation mechanisms determined by the weak initial texture in the three samples contribute to the comparable strain hardening rates,resulting in the low compressive anisotropy of the alloy tube.展开更多
Effects of quenching temperature and cooling conditions(water cooling and 10%NaCl cooling)on microstructure and mechanical properties of a 0.2%Ti low alloy martensitic wear-resistant steel used for die casting ejector...Effects of quenching temperature and cooling conditions(water cooling and 10%NaCl cooling)on microstructure and mechanical properties of a 0.2%Ti low alloy martensitic wear-resistant steel used for die casting ejector plate were investigated.The results show that lath martensite can be obtained after austenitizing in the range of 860-980℃and then water cooling.With an increase in austenitizing temperature,the precipitate content gradually decreases.The precipitates are mainly composed of TiC and Ti4C2S2,and their total content is between 1.15wt.%and 1.64wt.%.The precipitate phase concentration by water-cooling is higher than that by10%NaCl cooling due to the lower cooling rate of water cooling.As the austeniting temperature increases,the hardness and tensile strength of both water cooled and 10%NaCl cooled steels firstly increase and then decrease.The experimental steel exhibits the best comprehensive mechanical properties after being austenitized at 900℃,cooled by 10%NaCl,and then tempered at 200℃.Its hardness,ultimate tensile strength,and wear rate reach551.4 HBW,1,438.2 MPa,and 0.48×10^(-2)mg·m^(-1),respectively.展开更多
Cold Metal Transfer-Based Wire Arc Directed Energy Deposition(CMT-WA-DED)presents a promising avenue for the rapid fabrication of components crucial to automotive,shipbuilding,and aerospace industries.However,the susc...Cold Metal Transfer-Based Wire Arc Directed Energy Deposition(CMT-WA-DED)presents a promising avenue for the rapid fabrication of components crucial to automotive,shipbuilding,and aerospace industries.However,the susceptibility to fatigue of CMT-WA-DED-produced AZ31 Mg alloy components has impeded their widespread adoption for critical load-bearing applications.In this study,a comprehensive investigation into the fatigue behaviour of WA-DED-fabricated AZ31 Mg alloy has been carried out and compared to commercially available wrought AZ31 alloy.Our findings indicate that the as-deposited parts exhibit a lower fatigue life than wrought Mg alloy,primarily due to poor surface finish,tensile residual stress,porosity,and coarse grain microstructure inherent in the WA-DED process.Low Plasticity Burnishing(LPB)treatment is applied to mitigate these issues,which induce significant plastic deformation on the surface.This treatment resulted in a remarkable improvement of fatigue life by 42%,accompanied by a reduction in surface roughness,grain refinement and enhancement of compressive residual stress levels.Furthermore,during cyclic deformation,WA-DED specimens exhibited higher plasticity and dislocation density compared to both wrought and WA-DED+LPB specimens.A higher fraction of Low Angle Grain Boundaries(LAGBs)in WA-DED specimens contributed to multiple crack initiation sites and convoluted crack paths,ultimately leading to premature failure.In contrast,wrought and WA-DED+LPB specimens displayed a higher percentage of High Angle Grain Boundaries(HAGBs),which hindered dislocation movement and resulted in fewer crack initiation sites and less complex crack paths,thereby extending fatigue life.These findings underscore the effectiveness of LPB as a post-processing technique to enhance the fatigue performance of WA-DED-fabricated AZ31 Mg alloy components.Our study highlights the importance of LPB surface treatment on AZ31 Mg components produced by CMT-WA-DED to remove surface defects,enabling their widespread use in load-bearing applications.展开更多
In this paper,the formation process,morphology,and electrochemical performance of PEO coatings on AM50 magnesium alloy prepared in low concentration phosphate,aluminate,and phosphate-aluminate electrolytes were system...In this paper,the formation process,morphology,and electrochemical performance of PEO coatings on AM50 magnesium alloy prepared in low concentration phosphate,aluminate,and phosphate-aluminate electrolytes were systematically studied.The results show that the coatings prepared from the phosphate electrolytes have a higher thickness and better corrosion resistance properties compared to the other electrolytes.The coatings prepared from low concentration phosphate-aluminate mixed electrolytes have slightly thinner thickness,a similar coating structure and an order of magnitude lower value of electrochemical impedance compared with phosphate electrolyte coatings.The Coatings prepared from low concentration aluminate electrolytes have the lowest thickness and the worst corrosion resistance properties which gets close to corrosion behavior of the bare AM50 under the same test conditions.Considering application,coatings prepared from single low concentration phosphate electrolytes and low concentration phosphate-aluminate electrolytes have greater potential than single low concentration aluminate coatings.However,reducing the electrolyte concentrations of coating forming ions too much has negative influence on the coating growth rate.展开更多
