Isothermal transformation (TTT) behavior of the low carbon steels with two Si contents (0.50 wt pct and 1.35 wt pct) was investigated with and without the prior deformation. The results show that Si and the prior ...Isothermal transformation (TTT) behavior of the low carbon steels with two Si contents (0.50 wt pct and 1.35 wt pct) was investigated with and without the prior deformation. The results show that Si and the prior deformation of the austenite have significant effects on the transformation of the ferrite and bainite. The addition of Si refines the ferrite grains, accelerates the polygonal ferrite transformation and the formation of M/A constituents, leading to the improvement of the strength. The ferrite grains formed under the prior deformation of the austenite become more homogeneous and refined. However, the influence of deformation on the tensile strength of both steels is dependent on the isothermal temperatures. Thermodynamic calculation indicates that Si and prior deformation reduce the incubation time of both ferrite and bainite transformation, but the effect is weakened by the decrease of the isothermal temperatures.展开更多
The investigation on lath martensitic transfor- mation has been carried out for 24SiMnNi2CrMoA steel using transmission electron microscopy (TEM) and X-ray diffraction.The austenite and martensite in the alloy adopt t...The investigation on lath martensitic transfor- mation has been carried out for 24SiMnNi2CrMoA steel using transmission electron microscopy (TEM) and X-ray diffraction.The austenite and martensite in the alloy adopt the intermediate orientation relationship between Kurdjumov-Sachs and Nishiyama.The adjacent laths in a packet are small-angle related or twin-related.The retained austenites which accommodate shape deformation of martensites appear commonly between adjacent laths.High Si content increases the volume fraction of retained austenites and its stability.The excellent combination of high strength and toughness of this steel is attributed to its fine martensite laths mingled with more than 5% continuous retained austenite films.展开更多
: Titanium is an impurity element in some special steel grades. The existence of titanium decreases the grain size and lowers the yield strength ,resulting in low quality of these steels with regard to various proper...: Titanium is an impurity element in some special steel grades. The existence of titanium decreases the grain size and lowers the yield strength ,resulting in low quality of these steels with regard to various properties. Thus, the titanium content should be reduced to the minimum. Based on the industrial production of ultra-low carbon A1-Si killed steel, this paper investigated the physical-chemical behaviors of titanium with and without desulfurization during RH refining. The influences of Ti content in hot metal, ladle slag composition, and ladle slag quantity, etc., on the Ti content in refined liquid steel were discussed. The results show that the partition ratio of titanium between ladle slag and liquid steel is inversely proportional to the AI content to the power of 4/3 ,and the empirical formula regressed from practical experience can be expressed as w(TiO2)/WTi=48/w[AI]4/3 Maximum partition ratio of titanium between top slag and liquid steel can be ensured W[Til WIAIIby an optimum slag composition including components of FeOx and A12 03 and an appropriate slag basicity. The contents of FetO and A1203 should be controlled above 6% and below 20% respectively and the slag basicity should be kept within 1.5 to 3.0. Moreover, desulfurization refining in the RH vacuum will decrease the partition ratio of titanium between ladle slag and liquid steel significantly. To keep the Ti content stably below 15 ×10 ^-4% in a 300 ton ladle ,the Ti content in hot metal must be lower than 500 × 10^-4% and the thickness of ladle slag carried over from BOF slag must be less than 50 ram.展开更多
