Studies were made of the symmetric tensile-compressive low cycle fatigue behaviour and the influence of dynamic strain aging(DSA)pre-treatment of 18-8 austenitic stainless steel. Within the testing amplitude range of ...Studies were made of the symmetric tensile-compressive low cycle fatigue behaviour and the influence of dynamic strain aging(DSA)pre-treatment of 18-8 austenitic stainless steel. Within the testing amplitude range of strain.±0.5 % to±1.5 %,the three processes of cyclic hardening,cyclic saturation and cyclic softening were observed.In the same amplitude of strain,the peak stress of the samples pre-treated by DSA is higher than that of solid-solu- tion and cold working pre-treatment,but no remarkable differences of the fatigue lives of them were found.TEM observation shows that the uniform and stable dislocation networks with high density form after DSA pre-treatment,which increases the cyclic peak stress.The cyclic softening results from the low dislocation density and elongated cell structure with low energy.展开更多
The wear resistance of austenitic stainless steels can be improved by thermo-chemical surface treatment with nitrogen and carbon. However, it is possible that the corrosion resistance will be impaired by the precipita...The wear resistance of austenitic stainless steels can be improved by thermo-chemical surface treatment with nitrogen and carbon. However, it is possible that the corrosion resistance will be impaired by the precipitation of chromiumnitrid or -carbide. The present contribution deals with investigations of the corrosion behaviour and structural characteristics of a low temperature nitrided and carburised austenitic stainless steel. The material investigated was AISI 316L (X2CrNiMol7-12-2) austenitic stainless steel. A commercial plasma-nitriding unit (pulsed dc) was used for the nitriding and carburising process. Additional samples were treated by the gasoxinitriding process for a comparison between plasma- and gasoxinitriding. The nitrided and carburised layer of austenitic stainless steel consists of the nitrogen or carbon S-phase (expanded austenite), respectively. X-ray diffraction investigations show the typical shift of the peaks to lower angles, indicating expansion of the fee lattice. Also the X-ray diffraction technique was employed to study the residual stresses in the nitrogen and carbon S-phase. The corrosion behaviour of surface engineered samples was investigated with electrochemical methods. Anodic potentiodynamic polarisation curves were recorded for testing the resistance against general corrosion (in H2SO4) and pitting corrosion (in NaCl).展开更多
The influence of processing temperatures on the surface characteristics of AISI 204Cu austenitic stainless steel was investigated during a low temperature plasma nitrocarburizing.The resultant layer was a dual-layer s...The influence of processing temperatures on the surface characteristics of AISI 204Cu austenitic stainless steel was investigated during a low temperature plasma nitrocarburizing.The resultant layer was a dual-layer structure,which comprises a N-enriched layer on the top of C-enriched layer.The surface hardness and the layer thickness increase up to about HV 0.05 1000 and 20μm with increasing temperature.The specimen treated at 400°C shows a much enhanced corrosion resistance compared to the untreated steel.A loss in corrosion resistance was observed for specimens treated at temperatures above 430°C due to the formation of Cr2N.展开更多
Problems encountered in the production of low nickel austenitic stainless steel have been studied. These problems primarily include the changes to the microstructure of the slab during the heating process, the formati...Problems encountered in the production of low nickel austenitic stainless steel have been studied. These problems primarily include the changes to the microstructure of the slab during the heating process, the formation and removal of deformation - induced martensite during cold rolling, and the effects of the annealing process on the surface oxide structure. A reasonable manufacturing process has been proposed on the basis of the research results and high-quality cold-rolled strips of low nickel austenitic stainless steel have been produced.展开更多
In the present study, samples were extensively collected throughout the stainless steel manufacturing process. The three-dimensional morphology of inclusions was revealed by non-aqueous solution electrolysis. The high...In the present study, samples were extensively collected throughout the stainless steel manufacturing process. The three-dimensional morphology of inclusions was revealed by non-aqueous solution electrolysis. The high concentration of aluminum in ferrosilicon caused the increment of [Al]s in steel and Al2 O3 in inclusions, which led to the higher melting temperature of inclusions. It was concluded that the application of low Al ferrosilicon and calcium treatment could prevent the formation of Al2 O3-rich inclusions.展开更多
