The origin of the Jurassic low maturity natural gas in the Turpan-Hami Basin has attracted scientists’attention for some time,and it is known that radiogenesis may have played a role.However,little has been done on t...The origin of the Jurassic low maturity natural gas in the Turpan-Hami Basin has attracted scientists’attention for some time,and it is known that radiogenesis may have played a role.However,little has been done on the uranium-rich background of the whole basin.Based on plentiful logging and geological data for the Jurassic strata in the Turpan-Hami Basin,this research examined the features and factors controlling the distribution of rocks with high gamma reading.The results show that 70%-100%of the rocks with high gamma readings correspond to mudstones in the prodelta subfacies rather than those in semideep-deep lacustrine subfacies rich in mudstones.Therefore,we propose that the distribution of rocks with high gamma readings is mainly controlled by sedimentary facies rather than by lithology.Further analysis of the gamma spectrometry logging data shows that high gamma values are more strongly correlated with U content than with Th or K content.By comparing the U and Th contents of felsic rocks in peripheral provenances,we find that the Jueluotage Mountain and Harlik Mountain were the dominant uranium sources for the Jurassic Turpan-Hami Basin.Radiolysis due to high-level uranium in the prodelta subfacies can make the low maturity source rocks generate H2 and CH4,thus contributing to the production of low maturity natural gas in the Turpan-Hami Basin.展开更多
Bicyclic sesquiterpenoids are mostly used to illustrate the origins of organic matter and genetic types of crude oil presently.In this paper,the relationship between distributions and compositions of C16 homodrimane i...Bicyclic sesquiterpenoids are mostly used to illustrate the origins of organic matter and genetic types of crude oil presently.In this paper,the relationship between distributions and compositions of C16 homodrimane in immature to mature source rocks and evolution of organic matter was studied,and the correlation between C16 homodrimane at immature to low mature stages and thermal evolution of organic matter was analyzed.The results show that in terrestrial facies depositional system,the ratio of 8α(H)-homodrimane to 8β(H)-homodrimane has a high sensitivity about the maturity’s minor changes at immature to low mature stages.It is found that when the vitrinite reflectance R0<0.7%,the ratio significantly decreases with increasing burial depth or maturity.This kind of phenomenon reveals that these parameters may be the useful maturity indicators for determining the relative maturation of organic matter at immature to low mature stages,and have certain practical value in biogeochemical and en- vironmental geochemical research on low mature oil and gas.展开更多
: Four typical distribution patterns of pentacyclic triterpenoid hydrocarbons (types A-D) are distinguished in the low-mature source rocks from eastern China. Type A has a relatively high content of pentacyclic triter...: Four typical distribution patterns of pentacyclic triterpenoid hydrocarbons (types A-D) are distinguished in the low-mature source rocks from eastern China. Type A has a relatively high content of pentacyclic triterpenes. It exists in immature sediments and the distribution and abundance of triterpenes vary with the maturity of the sediments. An unknown C30 triterpene (UCT2) has also been detected in very shallow sediments. This compound is very unstable and disappears rapidly with the increase of depth. Type B is characterized by a relatively high amount of 17α(H), 21β(H)-30-homohopane. This kind of distribution pattern is common in coals and terrestrial sediments of low maturity. Type C has a relatively high content of diahopane and neohopane series. The analysis shows that this distribution pattern may have an indirect relationship with the input of higher plants despite its microbial source. There are C30—unconfirmed triterpane (UCT2) and a relatively high content of C35 hopane in type D. The distribution patterns of pentacyclic triterpenoids are varied under influences of biological sources, diagentic and sedimentary environments, thermal maturity etc. Therefore, they can provide useful information about the source rocks. Based on geochemical characteristics of the source rocks, the authors postulated that the type B and type C patterns are mainly related to suboxic-anoxic environments. Type D indicates the reducing to anoxic environment, in which C30-UCT3 may be related to some specific biological source in saline environments. The precursors and thermal evolution of some triterpenoid hydrocarbons are also discussed herein.展开更多