模拟工业生产现场板坯在加热炉中的分段式加热制度和氧化气氛,在同步热分析仪(TGA)中进行氧化实验,研究氧化温度对硅的质量分数分别为1.21%和0.25%的两种低碳钢试样(HS1.21和LS0.25)氧化行为的影响。同时,用场发射扫描电镜(SEM)观察氧...模拟工业生产现场板坯在加热炉中的分段式加热制度和氧化气氛,在同步热分析仪(TGA)中进行氧化实验,研究氧化温度对硅的质量分数分别为1.21%和0.25%的两种低碳钢试样(HS1.21和LS0.25)氧化行为的影响。同时,用场发射扫描电镜(SEM)观察氧化后试样氧化铁皮及Fe_2SiO_4的微观形貌,用Image-pro Plus 6.0测量不同硅含量钢种在不同氧化温度下氧化后试样的Fe_2SiO_4渗透深度,用能谱仪(EDS)分析其氧化铁皮的结构组成。结果表明,温度达到剧烈氧化温度后,两种试样中硅含量低的低碳钢氧化增重随时间呈抛物线变化,而硅含量较高的低碳钢氧化增重随时间呈直线性变化;氧化一定时间后,硅含量不同的两种试样的氧化增重曲线相交,出现临界时间点,在该临界时间点之前,LS0.25低碳钢的氧化增重较多,而临界时间点之后,HS1.21低碳钢氧化增重较多,且临界时间点随着氧化温度的升高逐渐推迟。展开更多
高压锅炉管用钢15CrMoG(/%:0.12~0.18C,0.17~0.35Si,0.40~0.70Mn,≤0.015P,≤0.015S,0.80~1.10Cr,0.40~0.55Mo,≤0.020Alt)的生产工艺流程为60%铁水+优质废钢-100 t UHP EAF-LF-VD-Φ500mm坯连铸-轧制。通过电弧炉出钢Al-Si预脱氧,LF精...高压锅炉管用钢15CrMoG(/%:0.12~0.18C,0.17~0.35Si,0.40~0.70Mn,≤0.015P,≤0.015S,0.80~1.10Cr,0.40~0.55Mo,≤0.020Alt)的生产工艺流程为60%铁水+优质废钢-100 t UHP EAF-LF-VD-Φ500mm坯连铸-轧制。通过电弧炉出钢Al-Si预脱氧,LF精炼Si-Ca脱氧,优化精炼渣系的组成为(/%):55~60CaO,30~35Al_2O_3,5~10SiO_2,(CaO)/(Al_2O_3)=1.41~1.74,精炼后钢水中的Alt为0.011%~0.014%。Φ140 mm和Φ160 mm热轧材的夹杂物分析结果表明,钢中夹杂物中MnS为10%,铝酸钙为75%,SiO_2 7.5%,含Ti氧化物5%,其它2.5%,钢中≤5.0μm夹杂物占95%以上,满足锅炉管用钢15CrMoG的技术要求。展开更多
Continuous cooling transformation behaviors of low carbon steels with two Si contents (0. 50% and 1. 35%) were investigated under undeformed and deformed conditions. Effects of Si contents, deformation, and cooling ...Continuous cooling transformation behaviors of low carbon steels with two Si contents (0. 50% and 1. 35%) were investigated under undeformed and deformed conditions. Effects of Si contents, deformation, and cooling rates on γ transformation start temperature (Ar3), phase microstructures, and hardness were studied. The results show that, in the ease of the deformation with the true strain of 0. 4, the length of bainitic ferrite laths is significantly decreased in low Si steel, whereas, the M/A constituent becomes more uniform in high Si steel. An increase in cooling rates lowers the Ar3 greatly. The steel with higher level of Si exhibits higher Ar3, and higher hardness both under undeformed and deformed conditions compared with the steel with a lower Si content. Especially, the influence of Si on At3 is dependent on deformation. Such effects are more significant under the undeformed condition. The hardness of both steels increases with the increase of cooling rates, whereas, the deformation involved in both steels reduces the hardness.展开更多
基金the Baoshan Iron and Steel Group for the financial support
文摘Isothermal transformation (TTT) behavior of the low carbon steels with two Si contents (0.50 wt pct and 1.35 wt pct) was investigated with and without the prior deformation. The results show that Si and the prior deformation of the austenite have significant effects on the transformation of the ferrite and bainite. The addition of Si refines the ferrite grains, accelerates the polygonal ferrite transformation and the formation of M/A constituents, leading to the improvement of the strength. The ferrite grains formed under the prior deformation of the austenite become more homogeneous and refined. However, the influence of deformation on the tensile strength of both steels is dependent on the isothermal temperatures. Thermodynamic calculation indicates that Si and prior deformation reduce the incubation time of both ferrite and bainite transformation, but the effect is weakened by the decrease of the isothermal temperatures.
