Based on the principle of transient perturbation analysis,in this paper,a method to objectively determine the weather pattern formed by sea fog is provided.On the basis of the classification results,the circulation si...Based on the principle of transient perturbation analysis,in this paper,a method to objectively determine the weather pattern formed by sea fog is provided.On the basis of the classification results,the circulation situation,divergence and vertical velocity field,and the vertical profile of temperature and humidity are synthesized and analyzed.The basic characteristics of the circulation and physical field of sea fog under low pressure control(L type sea fog)are obtained,and the results are compared with the sea fog under the control of high pressure(H type sea fog):a)L type sea fogs potential height anomaly disturbance is mainly manifested in the low layer,and its average value is-65.66 gpm,gradually weakening upward;b)L type sea fogs inversion structure is weaker than H type sea fogs when it occurs,the fog layer is thicker and the high relative humidity level is high over the fog layer,while the H type sea fogs fog layer has a relatively obvious dry layer;c)L sea fog has three layers of structure at the vertical direction.The first layer 1000-950 hPa is convergence accompanied by weak rise and subsidence,the second layer 950-850 hPa is divergence accompanied by weak subsidence,and the third layer 850 to 500hPa is gradually strengthened.While there are two layer structures of the H type sea fog.1000 hPa is divergence accompanied by weak rising and sinking movement,950-500 hPa is a uniform subsidence movement.d)Probability density statistical analysis further quantified the vertical movement of L and H type sea fog and the distribution of relative humidity in each layer.These conclusions provide an important reference for forecasting the sea fog in the northwest of the Yellow Sea under the condition of low pressure circulation in summer.展开更多
The FDM numerical simulation software,ViewCast system,was employed to simulate the low pressure die casting(LPDC)of an aluminum wheel.By analyzing the mold-filling and solidification stage of the LPDC process,the dist...The FDM numerical simulation software,ViewCast system,was employed to simulate the low pressure die casting(LPDC)of an aluminum wheel.By analyzing the mold-filling and solidification stage of the LPDC process,the distribution of liquid fraction,temperature field and solidification pattern of castings were studied.The potential shrinkage defects were predicted to be formed at the rim/spoke junctions,which is in consistence with the X-ray detection result.The distribution pattern of the defects has also been studied.A solution towards reducing such defects has been presented.The cooling capacity of the mold was improved by installing water pipes both in the side mold and the top mold.Analysis on the shrinkage defects under forced cooling mode proved that adding the cooling system in the mold is an effective method for reduction of shrinkage defects.展开更多
The influence of technical parameters on the infiltrating height of the moltenmetal in the process of Producing aluminium alloy foam by low-pressure infiltration method were investigated.Experiments indicated that the...The influence of technical parameters on the infiltrating height of the moltenmetal in the process of Producing aluminium alloy foam by low-pressure infiltration method were investigated.Experiments indicated that the height increases with the preheating temperature of granules,theexternal pressureand the pouring temperature of molten alloy,among which the action of pre heating temperature of granules is more effective.There exists a critical pre heating temperature for different size of granules.展开更多
A three-dimensional transient numerical simulation was conducted to study the pressure fluctuations in low-specific-speed centrifugal pumps. The characteristics of the inner flow were investigated using the SST k-ω t...A three-dimensional transient numerical simulation was conducted to study the pressure fluctuations in low-specific-speed centrifugal pumps. The characteristics of the inner flow were investigated using the SST k-ω turbulence model. The distributions of pressure fluctuations in the impeller and the volute were recorded, and the pressure fluctuation intensity was analyzed comprehensively, at the design condition, using statistical methods. The results show that the pressure fluctuation intensity increases along the impeller streamline from the leading edge to the trailing edge. In the impeller passage, the intensity near the shroud is much higher than that near the hub at thc inlet. However, the intensity at the middle passage is almost equal to the intensity at the outlet. The pressure fluctuation intensity is the highest at the trailing edge on the pressure side and near the tongue because of the rotor-stator interaction. The distribution of pressure fluctuation intensity is symmetrical in the axial cross sections of the volute channel. However, this intensity decreases with increasing radial distance. Hence, the pressure fluctuation intensity can be reduced by modifying the geometry of the leading edge in the impeller and the tongue in the volute.展开更多
The pressure-sensitive effect on the pore structure of sandstone was investigated using X-ray computed micro-tomography and QEMSCAN quantitative mineral analysis. In a physical simulation study, we extracted the pore ...The pressure-sensitive effect on the pore structure of sandstone was investigated using X-ray computed micro-tomography and QEMSCAN quantitative mineral analysis. In a physical simulation study, we extracted the pore network model from digital cores at different confining pressures and evaluated the effect of pressure sensitivity on the multiphase displacement process. In both the pore network model and QEMSCAN scanning, the pore structure was observed to be damaged under a high confining pressure. Due to their different scales, the pores and throats exhibited inhomogeneous changes; further, the throats exhibited a significant variation compared to that exhibited by the pores. Meanwhile, the heterogeneity of the pore structure under the two aforementioned activities was aggravated by the elastic-plastic deformation of the pore structure.The pressure-sensitive effect increased the proportion of mineral particles, such as quartz(the main component of the core skeleton), and reduced the proportion of clay minerals. The clay minerals were originally attached to the pore walls or interspersed in the pores; however, as the pressure increased, the clay minerals accumulated in the pores resulting in blockage of the pores. While simulating the multiphase displacement process, increasing the confining pressure was observed to severely restrict the flowability of oil and water. This study promises to improve the efficiency of reservoir development in terms of oil and gas exploitation.展开更多