In the 80’s of last century, based on the advances in natural gas exploration practice, the concepts of bio-thermocatalytic transitional-zone gas and early thermogenetic gas were proposed, and the lower limit Ro valu...In the 80’s of last century, based on the advances in natural gas exploration practice, the concepts of bio-thermocatalytic transitional-zone gas and early thermogenetic gas were proposed, and the lower limit Ro values for the formation and accumulation of thermogenetic natural gases of industrial importance have been extended to 0.3%–0.4%. In accordance with the two-stage model established on the basis of carbon isotope fractionation involved in the formation of coal-type natural gases, the upper limit Ro values of lowly evolved natural gases should be set at 0.8%–1.0%. This is the concept of low-mature gas which is commonly accepted at the present time. The Urengoy super-large gas field in western Siberian Basin is a typical example of low-mature gas field, where low-mature gas reserves account for 20% of the globally proven natural gas reserves, and this fully indicates the importance of this kind of resources. The proven reserves of natural gases in the Turpan-Hami Basin of China are approximate to 1000×108 m3, and the thermal evolution indices of source rocks are Ro=0.4%–0.8%. The δ13C1 values of methane are mainly within the range of -44‰– -39‰ (corresponding to Ro=0.6%–0.8%), and those of ethane are mainly within the range of -29‰– -26‰, indicating that these natural gases should be designated to the coal-type low-mature gases. The light hydrocarbon evolution indices of natural gases also provide strong evidence suggesting that they are the coal-type low-mature gases. If so, low-mature gas in the Turpan-Hami Basin has been accumulated to such an extent as to be equivalent to the total reserves of three large-sized gas fields, and their existence is of great significance in the study and exploration of China’s low-mature gases. If it is evidenced that the source rocks of low-mature gases are related mainly to coal measures, China’s abundant lowly evolved coal series resources will provide a huge resource potentiality for the generation of low-mature gases.展开更多
At present, shallow gases have received much attention due to low cost in exploration and production. Low-mature gases, as one significant origin to shallow gas, turns to be an important research topic. The present un...At present, shallow gases have received much attention due to low cost in exploration and production. Low-mature gases, as one significant origin to shallow gas, turns to be an important research topic. The present understanding of low-mature gases is confined within some geological cases, and few laboratory studies have been reported. Therefore, the potential and characters of low- mature gases are not clear up to now. Here, two premature samples (one coal and the other shale) were pyrolyzed in a gold confined system. The gaseous components including hydrocarbon gases and non-hydrocarbon gases were analyzed. Based on kinetic modeling, the formation of low-mature gases was modeled. The results showed that during low mature stage, about 178 mL/gTOC gas was generated from the shale and 100 mL/gTOC from the coal. Two third to three fourth of the generated gases are non-hydrocarbon gases such as H2S and CO2. The total yields of C1-5 for the two samples are almost the same, 30-40 mL/gTOC, but individual gaseous hydrocarbon is different. The shale has much lower C1 but higher C2-5, whereas the coal has higher C1 but lower C2-5. Hydrocarbon gases formed during low-mature stage are very wet. The stable carbon isotope ratios of methane range from -40‰ to -50‰ (PDB), in good consistence with empiric criterion for low-mature gases summed up by the previous researchers. The generation characters suggest that the low-mature gases could be accumulated to form an economic gas reservoir, but most of them occur only as associated gases.展开更多