文摘The investigation on lath martensitic transfor- mation has been carried out for 24SiMnNi2CrMoA steel using transmission electron microscopy (TEM) and X-ray diffraction.The austenite and martensite in the alloy adopt the intermediate orientation relationship between Kurdjumov-Sachs and Nishiyama.The adjacent laths in a packet are small-angle related or twin-related.The retained austenites which accommodate shape deformation of martensites appear commonly between adjacent laths.High Si content increases the volume fraction of retained austenites and its stability.The excellent combination of high strength and toughness of this steel is attributed to its fine martensite laths mingled with more than 5% continuous retained austenite films.
文摘: Titanium is an impurity element in some special steel grades. The existence of titanium decreases the grain size and lowers the yield strength ,resulting in low quality of these steels with regard to various properties. Thus, the titanium content should be reduced to the minimum. Based on the industrial production of ultra-low carbon A1-Si killed steel, this paper investigated the physical-chemical behaviors of titanium with and without desulfurization during RH refining. The influences of Ti content in hot metal, ladle slag composition, and ladle slag quantity, etc., on the Ti content in refined liquid steel were discussed. The results show that the partition ratio of titanium between ladle slag and liquid steel is inversely proportional to the AI content to the power of 4/3 ,and the empirical formula regressed from practical experience can be expressed as w(TiO2)/WTi=48/w[AI]4/3 Maximum partition ratio of titanium between top slag and liquid steel can be ensured W[Til WIAIIby an optimum slag composition including components of FeOx and A12 03 and an appropriate slag basicity. The contents of FetO and A1203 should be controlled above 6% and below 20% respectively and the slag basicity should be kept within 1.5 to 3.0. Moreover, desulfurization refining in the RH vacuum will decrease the partition ratio of titanium between ladle slag and liquid steel significantly. To keep the Ti content stably below 15 ×10 ^-4% in a 300 ton ladle ,the Ti content in hot metal must be lower than 500 × 10^-4% and the thickness of ladle slag carried over from BOF slag must be less than 50 ram.
文摘模拟工业生产现场板坯在加热炉中的分段式加热制度和氧化气氛,在同步热分析仪(TGA)中进行氧化实验,研究氧化温度对硅的质量分数分别为1.21%和0.25%的两种低碳钢试样(HS1.21和LS0.25)氧化行为的影响。同时,用场发射扫描电镜(SEM)观察氧化后试样氧化铁皮及Fe_2SiO_4的微观形貌,用Image-pro Plus 6.0测量不同硅含量钢种在不同氧化温度下氧化后试样的Fe_2SiO_4渗透深度,用能谱仪(EDS)分析其氧化铁皮的结构组成。结果表明,温度达到剧烈氧化温度后,两种试样中硅含量低的低碳钢氧化增重随时间呈抛物线变化,而硅含量较高的低碳钢氧化增重随时间呈直线性变化;氧化一定时间后,硅含量不同的两种试样的氧化增重曲线相交,出现临界时间点,在该临界时间点之前,LS0.25低碳钢的氧化增重较多,而临界时间点之后,HS1.21低碳钢氧化增重较多,且临界时间点随着氧化温度的升高逐渐推迟。
基金Item Sponsored by National Natural Science Foundation of China (50527402)
文摘Continuous cooling transformation behaviors of low carbon steels with two Si contents (0. 50% and 1. 35%) were investigated under undeformed and deformed conditions. Effects of Si contents, deformation, and cooling rates on γ transformation start temperature (Ar3), phase microstructures, and hardness were studied. The results show that, in the ease of the deformation with the true strain of 0. 4, the length of bainitic ferrite laths is significantly decreased in low Si steel, whereas, the M/A constituent becomes more uniform in high Si steel. An increase in cooling rates lowers the Ar3 greatly. The steel with higher level of Si exhibits higher Ar3, and higher hardness both under undeformed and deformed conditions compared with the steel with a lower Si content. Especially, the influence of Si on At3 is dependent on deformation. Such effects are more significant under the undeformed condition. The hardness of both steels increases with the increase of cooling rates, whereas, the deformation involved in both steels reduces the hardness.