Inconel 718 is the most popular nickel-based superalloy and is extensively used in aerospace,automotive,and energy indus-tries owing to its extraordinary thermomechanical properties.The effects of different two-step s...Inconel 718 is the most popular nickel-based superalloy and is extensively used in aerospace,automotive,and energy indus-tries owing to its extraordinary thermomechanical properties.The effects of different two-step solid solution treatments on microstructure andδphase precipitation of Inconel 718 alloy were studied,and the transformation mechanism fromγ″metastable phase toδphase was clarified.The precipitates were statistically analyzed by X-ray diffractometry.The results show that theδphase content firstly increased,and then decreased with the temperature of the second-step solid solution.The changes in microstructure andδphase were studied by scanning electron microscopy and transmission electron microscopy.An intragranularδphase formed in Inconel 718 alloy at the second-[100]_(δ)[011]γ step solid solution temperature of 925℃,and its orientation relationship withγmatrix was determined as//and(010)_(δ)//(111)γ.Furthermore,the Vickers hardness of different heat treatment samples was measured,and the sample treated by second-step solid solution at 1010℃ reached the maximum hardness of HV 446.84.展开更多
Anti-coking oxide films were prepared on a 25Cr35Ni and 35Cr45Ni alloy surface under the low oxygen partialpressure atmosphere of a H2-H2O mixture. The composition and phase structure of the oxide films were analyzed ...Anti-coking oxide films were prepared on a 25Cr35Ni and 35Cr45Ni alloy surface under the low oxygen partialpressure atmosphere of a H2-H2O mixture. The composition and phase structure of the oxide films were analyzed by energydispersive spectroscopy (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The anti-cokingperformance of a mini tube made of a HP40 (25Cr35Ni) alloy was evaluated on a bench scale pyrolysis and coking test unit.The results showed that the surface Fe and Ni content decreased after the oxidation of the two alloys in a low oxygen partialpressure atmosphere. The oxide films were mainly composed of MnCr_(2)O_(4) and Cr_(2)O_(3). The average mass of coke in the minitube with oxide film decreased by 87% relative to that of a tube without an oxide film when the cracking temperature was 900℃. The ethylene, propylene, and butadiene yields in the pyrolysis tests were almost the same for the mini tubes withand without an oxide film. The oxide film on the alloy surface effectively inhibited catalytic filamentous coke formation.An industrial test showed that the run length of the cracking furnace with the in-situ coating technology was significantlyextended.展开更多
Gravity die casting(GC) and squeeze casting(SC) T4-treated Al-7.0Zn-2.5Mg-2.1Cu alloys were employed to investigate the microstructures,mechanical properties and low cycle fatigue(LCF) behavior.The results show that m...Gravity die casting(GC) and squeeze casting(SC) T4-treated Al-7.0Zn-2.5Mg-2.1Cu alloys were employed to investigate the microstructures,mechanical properties and low cycle fatigue(LCF) behavior.The results show that mechanical properties of SC specimens are significantly better than those of GC specimens due to less cast defects and smaller secondary dendrite arm spacing(SDAS).Excellent fatigue properties are obtained for the SC alloy compared with the GC alloy.GC and SC alloys both exhibit cyclic stabilization at low total strain amplitudes(less than 0.4%) and cyclic hardening at higher total strain amplitudes.The degree of cyclic hardening of SC samples is greater than that of GC samples.Fatigue cracks of GC samples dominantly initiate from shrinkage porosities and are easy to propagate along them,while the crack initiation sites for SC samples are slip bands,eutectic phases and inclusions at or near the free surface.展开更多
The effects of low frequency electromagnetic field on the macro-physical fields in the semi-continuous casting process of aluminum alloys and the microstructure and crack in the billets were studied and analyzed by th...The effects of low frequency electromagnetic field on the macro-physical fields in the semi-continuous casting process of aluminum alloys and the microstructure and crack in the billets were studied and analyzed by the numerical and experimental methods.Comparison of the results for the macro-physical fields in the low frequency electromagnetic casting(LFEC) process with the conventional DC casting process indicates the following characters due to the application of electromagnetic field:an entirely changed direction and remarkably increased velocity of melt flow;a uniform distribution and a decreased gradient of temperature;elevated isothermal lines;a reduced sump depth;decreased stress and plastic deformation.Further,the microstructure of the billets is refined remarkably and the crack in the billets is eliminated in LFEC process because of modification of the macro-physical fields induced by the application of low frequency electromagnetic field.展开更多