SAW308L submerged arc welding wire and SJ601A submerged arc welding flux were selected to weld the 12 mm 08Cr19MnNi3Cu2N low nickel and high nitrogen austenitic stainless steel plates with three different welding heat...SAW308L submerged arc welding wire and SJ601A submerged arc welding flux were selected to weld the 12 mm 08Cr19MnNi3Cu2N low nickel and high nitrogen austenitic stainless steel plates with three different welding heat input,and microstructure,tensile properties,microhardness and corrosion properties of the welded joints were studied.The results show that no defects are found in the three groups of welded joints,and the welded joints have better performance.The tensile strength of 08Cr19MnNi3Cu2N stainless steel welded joints with different heat input is slightly lower than that of the base metal,and fracture occurs in the weld zone,and the hardness of the weld zone is lower than that of the base metal.The weld microstructure of stainless steel welded joints with different heat input is composed of austenite+δferrite,and ferrite is uniformly distributed in austenite.With the increase of the welding heat input,the ferrite content in the weld zone decrease gradually,the grain size in the thermal affected zone increase gradually,and the impact toughness reduce.展开更多
Optimization of grain boundary engineering(GBE) process is explored in a Fe–20Cr–19Mn–2Mo–0.82N high-nitrogen and nickel-free austenitic stainless steel, and its intergranular corrosion(IGC) property after GBE tre...Optimization of grain boundary engineering(GBE) process is explored in a Fe–20Cr–19Mn–2Mo–0.82N high-nitrogen and nickel-free austenitic stainless steel, and its intergranular corrosion(IGC) property after GBE treatment is experimentally evaluated. The proportion of low Σ coincidence site lattice(CSL) boundaries reaches 79.4% in the sample processed with 5% cold rolling and annealing at 1423 K for 72 h;there is an increase of 32.1% compared with the solution-treated sample. After grain boundary character distribution optimization, IGC performance is noticeably improved. Only Σ3 boundaries in the special boundaries are resistant to IGC under the experimental condition. The size of grain cluster enlarges with increasing fraction of low ΣCSL boundaries, and the amount of Σ3 boundaries interrupting the random boundary network increases during growth of the clusters, which is the essential reason for the improvement of IGC resistance.展开更多
Austenitic stainless steel(ASS) and High nickel steel(HNS) welding consumables are being used for welding Q&T steels, as they have higher solubility for hydrogen in austenitic phase, to avoid hydrogen induced crac...Austenitic stainless steel(ASS) and High nickel steel(HNS) welding consumables are being used for welding Q&T steels, as they have higher solubility for hydrogen in austenitic phase, to avoid hydrogen induced cracking(HIC) but they are very expensive. In recent years, the developments of low hydrogen ferritic steel(LHF) consumables that contain no hygroscopic compounds are utilized for welding Q&T steels. Heat affected zone(HAZ) softening is another critical issue during welding of armour grade Q&T steels and it depends on the welding process employed and the weld thermal cycle. In this investigation an attempt has been made to study the influence of welding consumables and welding processes on metallurgical characteristics of armour grade Q&T steel joints by various metallurgical characterization procedures. Shielded metal arc welding(SMAW) and flux cored arc welding(FCAW) processes were used for making welds using ASS, LHF and HNS welding consumables. The joints fabricated by using LHF consumables offered lower degree of HAZ softening and there is no evidence of HIC in the joints fabricated using LHF consumables.展开更多
Quenched and Tempered(Q&T) steels are widely used in the construction of military vehicles due to its high strength to weight ratio and high hardness. These steels are prone to hydrogen induced cracking(HIC) in th...Quenched and Tempered(Q&T) steels are widely used in the construction of military vehicles due to its high strength to weight ratio and high hardness. These steels are prone to hydrogen induced cracking(HIC) in the heat affected zone(HAZ) after welding. The use of austenitic stainless steel(ASS) consumables to weld the above steel was the only available remedy because of higher solubility for hydrogen in austenitic phase. The use of stainless steel consumables for a non-stainless steel base metal is not economical. Hence, alternate consumables for welding Q&T steels and their vulnerability to HIC need to be explored. Recent studies proved that low hydrogen ferritic steel(LHF) consumables