In this paper, an improved air discharge fluid model under non-uniform electric field is constructed based on the plasma module COMSOL Multiphysics with artificial stability term, and the boundary conditions developed...In this paper, an improved air discharge fluid model under non-uniform electric field is constructed based on the plasma module COMSOL Multiphysics with artificial stability term, and the boundary conditions developed in the previous paper are applied to the calculation of photoionization rate. Based on the modified model, the characteristics of low temperature subatmospheric air discharge under 13 kV direct current voltage are discussed, including needle-plate and needle-needle electrode structures. Firstly, in order to verify the reliability of the model, a numerical example and an experimental verification were carried out for the modified model respectively. Both verification results show that the model can ensure the accuracy and repeatability of the calculation. Secondly, according to the calculation results of the modified model, under the same voltage and spacing, the reduced electric field under low temperature subatmosphere pressure is larger than that under normal temperature and atmospheric pressure. The high electric field leads to the air discharge at low temperature and sub atmospheric pressure entering the streamer initiation stage earlier, and has a faster propagation speed in the streamer development stage, which shortens the overall discharge time. Finally, the discharge characteristics of the two electrode structures are compared, and it is found that the biggest difference between them is that there is a pre-ionization region near the cathode in the needle-needle electrode structure. When the pre-ionization level reaches 1013 cm-3, the propagation speed of the positive streamer remains unchanged throughout the discharge process, and is no longer affected by the negative streamer. The peak value of electric field decreases with the increase of pre-ionization level, and tends to be constant during streamer propagation. Based on the previous paper, this paper constructs the air discharge model under non-uniform electric field, complements with the previous paper, and forms a relatively complete set of air discharge simulation system under low temperature and sub atmospheric pressure, which provides a certain reference for future research.展开更多
In this paper,an efficient boundary condition is applied to solve the photoionization rate,and a two-dimensional numerical simulation is carried out for the development and propagation of an air streamer at low temper...In this paper,an efficient boundary condition is applied to solve the photoionization rate,and a two-dimensional numerical simulation is carried out for the development and propagation of an air streamer at low temperature and sub-atmospheric pressure.The results show that the new boundary condition improves the calculation accuracy,but the influence of photoionization on the streamer discharge process is not obvious.The discharge current in the development of streamer discharge is defined,and the corresponding expression of the positive and negative streamer discharge current is given.The influence of the electric field exceeding the threshold value on the discharge process is preliminarily introduced.In the process of discharge,only the propagation velocity of the streamer is obviously higher than that of normal temperature and pressure,and the trend of the other parameters is basically the same as that described in the previous paper.The above results give us a deeper understanding of the discharge characteristics under low temperature and sub-atmospheric pressure,which has certain significance for the development of aviation and high voltage engineering.展开更多
The generation and propagation of a streamer is a significant physical process of air gap discharge. Research on the mechanism of streamers under low-pressure conditions is helpful for understanding the process of lon...The generation and propagation of a streamer is a significant physical process of air gap discharge. Research on the mechanism of streamers under low-pressure conditions is helpful for understanding the process of long-gap discharge in a high-altitude area. This paper describes laboratory investigations of streamer discharge under alternating current(AC) voltage in a low pressure test platform for a 60 cm rod–plane gap at 30 kPa, and analyzes the characteristics of streamer generation and propagation. The results show that the partial streamer and breakdown streamer all occur in the positive half-cycle of AC voltage near the peak voltage at 30 kPa. The partial streamer could cause the distortion of current and voltage waveform, and it appears as the branching characteristic at the initial stage. With the extension of the streamer, the branching and tortuosity phenomena become gradually obvious, but the branching is suppressed when the streamer crosses the gap. The low-pressure condition has little influence on the tortuosity length and the tortuosity number of the streamer, but affect the diameter of streamer obviously.展开更多
AIM To evaluate the safety and feasibility of a new technology combining low-pressure pneumoperitoneum(LPP) and abdominal wall lift(AWL) in laparoscopic total mesorectal excision(TME) for rectal cancer.METHODS From No...AIM To evaluate the safety and feasibility of a new technology combining low-pressure pneumoperitoneum(LPP) and abdominal wall lift(AWL) in laparoscopic total mesorectal excision(TME) for rectal cancer.METHODS From November 2015 to July 2017,26 patients underwent laparoscopic TME for rectal cancer using LPP(6-8 mm Hg) with subcutaneous AWL in Qilu Hospital of Shandong University,Jinan,China.Clinical data regarding patients' demographics,intraoperative monitoring indices,operation-related indices andpathological outcomes were prospectively collected.RESULTS Laparoscopic TME was performed in 26 cases(14 anterior resection and 12 abdominoperineal resection) successfully,without conversion to open or laparoscopic surgery with standard-pressure pneumoperitoneum.Intraoperative monitoring showed stable heart rate,blood pressure and paw airway pressure.The mean operative time was 194.29 ± 41.27 min(range:125-270 min) and 200.41 ± 20.56 min(range:170-230 min) for anterior resection and abdominoperineal resection,respectively.The mean number of lymph nodes harvested was 16.71 ± 5.06(range:7-27).There was no positive circumferential or distal resection margin.No local recurrence was observed during a median follow-up period of 11.96 ± 5.55 mo(range:5-23 mo).CONCLUSION LPP combined with AWL is safe and feasible for laparoscopic TME.The technique can provide satisfactory exposure of the operative field and stable operative monitoring indices.展开更多
We briefly introduce a new high-pressure transport measurement system integrated with low temperature and magnetic field that is being established as one of the user experimental stations of the Synergetic Extreme Con...We briefly introduce a new high-pressure transport measurement system integrated with low temperature and magnetic field that is being established as one of the user experimental stations of the Synergetic Extreme Condition User Facilities in the Huairou District of Beijing, China. To demonstrate the capabilities of the system for condensed matter research, the emergence of some pressure-induced phenomena and physics related to superconductivity found previously is also introduced, and then a perspective for such an advanced high-pressure system is presented.展开更多
The silicon epitaxial wafter for X band double Read-type DDR IMPATT diodes has been fabricatedby normal-low pressure growth technique. The hyperabrupt impurity profile and very thin p-layer, n-layerwere achieved.