针对陆东凹陷交力格洼陷中低成熟度页岩油储层分布特征与富集控制因素不明等问题,通过开展二维核磁共振分析、纳米CT扫描、干酪根显微组分鉴定等方法,对页岩油储层含油性特征进行研究,综合页岩岩相、储集性、含油性及可动性等因素,基于...针对陆东凹陷交力格洼陷中低成熟度页岩油储层分布特征与富集控制因素不明等问题,通过开展二维核磁共振分析、纳米CT扫描、干酪根显微组分鉴定等方法,对页岩油储层含油性特征进行研究,综合页岩岩相、储集性、含油性及可动性等因素,基于储层及含油性分级参数建立了页岩油“甜点”综合评价标准。结果表明:页岩纹层与层理的发育程度、密度、岩性等结构特征是含油性特征及分布的主要影响因素。层状含粗粒岩屑粉砂岩与纹层状长英质页岩岩相微观孔隙结构及连通性较好,比表面积小于15 m 2/g,氮气吸附平均孔径大于8 nm,为优质储层。Ⅰ+Ⅱ类“甜点”TOC大于1%,储层发育中、大孔,占比大于25%,储集空间孔径大于8 nm,含油性和可动性为中等—好,油气相对富集。该成果可为研究区页岩油有利目标优选及试验区部署评价提供技术支撑。展开更多
基金supported by the National Natural Science Foundation of China(grant numbers 41330315,41402093)。
文摘The origin of the Jurassic low maturity natural gas in the Turpan-Hami Basin has attracted scientists’attention for some time,and it is known that radiogenesis may have played a role.However,little has been done on the uranium-rich background of the whole basin.Based on plentiful logging and geological data for the Jurassic strata in the Turpan-Hami Basin,this research examined the features and factors controlling the distribution of rocks with high gamma reading.The results show that 70%-100%of the rocks with high gamma readings correspond to mudstones in the prodelta subfacies rather than those in semideep-deep lacustrine subfacies rich in mudstones.Therefore,we propose that the distribution of rocks with high gamma readings is mainly controlled by sedimentary facies rather than by lithology.Further analysis of the gamma spectrometry logging data shows that high gamma values are more strongly correlated with U content than with Th or K content.By comparing the U and Th contents of felsic rocks in peripheral provenances,we find that the Jueluotage Mountain and Harlik Mountain were the dominant uranium sources for the Jurassic Turpan-Hami Basin.Radiolysis due to high-level uranium in the prodelta subfacies can make the low maturity source rocks generate H2 and CH4,thus contributing to the production of low maturity natural gas in the Turpan-Hami Basin.
文摘Bicyclic sesquiterpenoids are mostly used to illustrate the origins of organic matter and genetic types of crude oil presently.In this paper,the relationship between distributions and compositions of C16 homodrimane in immature to mature source rocks and evolution of organic matter was studied,and the correlation between C16 homodrimane at immature to low mature stages and thermal evolution of organic matter was analyzed.The results show that in terrestrial facies depositional system,the ratio of 8α(H)-homodrimane to 8β(H)-homodrimane has a high sensitivity about the maturity’s minor changes at immature to low mature stages.It is found that when the vitrinite reflectance R0<0.7%,the ratio significantly decreases with increasing burial depth or maturity.This kind of phenomenon reveals that these parameters may be the useful maturity indicators for determining the relative maturation of organic matter at immature to low mature stages,and have certain practical value in biogeochemical and en- vironmental geochemical research on low mature oil and gas.
文摘: Four typical distribution patterns of pentacyclic triterpenoid hydrocarbons (types A-D) are distinguished in the low-mature source rocks from eastern China. Type A has a relatively high content of pentacyclic triterpenes. It exists in immature sediments and the distribution and abundance of triterpenes vary with the maturity of the sediments. An unknown C30 triterpene (UCT2) has also been detected in very shallow sediments. This compound is very unstable and disappears rapidly with the increase of depth. Type B is characterized by a relatively high amount of 17α(H), 21β(H)-30-homohopane. This kind of distribution pattern is common in coals and terrestrial sediments of low maturity. Type C has a relatively high content of diahopane and neohopane series. The analysis shows that this distribution pattern may have an indirect relationship with the input of higher plants despite its microbial source. There are C30—unconfirmed triterpane (UCT2) and a relatively high content of C35 hopane in type D. The distribution patterns of pentacyclic triterpenoids are varied under influences of biological sources, diagentic and sedimentary environments, thermal maturity etc. Therefore, they can provide useful information about the source rocks. Based on geochemical characteristics of the source rocks, the authors postulated that the type B and type C patterns are mainly related to suboxic-anoxic environments. Type D indicates the reducing to anoxic environment, in which C30-UCT3 may be related to some specific biological source in saline environments. The precursors and thermal evolution of some triterpenoid hydrocarbons are also discussed herein.