can be used to weld Q&T steels, which can give very low hydrogen levels in the weld deposits. The use of ASS and LHF consumables will lead to distinct microstructures in their respective welds. This microstructural heterogeneity will have a drastic influence in the fatigue crack growth resistance of armour grade Q&T steel welds. Hence, in this investigation an attempt has been made to study the influence of welding consumables and welding processes on fatigue crack growth behaviour of armour grade Q&T Steel joints. Shielded metal arc welding(SMAW) and Flux cored arc welding(FCAW) were used for fabrication of joints using ASS and LHF consumables. The joints fabricated by SMAW process using LHF consumable exhibited superior fatigue crack growth resistance than all other joints.展开更多
文摘Studies were made of the symmetric tensile-compressive low cycle fatigue behaviour and the influence of dynamic strain aging(DSA)pre-treatment of 18-8 austenitic stainless steel. Within the testing amplitude range of strain.±0.5 % to±1.5 %,the three processes of cyclic hardening,cyclic saturation and cyclic softening were observed.In the same amplitude of strain,the peak stress of the samples pre-treated by DSA is higher than that of solid-solu- tion and cold working pre-treatment,but no remarkable differences of the fatigue lives of them were found.TEM observation shows that the uniform and stable dislocation networks with high density form after DSA pre-treatment,which increases the cyclic peak stress.The cyclic softening results from the low dislocation density and elongated cell structure with low energy.
基金The DFG(Deutsche Forschungsgemeinschaf)is gratefully acknowledged for the financial support(DFG-BI 418/9-1).
文摘The wear resistance of austenitic stainless steels can be improved by thermo-chemical surface treatment with nitrogen and carbon. However, it is possible that the corrosion resistance will be impaired by the precipitation of chromiumnitrid or -carbide. The present contribution deals with investigations of the corrosion behaviour and structural characteristics of a low temperature nitrided and carburised austenitic stainless steel. The material investigated was AISI 316L (X2CrNiMol7-12-2) austenitic stainless steel. A commercial plasma-nitriding unit (pulsed dc) was used for the nitriding and carburising process. Additional samples were treated by the gasoxinitriding process for a comparison between plasma- and gasoxinitriding. The nitrided and carburised layer of austenitic stainless steel consists of the nitrogen or carbon S-phase (expanded austenite), respectively. X-ray diffraction investigations show the typical shift of the peaks to lower angles, indicating expansion of the fee lattice. Also the X-ray diffraction technique was employed to study the residual stresses in the nitrogen and carbon S-phase. The corrosion behaviour of surface engineered samples was investigated with electrochemical methods. Anodic potentiodynamic polarisation curves were recorded for testing the resistance against general corrosion (in H2SO4) and pitting corrosion (in NaCl).
基金Project(2011AA192)supported by Dongeui University,Korea
文摘The influence of processing temperatures on the surface characteristics of AISI 204Cu austenitic stainless steel was investigated during a low temperature plasma nitrocarburizing.The resultant layer was a dual-layer structure,which comprises a N-enriched layer on the top of C-enriched layer.The surface hardness and the layer thickness increase up to about HV 0.05 1000 and 20μm with increasing temperature.The specimen treated at 400°C shows a much enhanced corrosion resistance compared to the untreated steel.A loss in corrosion resistance was observed for specimens treated at temperatures above 430°C due to the formation of Cr2N.
文摘Problems encountered in the production of low nickel austenitic stainless steel have been studied. These problems primarily include the changes to the microstructure of the slab during the heating process, the formation and removal of deformation - induced martensite during cold rolling, and the effects of the annealing process on the surface oxide structure. A reasonable manufacturing process has been proposed on the basis of the research results and high-quality cold-rolled strips of low nickel austenitic stainless steel have been produced.
文摘In the present study, samples were extensively collected throughout the stainless steel manufacturing process. The three-dimensional morphology of inclusions was revealed by non-aqueous solution electrolysis. The high concentration of aluminum in ferrosilicon caused the increment of [Al]s in steel and Al2 O3 in inclusions, which led to the higher melting temperature of inclusions. It was concluded that the application of low Al ferrosilicon and calcium treatment could prevent the formation of Al2 O3-rich inclusions.