In this paper,diamond/CuCr and diamond/CuB composites were prepared using the pressure infiltration method.The physical property measurement system(PPMS)was adopted to evaluate the thermal conductivity of diamond/Cu a...In this paper,diamond/CuCr and diamond/CuB composites were prepared using the pressure infiltration method.The physical property measurement system(PPMS)was adopted to evaluate the thermal conductivity of diamond/Cu and MoCu composites within the range of100–350 K,and a scanning electron microscope(SEM)was utilized to analyze the microstructure and fracture appearance of the materials.The research indicates that the thermal conductivity of diamond/Cu composite within the range of100–350 K is 2.5–3.0 times that of the existing MoCu material,and the low-temperature thermal conductivity of diamond/Cu composite presents an exponential relationship with the temperature.If B element was added to a Cu matrix and a low-temperature binder was used for prefabricated elements,favorable interfacial adhesion,relatively high interfacial thermal conductivity,and favorable low-temperature heat conduction characteristics would be apparent.展开更多
The influence of a key process variable on the mold filling characteristics of AZ91 Mg-alloy was studied in the low pressure EPC process.The applied flow quantity of insert gas from 1 to 5 m~3/h associated with the pr...The influence of a key process variable on the mold filling characteristics of AZ91 Mg-alloy was studied in the low pressure EPC process.The applied flow quantity of insert gas from 1 to 5 m~3/h associated with the pressurizing rate in the low pressure EPC casting process was considered for rectangle and L-shape plate casting. The experimental results show that there is an optimal flow quantity of insert gas for good mold filling characteristics in AZ91 Mg-alloy low-pressure EPC process. The optimal flow quantity of insert gas for the specimens is 3 to 4 m~3/h. Either less or higher than the optimal flow quantity of insert gas would lead to misrun defects or folds, blisters and porosity defects. The practice of hub casting confirmed that the low-pressure EPC process with an optimal processing variable exemplified as 4 m~3/h gas flow quantity was capable of producing complicated magnesium castings without misrun defects.展开更多
Self-organization phenomena on the surface of a metal electrode in low-pressure DC discharge is studied. In this paper, we carry out laboratory investigations of self-organization in a lowpressure test platform for 10...Self-organization phenomena on the surface of a metal electrode in low-pressure DC discharge is studied. In this paper, we carry out laboratory investigations of self-organization in a lowpressure test platform for 100–200 mm rod-plane gaps with a needle tip, conical tip and hemispherical tip within 1–10 k Pa. The factors influencing the pattern profile are the pressure value, gap length and shape of the electrode, and a variety of pattern structures are observed by changing these factors. With increasing pressure, first the pattern diameter increases and then decreases. With the needle tip, layer structure, single-ring structure and double-ring structure are displayed successively with increasing pressure. With the conical tip, the ring-like structure gradually forms separate spots with increasing pressure. With the hemispherical tip, there are anode spots inside the ring structure. With the increase of gap length, the diameter of the selforganized pattern increases and the profile of the pattern changes. The development process of the pattern contains three key stages: pattern enlargement, pattern stabilization and pattern shrink.展开更多
A Monte Carlo simulation method with an instantaneous density dependent meanfree-path of the ablated particles and the Ar gas is developed for investigating the transport dynamics of the laser-ablated particles in a l...A Monte Carlo simulation method with an instantaneous density dependent meanfree-path of the ablated particles and the Ar gas is developed for investigating the transport dynamics of the laser-ablated particles in a low pressure inert gas.The ablated-particle density and velocity distributions are analyzed.The force distributions acting on the ablated particles are investigated.The influence of the substrate on the ablated-particle velocity distribution and the force distribution acting on the ablated particles are discussed.The Monte Carlo simulation results approximately agree with the experimental data at the pressure of 8 Pa to 17 Pa.This is helpful to investigate the gas phase nucleation and growth mechanism of nanoparticles.展开更多
The pre-ionized 60 MHz very-high-frequency (VHF) magnetron discharge at low pressure, assisted by inductively coupled plasma (ICP) discharge, was developed. The measurement of ion flux density and ion energy to th...The pre-ionized 60 MHz very-high-frequency (VHF) magnetron discharge at low pressure, assisted by inductively coupled plasma (ICP) discharge, was developed. The measurement of ion flux density and ion energy to the substrate was carried out by a retarding field energy analyzer. The electric characteristics of discharge were also investigated by voltage-current probe technique. It was found that by reducing the discharge pressure of VHF magnetron discharge from 5 to 1 Pa, the ion flux density increased about four times, meanwhile the ion energy also increased doubly. The electric characteristics of discharge also showed that a little improvement of sputtering effectiveness was achieved by reducing discharge pressure. Therefore, the deposition property of VHF (60 MHz) magnetron sputtering can be improved by reducing the discharge pressure using the ICP-assisted pre-ionized discharge.展开更多
In order to solve the problem of single arc plasma actuator's failure to suppress the boundary layer separation, the effectiveness of the array surface arc plasma actuator to enhance the excitation intensity is ve...In order to solve the problem of single arc plasma actuator's failure to suppress the boundary layer separation, the effectiveness of the array surface arc plasma actuator to enhance the excitation intensity is verified by experiment. In this study, an electrical parameter measurement system and high-speed schlieren technology were adopted to delve into the electrical, flow field, and excitation characteristics of the high-energy array surface arc plasma actuator under low ambient pressure. The high-energy array surface arc discharge released considerable heat rapidly;as a result, two characteristic structures were generated, i.e., the precursor shock wave and thermal deposition area. The duration increased with the increase in environmental pressure. The lower the pressure, the wider the thermal deposition area's influence range. The precursor shock wave exhibited a higher propagation speed at the initial phase of discharge;it tended to decay over time and finally remained at 340 m/s. The lower the environmental pressure, the higher the speed would be at the initial phase. High-energy array surface arc plasma actuator can be employed to achieve effective high-speed aircraft flow control.展开更多
Objective The goal of this study was to develop a decellularized tendon scaffold(DTS)and repopulate it with adipose-derived stem cells(ADSCs)assisted by low air pressure(LP).Methods The porcine superficial flexor tend...Objective The goal of this study was to develop a decellularized tendon scaffold(DTS)and repopulate it with adipose-derived stem cells(ADSCs)assisted by low air pressure(LP).Methods The porcine superficial flexor tendons were processed into the DTSs using a combination of physical,chemical,and enzymatic treatments.The effectiveness of decellularization was verified by histological analysis and DNA quantification.The properties of the DTSs were evaluated by quantitative analysis of biochemical characterization,porosimetry,in vitro biocompatibility assessment,and biomechanical testing.Subsequently,the ADSCs-DTS complexes were constructed via cell injection assisted by LP or under atmospheric pressure.The differences in cell distribution,biomechanical properties,and the total DNA content were compared by histological analysis,biomechanical testing,and DNA quantification,respectively.Results Histological analysis confirmed that no cells or condensed nuclear materials were retained within the DTSs with widened interfibrillar space.The decellularization treatment resulted in a significant decrease in the content of DNA and glycosaminoglycans,and a significant increase in the porosity.The DTSs were cytocompatible in vitro and did not show reduced collagen content and inferior biomechanical properties compared with the fresh-frozen tendons.The assistance of LP promoted the broader distribution of cells into the adjacent interfibrillar space and cell proliferation in DTSs.The biomechanical properties of the scaffolds were not significantly affected by the recellularization treatments.Conclusion A novel LP-assisted approach for the construction of cells-DTS complex was established,which could be a methodological foundation for further bioreactor and in vitro studies.展开更多
Purpose: To compare the success and complication rates of low target pressure trabeculectomy (LTT) and conventional trabeculectomy (CT). Methods: A retrospective study was conducted with consecutive patients undergoin...Purpose: To compare the success and complication rates of low target pressure trabeculectomy (LTT) and conventional trabeculectomy (CT). Methods: A retrospective study was conducted with consecutive patients undergoing trabeculectomy. Twelve eyes of 12 patients underwent LTT, and 17 eyes of 17 patients underwent CT. Surgical success was defined as meeting each target intraocular pressure (IOP) without additional medication or further glaucoma surgery. A Kaplan-Meier survival analysis was used to estimate survival rate. Incidences of surgical complications were also assessed. Results: The median postoperative IOP 2 years after surgery were 10.0 mmHg (interquartile range [IQR] 8.5 - 12.0 mmHg) in the LTT group and 16.0 mmHg (IQR, 14.0 - 18.5 mmHg) in the CT group (P = 0.000). Estimated survival rates for patients who underwent the two types of trabeculectomy were significantly different with all IOP criteria of 10, 12 and 14 mmHg (P Conclusion: LTT provided more chances to maintain low postoperative IOP and had no more vision-threatening complication than those of CT.展开更多
A newly developed low-pressure expendable pattern casting (LP-EPC) process was introduced and its basic principles or effect factors were further analyzed. According to theoretical calculation and experimental results...A newly developed low-pressure expendable pattern casting (LP-EPC) process was introduced and its basic principles or effect factors were further analyzed. According to theoretical calculation and experimental results, the major casting parameters that are of great and critical importance on the process include pressure and flux of filling gas, decomposition characteristic and density of foam pattern, thickness and permeability of coating, pouring temperature, vacuum degree and their combination. Most of casting defects can be effectively avoided by choosing the suitable parameters. The success achieved in pouring motor housing and exhaust manifold castings demonstrates the advantages of LP-EPC process in the production of high-complicated castings with high dimension accuracy.展开更多
基金supported by National Natural Science Foundation of China(No.41576108 and No.41605006)Natural Science Foundation project of Shandong Province(No.ZR2016DB26).
文摘Based on the principle of transient perturbation analysis,in this paper,a method to objectively determine the weather pattern formed by sea fog is provided.On the basis of the classification results,the circulation situation,divergence and vertical velocity field,and the vertical profile of temperature and humidity are synthesized and analyzed.The basic characteristics of the circulation and physical field of sea fog under low pressure control(L type sea fog)are obtained,and the results are compared with the sea fog under the control of high pressure(H type sea fog):a)L type sea fogs potential height anomaly disturbance is mainly manifested in the low layer,and its average value is-65.66 gpm,gradually weakening upward;b)L type sea fogs inversion structure is weaker than H type sea fogs when it occurs,the fog layer is thicker and the high relative humidity level is high over the fog layer,while the H type sea fogs fog layer has a relatively obvious dry layer;c)L sea fog has three layers of structure at the vertical direction.The first layer 1000-950 hPa is convergence accompanied by weak rise and subsidence,the second layer 950-850 hPa is divergence accompanied by weak subsidence,and the third layer 850 to 500hPa is gradually strengthened.While there are two layer structures of the H type sea fog.1000 hPa is divergence accompanied by weak rising and sinking movement,950-500 hPa is a uniform subsidence movement.d)Probability density statistical analysis further quantified the vertical movement of L and H type sea fog and the distribution of relative humidity in each layer.These conclusions provide an important reference for forecasting the sea fog in the northwest of the Yellow Sea under the condition of low pressure circulation in summer.
基金funded by the Innovation Fund for Outstanding Scholar of Henan Province(No.0621000700)
文摘The FDM numerical simulation software,ViewCast system,was employed to simulate the low pressure die casting(LPDC)of an aluminum wheel.By analyzing the mold-filling and solidification stage of the LPDC process,the distribution of liquid fraction,temperature field and solidification pattern of castings were studied.The potential shrinkage defects were predicted to be formed at the rim/spoke junctions,which is in consistence with the X-ray detection result.The distribution pattern of the defects has also been studied.A solution towards reducing such defects has been presented.The cooling capacity of the mold was improved by installing water pipes both in the side mold and the top mold.Analysis on the shrinkage defects under forced cooling mode proved that adding the cooling system in the mold is an effective method for reduction of shrinkage defects.
文摘The influence of technical parameters on the infiltrating height of the moltenmetal in the process of Producing aluminium alloy foam by low-pressure infiltration method were investigated.Experiments indicated that the height increases with the preheating temperature of granules,theexternal pressureand the pouring temperature of molten alloy,among which the action of pre heating temperature of granules is more effective.There exists a critical pre heating temperature for different size of granules.
基金Projects(51239005,51009072) supported by the National Natural Science Foundation of ChinaProject(2011BAF14B04) supported by the National Science&Technology Pillar Program of ChinaProject(13JDG084) supported by the Research Foundation for Advanced Talents of Jiansu University,China
文摘A three-dimensional transient numerical simulation was conducted to study the pressure fluctuations in low-specific-speed centrifugal pumps. The characteristics of the inner flow were investigated using the SST k-ω turbulence model. The distributions of pressure fluctuations in the impeller and the volute were recorded, and the pressure fluctuation intensity was analyzed comprehensively, at the design condition, using statistical methods. The results show that the pressure fluctuation intensity increases along the impeller streamline from the leading edge to the trailing edge. In the impeller passage, the intensity near the shroud is much higher than that near the hub at thc inlet. However, the intensity at the middle passage is almost equal to the intensity at the outlet. The pressure fluctuation intensity is the highest at the trailing edge on the pressure side and near the tongue because of the rotor-stator interaction. The distribution of pressure fluctuation intensity is symmetrical in the axial cross sections of the volute channel. However, this intensity decreases with increasing radial distance. Hence, the pressure fluctuation intensity can be reduced by modifying the geometry of the leading edge in the impeller and the tongue in the volute.
文摘The pressure-sensitive effect on the pore structure of sandstone was investigated using X-ray computed micro-tomography and QEMSCAN quantitative mineral analysis. In a physical simulation study, we extracted the pore network model from digital cores at different confining pressures and evaluated the effect of pressure sensitivity on the multiphase displacement process. In both the pore network model and QEMSCAN scanning, the pore structure was observed to be damaged under a high confining pressure. Due to their different scales, the pores and throats exhibited inhomogeneous changes; further, the throats exhibited a significant variation compared to that exhibited by the pores. Meanwhile, the heterogeneity of the pore structure under the two aforementioned activities was aggravated by the elastic-plastic deformation of the pore structure.The pressure-sensitive effect increased the proportion of mineral particles, such as quartz(the main component of the core skeleton), and reduced the proportion of clay minerals. The clay minerals were originally attached to the pore walls or interspersed in the pores; however, as the pressure increased, the clay minerals accumulated in the pores resulting in blockage of the pores. While simulating the multiphase displacement process, increasing the confining pressure was observed to severely restrict the flowability of oil and water. This study promises to improve the efficiency of reservoir development in terms of oil and gas exploitation.
基金the National Key RESEARCH and Development Program of the Ministry of Science and Technology‘Life Prediction and Operation Risk Assessment of UHV Equipment under long-term Service conditions(No.2017YFB0902705)’for supporting this workthe No.703 Research Institute of CSIC(China Shipbuilding Industry Corporation)Yunnan Electric Test&Research Institute Group CO.,Ltd for assistance in this paper.
文摘In this paper, an improved air discharge fluid model under non-uniform electric field is constructed based on the plasma module COMSOL Multiphysics with artificial stability term, and the boundary conditions developed in the previous paper are applied to the calculation of photoionization rate. Based on the modified model, the characteristics of low temperature subatmospheric air discharge under 13 kV direct current voltage are discussed, including needle-plate and needle-needle electrode structures. Firstly, in order to verify the reliability of the model, a numerical example and an experimental verification were carried out for the modified model respectively. Both verification results show that the model can ensure the accuracy and repeatability of the calculation. Secondly, according to the calculation results of the modified model, under the same voltage and spacing, the reduced electric field under low temperature subatmosphere pressure is larger than that under normal temperature and atmospheric pressure. The high electric field leads to the air discharge at low temperature and sub atmospheric pressure entering the streamer initiation stage earlier, and has a faster propagation speed in the streamer development stage, which shortens the overall discharge time. Finally, the discharge characteristics of the two electrode structures are compared, and it is found that the biggest difference between them is that there is a pre-ionization region near the cathode in the needle-needle electrode structure. When the pre-ionization level reaches 1013 cm-3, the propagation speed of the positive streamer remains unchanged throughout the discharge process, and is no longer affected by the negative streamer. The peak value of electric field decreases with the increase of pre-ionization level, and tends to be constant during streamer propagation. Based on the previous paper, this paper constructs the air discharge model under non-uniform electric field, complements with the previous paper, and forms a relatively complete set of air discharge simulation system under low temperature and sub atmospheric pressure, which provides a certain reference for future research.
基金supported by the No.703 Research Institute of CSIC(China Shipbuilding Industry Corporation)and Yunnan Electric Test&Research Institute Group CO.,Ltd.
文摘In this paper,an efficient boundary condition is applied to solve the photoionization rate,and a two-dimensional numerical simulation is carried out for the development and propagation of an air streamer at low temperature and sub-atmospheric pressure.The results show that the new boundary condition improves the calculation accuracy,but the influence of photoionization on the streamer discharge process is not obvious.The discharge current in the development of streamer discharge is defined,and the corresponding expression of the positive and negative streamer discharge current is given.The influence of the electric field exceeding the threshold value on the discharge process is preliminarily introduced.In the process of discharge,only the propagation velocity of the streamer is obviously higher than that of normal temperature and pressure,and the trend of the other parameters is basically the same as that described in the previous paper.The above results give us a deeper understanding of the discharge characteristics under low temperature and sub-atmospheric pressure,which has certain significance for the development of aviation and high voltage engineering.
基金supported by National Natural Science Foundation of China (Grant No.51277063)
文摘The generation and propagation of a streamer is a significant physical process of air gap discharge. Research on the mechanism of streamers under low-pressure conditions is helpful for understanding the process of long-gap discharge in a high-altitude area. This paper describes laboratory investigations of streamer discharge under alternating current(AC) voltage in a low pressure test platform for a 60 cm rod–plane gap at 30 kPa, and analyzes the characteristics of streamer generation and propagation. The results show that the partial streamer and breakdown streamer all occur in the positive half-cycle of AC voltage near the peak voltage at 30 kPa. The partial streamer could cause the distortion of current and voltage waveform, and it appears as the branching characteristic at the initial stage. With the extension of the streamer, the branching and tortuosity phenomena become gradually obvious, but the branching is suppressed when the streamer crosses the gap. The low-pressure condition has little influence on the tortuosity length and the tortuosity number of the streamer, but affect the diameter of streamer obviously.