An as-solution treated Mg-6Gd-1Y-0.4Zr alloy was processed by low temperature thermo-mechanical treatments (LT-TMT), including cold tension with various strains followed by aging at 200 °C to peak hardness. The...An as-solution treated Mg-6Gd-1Y-0.4Zr alloy was processed by low temperature thermo-mechanical treatments (LT-TMT), including cold tension with various strains followed by aging at 200 °C to peak hardness. The results show that the precipitation kinetics of the alloy experienced LT-TMT is greatly accelerated and the aging time to peak hardness is greatly decreased with increasing tensile strain. The tensile yield strength, ultimate tensile strength and elongation at room temperature of the alloy after cold tension with strain of 10% and peak aging at 200 °C are 251 MPa, 296 MPa and 8%, respectively, which are superior to the commercial heat-resistant WE54 alloy, although the latter has a higher rare earth element content.展开更多
Transient creep at very low strain rates (less than 10-10 s-1) is still unclear. The traditional uniaxial creep testing is less useful due to unsatisfied resolution strain (~10-6). To study transient creep behavio...Transient creep at very low strain rates (less than 10-10 s-1) is still unclear. The traditional uniaxial creep testing is less useful due to unsatisfied resolution strain (~10-6). To study transient creep behavior at such low strain rates, a high-resolution strain measurement using the helicoid spring specimen technique was employed in a fine-grained Al-5356 alloy at temperatures ranging from 0.47Tm to 0.74Tm (Tm: melting point). To clarify transient creep mechanism at such low strain rates, transmission electron microscopy (TEM) was used in microstructure observation of crept specimens. The abnormal transient creep, high temperature strengthening at T〉Tp (Tp: the phase transformation temperature, 0.58Tm) or intermediate temperature softening at 0.4Tm〈T£Tp and double-normal type (creep curves including double work-hardening stages) at T=Tp, were firstly observed. The substructure observation in a crept specimen at T=0.58Tm and e=1×10-4 shows pile-up dislocations including many small jogs with equal interval, and dislocations emitted from grain boundaries. The b-Al3Mg2 phase dissolves under the condition of testing temperatures higher than 523 K, which causes solid-solution quantity of Mg atoms to increase. Therefore, the “abnormal transient creep” may be related to the difference of solid solution strengthening caused by phase change during the creep tests.展开更多
The semi-solid slurry of a hypoeutectic Al-Si alloy was manufactured by low superheat pouring and weak electromagnetic stirring. The effects of pouting temperature and stirring power on the semi-solid slurry were inve...The semi-solid slurry of a hypoeutectic Al-Si alloy was manufactured by low superheat pouring and weak electromagnetic stirring. The effects of pouting temperature and stirring power on the semi-solid slurry were investigated. The results indicated that the semi-solid slurry to satisfy rheocasting can be manufactured by low superheat pouring and weak electromagnetic stirring. The pouring temperature (or superheat) and the stirring power remarkably affected the morphology of primary α-Al and the size of primary α-Al, and there is no obvious effect of stirring time on primary α-Al. Compared with the samples made by low superheat pouring with no stirring, the nucleation rate, particle morphology and grain size of primary α-Al in A356 were markedly improved by low superheat pouring and weak electromagnetic stirring. On the condition of weak electromagnetic stirring, the pouring temperature with low superheat can be suitably raised to reach the effectiveness obtained from the lower pouring temperature without stirring.展开更多
