期刊文献+
共找到550篇文章
< 1 2 28 >
每页显示 20 50 100
Microstructure and mechanical properties of high-strength low alloy steel by wire and arc additive manufacturing 被引量:8
1
作者 Yi-li Dai Sheng-fu Yu +1 位作者 An-guo Huang Yu-sheng Shi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第7期933-942,共10页
A high-building multi-directional pipe joint(HBMDPJ)was fabricated by wire and arc additive manufacturing using high-strength low-alloy(HSLA)steel.The microstructure characteristics and transformation were observed an... A high-building multi-directional pipe joint(HBMDPJ)was fabricated by wire and arc additive manufacturing using high-strength low-alloy(HSLA)steel.The microstructure characteristics and transformation were observed and analyzed.The results show that the forming part includes four regions.The solidification zone solidifies as typical columnar crystals from a molten pool.The complete austenitizing zone forms from the solidification zone heated to a temperature greater than 1100℃,and the typical columnar crystals in this zone are difficult to observe.The partial austenitizing zone forms from the completely austenite zone heated between Ac1(austenite transition temperature)and1100℃,which is mainly equiaxed grains.After several thermal cycles,the partial austenitizing zone transforms to the tempering zone,which consistes of fully equiaxed grains.From the solidification zone to the tempering zone,the average grain size decreases from 75 to20μm.The mechanical properties of HBMDPJ satisfies the requirement for the intended application. 展开更多
关键词 wire and arc additive manufacturing high strength low alloy steel microstructure INCLUSIONS fine grain ferrite mechanical properties
下载PDF
Numerical simulation of residual stress and deformation for submerged arc welding of Q690D high strength low alloy steel thick plate 被引量:6
2
作者 朱梓坤 韩阳 +2 位作者 张舟 张义 周龙早 《China Welding》 CAS 2021年第3期49-58,共10页
The finite element simulation software SYSWELD is used to numerically simulate the temperature field,residual stress field,and welding deformation of Q690D thick plate multi-layer and multi-pass welding under differen... The finite element simulation software SYSWELD is used to numerically simulate the temperature field,residual stress field,and welding deformation of Q690D thick plate multi-layer and multi-pass welding under different welding heat input and groove angles.The simulation results show that as the welding heat input increases,the peak temperature during the welding process is higher,and the residual stress increases,they are all between 330–340 MPa,and the residual stress is concentrated in the area near the weld.The hole-drilling method is used to measure the actual welding residual stress,and the measured data is in good agreement with the simulated value.The type of post-welding deformation is angular deformation,and as the welding heat input increases,the maximum deformation also increases.It shows smaller residual stress and deformation when the groove angle is 40°under the same heat input.In engineering applications,under the premise of guaranteeing welding quality,smaller heat input and 40°groove angle should be used. 展开更多
关键词 numerical simulation multi-layer and multi-pass welding Q690D high strength low alloy steel welding residual stress and deformation
下载PDF
Effect of welding processes on mechanical and microstructural characteristics of high strength low alloy naval grade steel joints 被引量:7
3
作者 S.RAGU NATHAN V.BALASUBRAMANIAN +1 位作者 S.MALARVIZHI A.G.RAO 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2015年第3期308-317,共10页
Naval grade high strength low alloy(HSLA) steels can be easily welded by all types of fusion welding processes. However, fusion welding of these steels leads to the problems such as cold cracking, residual stress, dis... