A novel extension to SMAC scheme is proposed for variable density flows under low Mach number approximation. The algorithm is based on a predictor—corrector time integration scheme that employs a projection method fo...A novel extension to SMAC scheme is proposed for variable density flows under low Mach number approximation. The algorithm is based on a predictor—corrector time integration scheme that employs a projection method for the momentum equation. A constant-coefficient Poisson equation is solved for the pressure following both the predictor and corrector steps to satisfy the continuity equation at each time step. The proposed algorithm has second order centrally differenced convective fluxes with upwinding based on Cell Peclet number while diffusive flux are viscous fourth order accurate. Spatial discretization is performed on a collocated grid system that offers computational simplicity and straight forward extension to curvilinear coordinate systems. The algorithm is kinetic energy preserving. Further in this paper robustness and accuracy are demonstrated by performing test on channel flow with non-Boussinesq condition on different temperature ratios.展开更多
Considering droplet phenomena at low Mach numbers,large differences in the magnitude of the occurring characteristic waves are presented.As acoustic phenomena often play a minor role in such applications,classical exp...Considering droplet phenomena at low Mach numbers,large differences in the magnitude of the occurring characteristic waves are presented.As acoustic phenomena often play a minor role in such applications,classical explicit schemes which resolve these waves suffer from a very restrictive timestep restriction.In this work,a novel scheme based on a specific level set ghost fluid method and an implicit-explicit(IMEX)flux splitting is proposed to overcome this timestep restriction.A fully implicit narrow band around the sharp phase interface is combined with a splitting of the convective and acoustic phenomena away from the interface.In this part of the domain,the IMEX Runge-Kutta time discretization and the high order discontinuous Galerkin spectral element method are applied to achieve high accuracies in the bulk phases.It is shown that for low Mach numbers a significant gain in computational time can be achieved compared to a fully explicit method.Applica-tions to typical droplet dynamic phenomena validate the proposed method and illustrate its capabilities.展开更多
By analyzing the characteristics of low Mach number perfect gas flows, a novel Slightly Compressible Model (SCM) for low Mach number perect gas flows is derived. In view of numerical calculations, this model is proved...By analyzing the characteristics of low Mach number perfect gas flows, a novel Slightly Compressible Model (SCM) for low Mach number perect gas flows is derived. In view of numerical calculations, this model is proved very efficient, for it is kept within thep-v frame but does not have to satisfy the time consuming divergence-free condition in order to get the incompressible Navier-Stokes equation solution. Writing the equations in the form of conservation laws, we have derived the characteristic systems which are necessary for numerical calculations. A cell-centered finite-volume method with flux difference upwind-biased schemes is used for the equation solutions and a new Exact Newton Relaxation (ENR) implicit method is developed. Various computed results are presented to validate the present model. Laminar flow solutions over a circular cylinder with wake developing and vortex shedding are presented. Results for inviscid flow over a sphere are compared in excellent agreement with the exact analytic incompressible solution. Three-dimensional viscous flow solutions over sphere and prolate spheroid are also calculated and compared well with experiments and other incompressible solutions. Finally, good convergent performances are shown for sphere viscous flows.展开更多
For simulating low Mach number reactive flows, a simple and coupled lattice Boltzmann (CLB) scheme is proposed, by which the fluid density can bear significant changes. Different from the existing hybrid lattice Boltz...For simulating low Mach number reactive flows, a simple and coupled lattice Boltzmann (CLB) scheme is proposed, by which the fluid density can bear significant changes. Different from the existing hybrid lattice Boltzmann (HLB) scheme and non-coupled lattice Boltzmann (NCLB) scheme, this scheme is strictly lattice Boltzmann style and the fluid density couples directly with the temperature. Because it has got rid of the constraint of traditional thought in lattice Boltzmann scheme,on the basis of the equality among the particle speed c, the time step △t and the lattice grid spacing △x held, both c and △t can be adjusted in this scheme according to a "characteristic temperature" instead of the local temperature. The whole algorithm becomes more stable and efficient besides inheriting the intrinsically outstanding strong points of conventional lattice Boltz-mann scheme. In this scheme, we also take into account different molecular weights of species, so it is more suitable for simulating actual low Mach number reactive flows than previous work. In this paper, we simulated a so-called "counter-flow" premixed propane-air flame, and the results got by our scheme are much better than that obtained by NCLB. And the more important thing is that the exploration in this work has offered a kind of brand-new train of thought for building other novel lattice Boltzmann scheme in the future.展开更多
In the present paper,the classical pressure correction method was extended into low Mach number compressible flow regime by integrating equation of state into SIMPLE algorithm.The self-developed code based on this alg...In the present paper,the classical pressure correction method was extended into low Mach number compressible flow regime by integrating equation of state into SIMPLE algorithm.The self-developed code based on this algorithm was applied to predicting the lid-driven cavity flow and shock tube prob-lems,and the results showed good agreement with benchmark solutions and the Mach number can reach the magnitude of as low as 10-5.The attenuation of sound waves in viscous medium was then simulated.The results agree well with the analytical solutions given by theoretical acoustics.This demonstrated that the present method could also be implemented in acoustics field simulation,which is crucial for thermoacoustic simulation.展开更多
文摘A novel extension to SMAC scheme is proposed for variable density flows under low Mach number approximation. The algorithm is based on a predictor—corrector time integration scheme that employs a projection method for the momentum equation. A constant-coefficient Poisson equation is solved for the pressure following both the predictor and corrector steps to satisfy the continuity equation at each time step. The proposed algorithm has second order centrally differenced convective fluxes with upwinding based on Cell Peclet number while diffusive flux are viscous fourth order accurate. Spatial discretization is performed on a collocated grid system that offers computational simplicity and straight forward extension to curvilinear coordinate systems. The algorithm is kinetic energy preserving. Further in this paper robustness and accuracy are demonstrated by performing test on channel flow with non-Boussinesq condition on different temperature ratios.
基金support provided by the Deutsche Forschun-gsgemeinschaft(DFG,German Research Foundation)through the project GRK 2160/1“Droplet Interaction Technologies”and through the project no.457811052
文摘Considering droplet phenomena at low Mach numbers,large differences in the magnitude of the occurring characteristic waves are presented.As acoustic phenomena often play a minor role in such applications,classical explicit schemes which resolve these waves suffer from a very restrictive timestep restriction.In this work,a novel scheme based on a specific level set ghost fluid method and an implicit-explicit(IMEX)flux splitting is proposed to overcome this timestep restriction.A fully implicit narrow band around the sharp phase interface is combined with a splitting of the convective and acoustic phenomena away from the interface.In this part of the domain,the IMEX Runge-Kutta time discretization and the high order discontinuous Galerkin spectral element method are applied to achieve high accuracies in the bulk phases.It is shown that for low Mach numbers a significant gain in computational time can be achieved compared to a fully explicit method.Applica-tions to typical droplet dynamic phenomena validate the proposed method and illustrate its capabilities.
基金The project supported by the Basic Research on Frontier Problems in Fluid and Aerodynamics in Chinathe National Natural Science Foundation of China (19772069)
文摘By analyzing the characteristics of low Mach number perfect gas flows, a novel Slightly Compressible Model (SCM) for low Mach number perect gas flows is derived. In view of numerical calculations, this model is proved very efficient, for it is kept within thep-v frame but does not have to satisfy the time consuming divergence-free condition in order to get the incompressible Navier-Stokes equation solution. Writing the equations in the form of conservation laws, we have derived the characteristic systems which are necessary for numerical calculations. A cell-centered finite-volume method with flux difference upwind-biased schemes is used for the equation solutions and a new Exact Newton Relaxation (ENR) implicit method is developed. Various computed results are presented to validate the present model. Laminar flow solutions over a circular cylinder with wake developing and vortex shedding are presented. Results for inviscid flow over a sphere are compared in excellent agreement with the exact analytic incompressible solution. Three-dimensional viscous flow solutions over sphere and prolate spheroid are also calculated and compared well with experiments and other incompressible solutions. Finally, good convergent performances are shown for sphere viscous flows.
基金supported by the State Key Development Programme for Basic Research of China(Grant No.G1999022207)Program for New Century Excellent Talents in University,Ministry of Education(Grant No.NCET-04-0708)the National Natural Science Foundation of China(Grant No.60073044).
文摘For simulating low Mach number reactive flows, a simple and coupled lattice Boltzmann (CLB) scheme is proposed, by which the fluid density can bear significant changes. Different from the existing hybrid lattice Boltzmann (HLB) scheme and non-coupled lattice Boltzmann (NCLB) scheme, this scheme is strictly lattice Boltzmann style and the fluid density couples directly with the temperature. Because it has got rid of the constraint of traditional thought in lattice Boltzmann scheme,on the basis of the equality among the particle speed c, the time step △t and the lattice grid spacing △x held, both c and △t can be adjusted in this scheme according to a "characteristic temperature" instead of the local temperature. The whole algorithm becomes more stable and efficient besides inheriting the intrinsically outstanding strong points of conventional lattice Boltz-mann scheme. In this scheme, we also take into account different molecular weights of species, so it is more suitable for simulating actual low Mach number reactive flows than previous work. In this paper, we simulated a so-called "counter-flow" premixed propane-air flame, and the results got by our scheme are much better than that obtained by NCLB. And the more important thing is that the exploration in this work has offered a kind of brand-new train of thought for building other novel lattice Boltzmann scheme in the future.
基金Supported by the Key Project of National Natural Science Foundation of China(Grant Nos.50736005,50636050)
文摘In the present paper,the classical pressure correction method was extended into low Mach number compressible flow regime by integrating equation of state into SIMPLE algorithm.The self-developed code based on this algorithm was applied to predicting the lid-driven cavity flow and shock tube prob-lems,and the results showed good agreement with benchmark solutions and the Mach number can reach the magnitude of as low as 10-5.The attenuation of sound waves in viscous medium was then simulated.The results agree well with the analytical solutions given by theoretical acoustics.This demonstrated that the present method could also be implemented in acoustics field simulation,which is crucial for thermoacoustic simulation.