The semi-solid slurry of hypoeutectic Al-Si alloy was manufactured by low superheat pouring and weak electromagnetic stirring. The effects of pouring temperature and stirring power on the semi-solid slurry making proc...The semi-solid slurry of hypoeutectic Al-Si alloy was manufactured by low superheat pouring and weak electromagnetic stirring. The effects of pouring temperature and stirring power on the semi-solid slurry making process were investigated. The results indicate that the semi-solid slurry to satisfy rheocasting requirement can be made by a combination of low superheat pouring and weak electromagnetic stirring. The pouring temperature (or superheat) and the stirring power significantly affect the morphology and the size of primary α-Al, while there is no obvious effect of the stirring time on primary α-Al. Compared with the samples made by low superheat pouring without stirring, the nucleation rate, particle morphology and grain size of primary α-Al in A356 Al alloy are markedly improved by a process of applying both low superheat pouring and weak electromagnetic stirring. Under the condition of weak electromagnetic stirring applied, the pouring temperature with low superheat can be equivalently to reach the effectiveness obtained from the even lower pouring temperature without stirring.展开更多
The electrochemical behavior of Yb3+ and electrodeposition of Mg-Yb alloy film at solid magnesium cathode in the molten LiCl-KCl-YbCl3(2 wt.%) system at 773 K was investigated.Transient electrochemical techniques,such...The electrochemical behavior of Yb3+ and electrodeposition of Mg-Yb alloy film at solid magnesium cathode in the molten LiCl-KCl-YbCl3(2 wt.%) system at 773 K was investigated.Transient electrochemical techniques,such as cyclic voltammetry,chronopotentiometry and chronoamperometry were used in order to explore the deposition mechanism of Yb.The reduction process of Yb3+ is stepwise reactions which are single-electron and double-electron reversible charge transfer reactions.The speed control step was a diffu...展开更多
Electrochemical impedance spectroscopy, cyclic potentiodynamic polarization measurements, and scanning electron microscopy in conjunction with energy-dispersive X-ray spectroscopy were used to investigate the influenc...Electrochemical impedance spectroscopy, cyclic potentiodynamic polarization measurements, and scanning electron microscopy in conjunction with energy-dispersive X-ray spectroscopy were used to investigate the influence of mill scale and rust layer on the passivation capability and chloride-induced corrosion behaviors of conventional low-carbon(LC) steel and low-alloy(LA) steel in simulated concrete pore solution. The results show that mill scale exerts different influences on the corrosion resistance of both steels at various electrochemical stages. We propose that the high long-term corrosion resistance of LA steel is mainly achieved through the synergistic effect of a gradually formed compact, adherent and well-distributed Cr-enriched inner rust layer and the physical barrier protection effect of mill scale.展开更多
The semi-solid slurry of A356 alloy, which is grain-refined by Al-Ti-B master alloy, is prepared by low superheat pouring and slight electromagnetic stirring. The effects of grain refining on the morphology and the gr...The semi-solid slurry of A356 alloy, which is grain-refined by Al-Ti-B master alloy, is prepared by low superheat pouring and slight electromagnetic stirring. The effects of grain refining on the morphology and the grain size of the primary α phase in the slurry manufactured are researched. The results indicate that the slurry with particle-like and rosette-like primary α phases can be prepared by low superheat pouring and slight electromagnetic stirring from liquid A356 alloy grain-refined, in which the pouring temperature can be suitably raised. Compared with the A356 samples without grain refining, the grain size and particle morphology of primary α phase as well as the distribution of the grain with particle-like or rosette-like along radial in the ingot in A356 are markedly improved by grain refining.展开更多
基金supported by the Natural Science Founda-tion of Beijing(Grant No.2182017,2202017).
文摘A low-energy plasma electrolytic oxidation(LePEO)technique is developed to simultaneously improve energy efficiency and anti-corrosion.Ionic liquids(1-butyl-3-methylimidazole tetrafluoroborate(BmimBF_(4)))as sustainable corrosion inhibitors are chosen to investigate the corrosion inhibition behavior of ionic liquid(ILs)during the LePEO process for LA91 magnesium-lithium(Mg-Li)alloy.Results show that the ionic liquid BmimBF_(4)participates in the LePEO coating formation process,causing an increment in coating thickness and surface roughness.The low conductivity of the ionic liquid is responsible for the voltage and breakdown voltage increases during the LePEO with IL process(LePEO-IL).After adding BmimBF_(4),corrosion current density decreases from 1.159×10^(−4)A·cm^(−2)to 8.143×10^(−6)A·cm^(−2).The impedance modulus increases to 1.048×10^(4)Ω·cm^(−2)and neutral salt spray remains intact for 24 h.The superior corrosion resistance of the LePEO coating assisted by ionic liquid could be mainly attributed to its compact and thick barrier layer and physical absorption of ionic liquid.The ionic liquid-assisted LePEO technique provides a promising approach to reducing energy consumption and improving film performance.
基金supported by the National Natural Science Foundation of China(Nos.51974082,51901037)State Key Laboratory of Baiyunobo Rare Earth Resource Research and Comprehensive Utilization(No.2021H2279)Programme of Introducing Talents of Discipline Innovation to Universities 2.0(the 111 Project 2.0 of China,No.BP0719037).
文摘In this study,the extruded Mg-Zn-Mn-Ce-Ca alloy tube with a low compression anisotropy along the ED,45ED and TD was prepared.The effect of the second phases,initial texture and deformation behavior on this low mechanical anisotropy was investigated.The results revealed that the alloy tube contains the high content(Mg1-xZnx)11Ce phase and the low content of Mg12Ce phase.These second phases are respectively incoherent and coherent with the Mg matrix,and their influence can be ignored.Additionally,the alloy tube exhibited a weak basal fiber texture,where the c-axis was aligned along the 0°∼30°tilt from TD to ED.Such a texture made the initial deformation(at 1.0%∼1.6%strain)of the three samples controlled by comparable basalslip.As deformation progressed(1.6∼9.0%strain),larger amounts of ETWs nucleated and gradually approached saturation in the three samples,re-orienting the c-axis to a 0°∼±30°deviation with respect to the loading directions.Meanwhile,the prismatic and pyramidal<c+a>slips replaced the dominant deformation progressively until fracture.Eventually,the similar deformation mechanisms determined by the weak initial texture in the three samples contribute to the comparable strain hardening rates,resulting in the low compressive anisotropy of the alloy tube.
文摘Effects of quenching temperature and cooling conditions(water cooling and 10%NaCl cooling)on microstructure and mechanical properties of a 0.2%Ti low alloy martensitic wear-resistant steel used for die casting ejector plate were investigated.The results show that lath martensite can be obtained after austenitizing in the range of 860-980℃and then water cooling.With an increase in austenitizing temperature,the precipitate content gradually decreases.The precipitates are mainly composed of TiC and Ti4C2S2,and their total content is between 1.15wt.%and 1.64wt.%.The precipitate phase concentration by water-cooling is higher than that by10%NaCl cooling due to the lower cooling rate of water cooling.As the austeniting temperature increases,the hardness and tensile strength of both water cooled and 10%NaCl cooled steels firstly increase and then decrease.The experimental steel exhibits the best comprehensive mechanical properties after being austenitized at 900℃,cooled by 10%NaCl,and then tempered at 200℃.Its hardness,ultimate tensile strength,and wear rate reach551.4 HBW,1,438.2 MPa,and 0.48×10^(-2)mg·m^(-1),respectively.
基金supported by the Department of Science and Technology Government of India,grant number SP/YO2019/1287(G)supported by Fronius India Solutions&Skill Centre,Bengaluru and CRF NITK Surathkal.
文摘Cold Metal Transfer-Based Wire Arc Directed Energy Deposition(CMT-WA-DED)presents a promising avenue for the rapid fabrication of components crucial to automotive,shipbuilding,and aerospace industries.However,the susceptibility to fatigue of CMT-WA-DED-produced AZ31 Mg alloy components has impeded their widespread adoption for critical load-bearing applications.In this study,a comprehensive investigation into the fatigue behaviour of WA-DED-fabricated AZ31 Mg alloy has been carried out and compared to commercially available wrought AZ31 alloy.Our findings indicate that the as-deposited parts exhibit a lower fatigue life than wrought Mg alloy,primarily due to poor surface finish,tensile residual stress,porosity,and coarse grain microstructure inherent in the WA-DED process.Low Plasticity Burnishing(LPB)treatment is applied to mitigate these issues,which induce significant plastic deformation on the surface.This treatment resulted in a remarkable improvement of fatigue life by 42%,accompanied by a reduction in surface roughness,grain refinement and enhancement of compressive residual stress levels.Furthermore,during cyclic deformation,WA-DED specimens exhibited higher plasticity and dislocation density compared to both wrought and WA-DED+LPB specimens.A higher fraction of Low Angle Grain Boundaries(LAGBs)in WA-DED specimens contributed to multiple crack initiation sites and convoluted crack paths,ultimately leading to premature failure.In contrast,wrought and WA-DED+LPB specimens displayed a higher percentage of High Angle Grain Boundaries(HAGBs),which hindered dislocation movement and resulted in fewer crack initiation sites and less complex crack paths,thereby extending fatigue life.These findings underscore the effectiveness of LPB as a post-processing technique to enhance the fatigue performance of WA-DED-fabricated AZ31 Mg alloy components.Our study highlights the importance of LPB surface treatment on AZ31 Mg components produced by CMT-WA-DED to remove surface defects,enabling their widespread use in load-bearing applications.