基金the Advanced Research Project sponsored by ChinaPetro Company Limited "The Rules of Accumulation of Low-mature Gas and Biogenetic Gas and Resources Assessment Techniques"
文摘In the 80’s of last century, based on the advances in natural gas exploration practice, the concepts of bio-thermocatalytic transitional-zone gas and early thermogenetic gas were proposed, and the lower limit Ro values for the formation and accumulation of thermogenetic natural gases of industrial importance have been extended to 0.3%–0.4%. In accordance with the two-stage model established on the basis of carbon isotope fractionation involved in the formation of coal-type natural gases, the upper limit Ro values of lowly evolved natural gases should be set at 0.8%–1.0%. This is the concept of low-mature gas which is commonly accepted at the present time. The Urengoy super-large gas field in western Siberian Basin is a typical example of low-mature gas field, where low-mature gas reserves account for 20% of the globally proven natural gas reserves, and this fully indicates the importance of this kind of resources. The proven reserves of natural gases in the Turpan-Hami Basin of China are approximate to 1000×108 m3, and the thermal evolution indices of source rocks are Ro=0.4%–0.8%. The δ13C1 values of methane are mainly within the range of -44‰– -39‰ (corresponding to Ro=0.6%–0.8%), and those of ethane are mainly within the range of -29‰– -26‰, indicating that these natural gases should be designated to the coal-type low-mature gases. The light hydrocarbon evolution indices of natural gases also provide strong evidence suggesting that they are the coal-type low-mature gases. If so, low-mature gas in the Turpan-Hami Basin has been accumulated to such an extent as to be equivalent to the total reserves of three large-sized gas fields, and their existence is of great significance in the study and exploration of China’s low-mature gases. If it is evidenced that the source rocks of low-mature gases are related mainly to coal measures, China’s abundant lowly evolved coal series resources will provide a huge resource potentiality for the generation of low-mature gases.
基金supported by the CNPC Project(Grant No.06-01C-01-04)National Natural Science Foundation of China(Grant No.40603014).
文摘At present, shallow gases have received much attention due to low cost in exploration and production. Low-mature gases, as one significant origin to shallow gas, turns to be an important research topic. The present understanding of low-mature gases is confined within some geological cases, and few laboratory studies have been reported. Therefore, the potential and characters of low- mature gases are not clear up to now. Here, two premature samples (one coal and the other shale) were pyrolyzed in a gold confined system. The gaseous components including hydrocarbon gases and non-hydrocarbon gases were analyzed. Based on kinetic modeling, the formation of low-mature gases was modeled. The results showed that during low mature stage, about 178 mL/gTOC gas was generated from the shale and 100 mL/gTOC from the coal. Two third to three fourth of the generated gases are non-hydrocarbon gases such as H2S and CO2. The total yields of C1-5 for the two samples are almost the same, 30-40 mL/gTOC, but individual gaseous hydrocarbon is different. The shale has much lower C1 but higher C2-5, whereas the coal has higher C1 but lower C2-5. Hydrocarbon gases formed during low-mature stage are very wet. The stable carbon isotope ratios of methane range from -40‰ to -50‰ (PDB), in good consistence with empiric criterion for low-mature gases summed up by the previous researchers. The generation characters suggest that the low-mature gases could be accumulated to form an economic gas reservoir, but most of them occur only as associated gases.
文摘针对陆东凹陷交力格洼陷中低成熟度页岩油储层分布特征与富集控制因素不明等问题,通过开展二维核磁共振分析、纳米CT扫描、干酪根显微组分鉴定等方法,对页岩油储层含油性特征进行研究,综合页岩岩相、储集性、含油性及可动性等因素,基于储层及含油性分级参数建立了页岩油“甜点”综合评价标准。结果表明:页岩纹层与层理的发育程度、密度、岩性等结构特征是含油性特征及分布的主要影响因素。层状含粗粒岩屑粉砂岩与纹层状长英质页岩岩相微观孔隙结构及连通性较好,比表面积小于15 m 2/g,氮气吸附平均孔径大于8 nm,为优质储层。Ⅰ+Ⅱ类“甜点”TOC大于1%,储层发育中、大孔,占比大于25%,储集空间孔径大于8 nm,含油性和可动性为中等—好,油气相对富集。该成果可为研究区页岩油有利目标优选及试验区部署评价提供技术支撑。