文摘SAW308L submerged arc welding wire and SJ601A submerged arc welding flux were selected to weld the 12 mm 08Cr19MnNi3Cu2N low nickel and high nitrogen austenitic stainless steel plates with three different welding heat input,and microstructure,tensile properties,microhardness and corrosion properties of the welded joints were studied.The results show that no defects are found in the three groups of welded joints,and the welded joints have better performance.The tensile strength of 08Cr19MnNi3Cu2N stainless steel welded joints with different heat input is slightly lower than that of the base metal,and fracture occurs in the weld zone,and the hardness of the weld zone is lower than that of the base metal.The weld microstructure of stainless steel welded joints with different heat input is composed of austenite+δferrite,and ferrite is uniformly distributed in austenite.With the increase of the welding heat input,the ferrite content in the weld zone decrease gradually,the grain size in the thermal affected zone increase gradually,and the impact toughness reduce.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51871048 and 51571058)。
文摘Optimization of grain boundary engineering(GBE) process is explored in a Fe–20Cr–19Mn–2Mo–0.82N high-nitrogen and nickel-free austenitic stainless steel, and its intergranular corrosion(IGC) property after GBE treatment is experimentally evaluated. The proportion of low Σ coincidence site lattice(CSL) boundaries reaches 79.4% in the sample processed with 5% cold rolling and annealing at 1423 K for 72 h;there is an increase of 32.1% compared with the solution-treated sample. After grain boundary character distribution optimization, IGC performance is noticeably improved. Only Σ3 boundaries in the special boundaries are resistant to IGC under the experimental condition. The size of grain cluster enlarges with increasing fraction of low ΣCSL boundaries, and the amount of Σ3 boundaries interrupting the random boundary network increases during growth of the clusters, which is the essential reason for the improvement of IGC resistance.
基金Armament Research Board (ARMREB), New Delhi for funding this project work (Project no. MAA/03/ 41)
文摘Austenitic stainless steel(ASS) and High nickel steel(HNS) welding consumables are being used for welding Q&T steels, as they have higher solubility for hydrogen in austenitic phase, to avoid hydrogen induced cracking(HIC) but they are very expensive. In recent years, the developments of low hydrogen ferritic steel(LHF) consumables that contain no hygroscopic compounds are utilized for welding Q&T steels. Heat affected zone(HAZ) softening is another critical issue during welding of armour grade Q&T steels and it depends on the welding process employed and the weld thermal cycle. In this investigation an attempt has been made to study the influence of welding consumables and welding processes on metallurgical characteristics of armour grade Q&T steel joints by various metallurgical characterization procedures. Shielded metal arc welding(SMAW) and flux cored arc welding(FCAW) processes were used for making welds using ASS, LHF and HNS welding consumables. The joints fabricated by using LHF consumables offered lower degree of HAZ softening and there is no evidence of HIC in the joints fabricated using LHF consumables.
基金New Delhi for funding this project work(Project No MAA/03/41)
文摘Quenched and Tempered(Q&T) steels are widely used in the construction of military vehicles due to its high strength to weight ratio and high hardness. These steels are prone to hydrogen induced cracking(HIC) in the heat affected zone(HAZ) after welding. The use of austenitic stainless steel(ASS) consumables to weld the above steel was the only available remedy because of higher solubility for hydrogen in austenitic phase. The use of stainless steel consumables for a non-stainless steel base metal is not economical. Hence, alternate consumables for welding Q&T steels and their vulnerability to HIC need to be explored. Recent studies proved that low hydrogen ferritic steel(LHF) consumables can be used to weld Q&T steels, which can give very low hydrogen levels in the weld deposits. The use of ASS and LHF consumables will lead to distinct microstructures in their respective welds. This microstructural heterogeneity will have a drastic influence in the fatigue crack growth resistance of armour grade Q&T steel welds. Hence, in this investigation an attempt has been made to study the influence of welding consumables and welding processes on fatigue crack growth behaviour of armour grade Q&T Steel joints. Shielded metal arc welding(SMAW) and Flux cored arc welding(FCAW) were used for fabrication of joints using ASS and LHF consumables. The joints fabricated by SMAW process using LHF consumable exhibited superior fatigue crack growth resistance than all other joints.