基金China Scholarship Council for the award of fellowship and funding(No.202006370022).
文摘In this paper,the formation process,morphology,and electrochemical performance of PEO coatings on AM50 magnesium alloy prepared in low concentration phosphate,aluminate,and phosphate-aluminate electrolytes were systematically studied.The results show that the coatings prepared from the phosphate electrolytes have a higher thickness and better corrosion resistance properties compared to the other electrolytes.The coatings prepared from low concentration phosphate-aluminate mixed electrolytes have slightly thinner thickness,a similar coating structure and an order of magnitude lower value of electrochemical impedance compared with phosphate electrolyte coatings.The Coatings prepared from low concentration aluminate electrolytes have the lowest thickness and the worst corrosion resistance properties which gets close to corrosion behavior of the bare AM50 under the same test conditions.Considering application,coatings prepared from single low concentration phosphate electrolytes and low concentration phosphate-aluminate electrolytes have greater potential than single low concentration aluminate coatings.However,reducing the electrolyte concentrations of coating forming ions too much has negative influence on the coating growth rate.
基金supported by the National Natural Science Foundation of China(Nos.52201203 and 52171107)the Hebei Provincial Natural Science Foundation,China(No.E2021501026)+1 种基金the National Natural Science Foundation of China-Joint Fund of Iron and Steel Research(No.U1960204)the“333”Talent Project of Hebei Province,China(No.B20221001).
文摘Inconel 718 is the most popular nickel-based superalloy and is extensively used in aerospace,automotive,and energy indus-tries owing to its extraordinary thermomechanical properties.The effects of different two-step solid solution treatments on microstructure andδphase precipitation of Inconel 718 alloy were studied,and the transformation mechanism fromγ″metastable phase toδphase was clarified.The precipitates were statistically analyzed by X-ray diffractometry.The results show that theδphase content firstly increased,and then decreased with the temperature of the second-step solid solution.The changes in microstructure andδphase were studied by scanning electron microscopy and transmission electron microscopy.An intragranularδphase formed in Inconel 718 alloy at the second-[100]_(δ)[011]γ step solid solution temperature of 925℃,and its orientation relationship withγmatrix was determined as//and(010)_(δ)//(111)γ.Furthermore,the Vickers hardness of different heat treatment samples was measured,and the sample treated by second-step solid solution at 1010℃ reached the maximum hardness of HV 446.84.
基金the scientific research project of China Petroleum&Chemical Corporation(Grant No.411048).
文摘Anti-coking oxide films were prepared on a 25Cr35Ni and 35Cr45Ni alloy surface under the low oxygen partialpressure atmosphere of a H2-H2O mixture. The composition and phase structure of the oxide films were analyzed by energydispersive spectroscopy (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The anti-cokingperformance of a mini tube made of a HP40 (25Cr35Ni) alloy was evaluated on a bench scale pyrolysis and coking test unit.The results showed that the surface Fe and Ni content decreased after the oxidation of the two alloys in a low oxygen partialpressure atmosphere. The oxide films were mainly composed of MnCr_(2)O_(4) and Cr_(2)O_(3). The average mass of coke in the minitube with oxide film decreased by 87% relative to that of a tube without an oxide film when the cracking temperature was 900℃. The ethylene, propylene, and butadiene yields in the pyrolysis tests were almost the same for the mini tubes withand without an oxide film. The oxide film on the alloy surface effectively inhibited catalytic filamentous coke formation.An industrial test showed that the run length of the cracking furnace with the in-situ coating technology was significantlyextended.