基金Supported by the Special Found for Taishan Scholar Project of Shandong Province,China
文摘AIM To evaluate the safety and feasibility of a new technology combining low-pressure pneumoperitoneum(LPP) and abdominal wall lift(AWL) in laparoscopic total mesorectal excision(TME) for rectal cancer.METHODS From November 2015 to July 2017,26 patients underwent laparoscopic TME for rectal cancer using LPP(6-8 mm Hg) with subcutaneous AWL in Qilu Hospital of Shandong University,Jinan,China.Clinical data regarding patients' demographics,intraoperative monitoring indices,operation-related indices andpathological outcomes were prospectively collected.RESULTS Laparoscopic TME was performed in 26 cases(14 anterior resection and 12 abdominoperineal resection) successfully,without conversion to open or laparoscopic surgery with standard-pressure pneumoperitoneum.Intraoperative monitoring showed stable heart rate,blood pressure and paw airway pressure.The mean operative time was 194.29 ± 41.27 min(range:125-270 min) and 200.41 ± 20.56 min(range:170-230 min) for anterior resection and abdominoperineal resection,respectively.The mean number of lymph nodes harvested was 16.71 ± 5.06(range:7-27).There was no positive circumferential or distal resection margin.No local recurrence was observed during a median follow-up period of 11.96 ± 5.55 mo(range:5-23 mo).CONCLUSION LPP combined with AWL is safe and feasible for laparoscopic TME.The technique can provide satisfactory exposure of the operative field and stable operative monitoring indices.
文摘We briefly introduce a new high-pressure transport measurement system integrated with low temperature and magnetic field that is being established as one of the user experimental stations of the Synergetic Extreme Condition User Facilities in the Huairou District of Beijing, China. To demonstrate the capabilities of the system for condensed matter research, the emergence of some pressure-induced phenomena and physics related to superconductivity found previously is also introduced, and then a perspective for such an advanced high-pressure system is presented.
文摘The silicon epitaxial wafter for X band double Read-type DDR IMPATT diodes has been fabricatedby normal-low pressure growth technique. The hyperabrupt impurity profile and very thin p-layer, n-layerwere achieved.
基金supported by the National Natural Science Foundation of China (No. 50971020)
文摘In this paper,diamond/CuCr and diamond/CuB composites were prepared using the pressure infiltration method.The physical property measurement system(PPMS)was adopted to evaluate the thermal conductivity of diamond/Cu and MoCu composites within the range of100–350 K,and a scanning electron microscope(SEM)was utilized to analyze the microstructure and fracture appearance of the materials.The research indicates that the thermal conductivity of diamond/Cu composite within the range of100–350 K is 2.5–3.0 times that of the existing MoCu material,and the low-temperature thermal conductivity of diamond/Cu composite presents an exponential relationship with the temperature.If B element was added to a Cu matrix and a low-temperature binder was used for prefabricated elements,favorable interfacial adhesion,relatively high interfacial thermal conductivity,and favorable low-temperature heat conduction characteristics would be apparent.
文摘The influence of a key process variable on the mold filling characteristics of AZ91 Mg-alloy was studied in the low pressure EPC process.The applied flow quantity of insert gas from 1 to 5 m~3/h associated with the pressurizing rate in the low pressure EPC casting process was considered for rectangle and L-shape plate casting. The experimental results show that there is an optimal flow quantity of insert gas for good mold filling characteristics in AZ91 Mg-alloy low-pressure EPC process. The optimal flow quantity of insert gas for the specimens is 3 to 4 m~3/h. Either less or higher than the optimal flow quantity of insert gas would lead to misrun defects or folds, blisters and porosity defects. The practice of hub casting confirmed that the low-pressure EPC process with an optimal processing variable exemplified as 4 m~3/h gas flow quantity was capable of producing complicated magnesium castings without misrun defects.
基金supported by National Natural Science Foundation of China(Grant No.51277063)
文摘Self-organization phenomena on the surface of a metal electrode in low-pressure DC discharge is studied. In this paper, we carry out laboratory investigations of self-organization in a lowpressure test platform for 100–200 mm rod-plane gaps with a needle tip, conical tip and hemispherical tip within 1–10 k Pa. The factors influencing the pattern profile are the pressure value, gap length and shape of the electrode, and a variety of pattern structures are observed by changing these factors. With increasing pressure, first the pattern diameter increases and then decreases. With the needle tip, layer structure, single-ring structure and double-ring structure are displayed successively with increasing pressure. With the conical tip, the ring-like structure gradually forms separate spots with increasing pressure. With the hemispherical tip, there are anode spots inside the ring structure. With the increase of gap length, the diameter of the selforganized pattern increases and the profile of the pattern changes. The development process of the pattern contains three key stages: pattern enlargement, pattern stabilization and pattern shrink.
基金supported by the Natural Science Foundation of Hebei Province,China(No.A2015201166)the Natural Science Foundation of Hebei University,China(No.2013-252)
文摘A Monte Carlo simulation method with an instantaneous density dependent meanfree-path of the ablated particles and the Ar gas is developed for investigating the transport dynamics of the laser-ablated particles in a low pressure inert gas.The ablated-particle density and velocity distributions are analyzed.The force distributions acting on the ablated particles are investigated.The influence of the substrate on the ablated-particle velocity distribution and the force distribution acting on the ablated particles are discussed.The Monte Carlo simulation results approximately agree with the experimental data at the pressure of 8 Pa to 17 Pa.This is helpful to investigate the gas phase nucleation and growth mechanism of nanoparticles.
基金supported by National Natural Science Foundation of China (Nos. 11675118 and 11275136)
文摘The pre-ionized 60 MHz very-high-frequency (VHF) magnetron discharge at low pressure, assisted by inductively coupled plasma (ICP) discharge, was developed. The measurement of ion flux density and ion energy to the substrate was carried out by a retarding field energy analyzer. The electric characteristics of discharge were also investigated by voltage-current probe technique. It was found that by reducing the discharge pressure of VHF magnetron discharge from 5 to 1 Pa, the ion flux density increased about four times, meanwhile the ion energy also increased doubly. The electric characteristics of discharge also showed that a little improvement of sputtering effectiveness was achieved by reducing discharge pressure. Therefore, the deposition property of VHF (60 MHz) magnetron sputtering can be improved by reducing the discharge pressure using the ICP-assisted pre-ionized discharge.
文摘In order to solve the problem of single arc plasma actuator's failure to suppress the boundary layer separation, the effectiveness of the array surface arc plasma actuator to enhance the excitation intensity is verified by experiment. In this study, an electrical parameter measurement system and high-speed schlieren technology were adopted to delve into the electrical, flow field, and excitation characteristics of the high-energy array surface arc plasma actuator under low ambient pressure. The high-energy array surface arc discharge released considerable heat rapidly;as a result, two characteristic structures were generated, i.e., the precursor shock wave and thermal deposition area. The duration increased with the increase in environmental pressure. The lower the pressure, the wider the thermal deposition area's influence range. The precursor shock wave exhibited a higher propagation speed at the initial phase of discharge;it tended to decay over time and finally remained at 340 m/s. The lower the environmental pressure, the higher the speed would be at the initial phase. High-energy array surface arc plasma actuator can be employed to achieve effective high-speed aircraft flow control.
基金the National Natural Science Foundation of China(No.81672166).
文摘Objective The goal of this study was to develop a decellularized tendon scaffold(DTS)and repopulate it with adipose-derived stem cells(ADSCs)assisted by low air pressure(LP).Methods The porcine superficial flexor tendons were processed into the DTSs using a combination of physical,chemical,and enzymatic treatments.The effectiveness of decellularization was verified by histological analysis and DNA quantification.The properties of the DTSs were evaluated by quantitative analysis of biochemical characterization,porosimetry,in vitro biocompatibility assessment,and biomechanical testing.Subsequently,the ADSCs-DTS complexes were constructed via cell injection assisted by LP or under atmospheric pressure.The differences in cell distribution,biomechanical properties,and the total DNA content were compared by histological analysis,biomechanical testing,and DNA quantification,respectively.Results Histological analysis confirmed that no cells or condensed nuclear materials were retained within the DTSs with widened interfibrillar space.The decellularization treatment resulted in a significant decrease in the content of DNA and glycosaminoglycans,and a significant increase in the porosity.The DTSs were cytocompatible in vitro and did not show reduced collagen content and inferior biomechanical properties compared with the fresh-frozen tendons.The assistance of LP promoted the broader distribution of cells into the adjacent interfibrillar space and cell proliferation in DTSs.The biomechanical properties of the scaffolds were not significantly affected by the recellularization treatments.Conclusion A novel LP-assisted approach for the construction of cells-DTS complex was established,which could be a methodological foundation for further bioreactor and in vitro studies.
文摘Purpose: To compare the success and complication rates of low target pressure trabeculectomy (LTT) and conventional trabeculectomy (CT). Methods: A retrospective study was conducted with consecutive patients undergoing trabeculectomy. Twelve eyes of 12 patients underwent LTT, and 17 eyes of 17 patients underwent CT. Surgical success was defined as meeting each target intraocular pressure (IOP) without additional medication or further glaucoma surgery. A Kaplan-Meier survival analysis was used to estimate survival rate. Incidences of surgical complications were also assessed. Results: The median postoperative IOP 2 years after surgery were 10.0 mmHg (interquartile range [IQR] 8.5 - 12.0 mmHg) in the LTT group and 16.0 mmHg (IQR, 14.0 - 18.5 mmHg) in the CT group (P = 0.000). Estimated survival rates for patients who underwent the two types of trabeculectomy were significantly different with all IOP criteria of 10, 12 and 14 mmHg (P Conclusion: LTT provided more chances to maintain low postoperative IOP and had no more vision-threatening complication than those of CT.
基金This research work is sponsored and supported by the NationalNatural Science Foundation of China. The item number is50275058
文摘A newly developed low-pressure expendable pattern casting (LP-EPC) process was introduced and its basic principles or effect factors were further analyzed. According to theoretical calculation and experimental results, the major casting parameters that are of great and critical importance on the process include pressure and flux of filling gas, decomposition characteristic and density of foam pattern, thickness and permeability of coating, pouring temperature, vacuum degree and their combination. Most of casting defects can be effectively avoided by choosing the suitable parameters. The success achieved in pouring motor housing and exhaust manifold castings demonstrates the advantages of LP-EPC process in the production of high-complicated castings with high dimension accuracy.