基金Project(2015A030312003)supported by the Guangdong Natural Science Foundation for Research Team,ChinaProject(51374110)supported by the National Natural Science Foundation of China
文摘Gravity die casting(GC) and squeeze casting(SC) T4-treated Al-7.0Zn-2.5Mg-2.1Cu alloys were employed to investigate the microstructures,mechanical properties and low cycle fatigue(LCF) behavior.The results show that mechanical properties of SC specimens are significantly better than those of GC specimens due to less cast defects and smaller secondary dendrite arm spacing(SDAS).Excellent fatigue properties are obtained for the SC alloy compared with the GC alloy.GC and SC alloys both exhibit cyclic stabilization at low total strain amplitudes(less than 0.4%) and cyclic hardening at higher total strain amplitudes.The degree of cyclic hardening of SC samples is greater than that of GC samples.Fatigue cracks of GC samples dominantly initiate from shrinkage porosities and are easy to propagate along them,while the crack initiation sites for SC samples are slip bands,eutectic phases and inclusions at or near the free surface.
基金Project(2005CB623707)supported by National Basic Research Project of China
文摘The effects of low frequency electromagnetic field on the macro-physical fields in the semi-continuous casting process of aluminum alloys and the microstructure and crack in the billets were studied and analyzed by the numerical and experimental methods.Comparison of the results for the macro-physical fields in the low frequency electromagnetic casting(LFEC) process with the conventional DC casting process indicates the following characters due to the application of electromagnetic field:an entirely changed direction and remarkably increased velocity of melt flow;a uniform distribution and a decreased gradient of temperature;elevated isothermal lines;a reduced sump depth;decreased stress and plastic deformation.Further,the microstructure of the billets is refined remarkably and the crack in the billets is eliminated in LFEC process because of modification of the macro-physical fields induced by the application of low frequency electromagnetic field.
基金Projects(50971089,51171113,51001072)supported by the National Natural Science Foundation of ChinaProjects(2012M511089,20090460615,201003267)supported by the Postdoctoral Science Foundation of China
文摘An as-solution treated Mg-6Gd-1Y-0.4Zr alloy was processed by low temperature thermo-mechanical treatments (LT-TMT), including cold tension with various strains followed by aging at 200 °C to peak hardness. The results show that the precipitation kinetics of the alloy experienced LT-TMT is greatly accelerated and the aging time to peak hardness is greatly decreased with increasing tensile strain. The tensile yield strength, ultimate tensile strength and elongation at room temperature of the alloy after cold tension with strain of 10% and peak aging at 200 °C are 251 MPa, 296 MPa and 8%, respectively, which are superior to the commercial heat-resistant WE54 alloy, although the latter has a higher rare earth element content.
基金Project(12JCYBJC32100)supported by Tianjin Research Program of Application Foundation and Advanced Technologyin part by Grants-in-Aid from the Japan Society for the Promotion of Science(JSPS)
文摘Transient creep at very low strain rates (less than 10-10 s-1) is still unclear. The traditional uniaxial creep testing is less useful due to unsatisfied resolution strain (~10-6). To study transient creep behavior at such low strain rates, a high-resolution strain measurement using the helicoid spring specimen technique was employed in a fine-grained Al-5356 alloy at temperatures ranging from 0.47Tm to 0.74Tm (Tm: melting point). To clarify transient creep mechanism at such low strain rates, transmission electron microscopy (TEM) was used in microstructure observation of crept specimens. The abnormal transient creep, high temperature strengthening at T〉Tp (Tp: the phase transformation temperature, 0.58Tm) or intermediate temperature softening at 0.4Tm〈T£Tp and double-normal type (creep curves including double work-hardening stages) at T=Tp, were firstly observed. The substructure observation in a crept specimen at T=0.58Tm and e=1×10-4 shows pile-up dislocations including many small jogs with equal interval, and dislocations emitted from grain boundaries. The b-Al3Mg2 phase dissolves under the condition of testing temperatures higher than 523 K, which causes solid-solution quantity of Mg atoms to increase. Therefore, the “abnormal transient creep” may be related to the difference of solid solution strengthening caused by phase change during the creep tests.
基金The project was financially supported by the Hi-tech Research and Development Program of China (No. G2002AA336080) and the National Natural Science Foundation of China (No. 50374012)
文摘The semi-solid slurry of a hypoeutectic Al-Si alloy was manufactured by low superheat pouring and weak electromagnetic stirring. The effects of pouting temperature and stirring power on the semi-solid slurry were investigated. The results indicated that the semi-solid slurry to satisfy rheocasting can be manufactured by low superheat pouring and weak electromagnetic stirring. The pouring temperature (or superheat) and the stirring power remarkably affected the morphology of primary α-Al and the size of primary α-Al, and there is no obvious effect of stirring time on primary α-Al. Compared with the samples made by low superheat pouring with no stirring, the nucleation rate, particle morphology and grain size of primary α-Al in A356 were markedly improved by low superheat pouring and weak electromagnetic stirring. On the condition of weak electromagnetic stirring, the pouring temperature with low superheat can be suitably raised to reach the effectiveness obtained from the lower pouring temperature without stirring.
基金The paper is supported by the Hi-tech Research and Develop-ment Program of China (Authorized No.: G2002AA336080), andthe National Natural Science Foundation of China (AuthorizedNo.: 50374012).
文摘The semi-solid slurry of hypoeutectic Al-Si alloy was manufactured by low superheat pouring and weak electromagnetic stirring. The effects of pouring temperature and stirring power on the semi-solid slurry making process were investigated. The results indicate that the semi-solid slurry to satisfy rheocasting requirement can be made by a combination of low superheat pouring and weak electromagnetic stirring. The pouring temperature (or superheat) and the stirring power significantly affect the morphology and the size of primary α-Al, while there is no obvious effect of the stirring time on primary α-Al. Compared with the samples made by low superheat pouring without stirring, the nucleation rate, particle morphology and grain size of primary α-Al in A356 Al alloy are markedly improved by a process of applying both low superheat pouring and weak electromagnetic stirring. Under the condition of weak electromagnetic stirring applied, the pouring temperature with low superheat can be equivalently to reach the effectiveness obtained from the even lower pouring temperature without stirring.
基金supported by 863 Project of Ministry of Science and Technology of China (2006AA03Z510)the National Natural Science Foundation of China (50871033)+1 种基金the Scientific Technology Project of Heilongjiang Province (GC06A212)the fund from Harbin Municipal Science & Technology Bureau (2006PFXXG006)
文摘The electrochemical behavior of Yb3+ and electrodeposition of Mg-Yb alloy film at solid magnesium cathode in the molten LiCl-KCl-YbCl3(2 wt.%) system at 773 K was investigated.Transient electrochemical techniques,such as cyclic voltammetry,chronopotentiometry and chronoamperometry were used in order to explore the deposition mechanism of Yb.The reduction process of Yb3+ is stepwise reactions which are single-electron and double-electron reversible charge transfer reactions.The speed control step was a diffu...
基金the support by the National Natural Science Foundation of China(Nos.51208098 and 51678144)the National Basic Research Program of China(No.2015CB655100)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20161420)Industry-University Research Cooperative Innovation Fund of Jiangsu Province(No.BY2013091)
文摘Electrochemical impedance spectroscopy, cyclic potentiodynamic polarization measurements, and scanning electron microscopy in conjunction with energy-dispersive X-ray spectroscopy were used to investigate the influence of mill scale and rust layer on the passivation capability and chloride-induced corrosion behaviors of conventional low-carbon(LC) steel and low-alloy(LA) steel in simulated concrete pore solution. The results show that mill scale exerts different influences on the corrosion resistance of both steels at various electrochemical stages. We propose that the high long-term corrosion resistance of LA steel is mainly achieved through the synergistic effect of a gradually formed compact, adherent and well-distributed Cr-enriched inner rust layer and the physical barrier protection effect of mill scale.
基金financially supported by National High Technical Research and Development Program of China(No.G2002AA336080)National Natural Science Foundation of China(No.50374012)Natural Science Foundation of Jiangxi Province(No.0650047).
文摘The semi-solid slurry of A356 alloy, which is grain-refined by Al-Ti-B master alloy, is prepared by low superheat pouring and slight electromagnetic stirring. The effects of grain refining on the morphology and the grain size of the primary α phase in the slurry manufactured are researched. The results indicate that the slurry with particle-like and rosette-like primary α phases can be prepared by low superheat pouring and slight electromagnetic stirring from liquid A356 alloy grain-refined, in which the pouring temperature can be suitably raised. Compared with the A356 samples without grain refining, the grain size and particle morphology of primary α phase as well as the distribution of the grain with particle-like or rosette-like along radial in the ingot in A356 are markedly improved by grain refining.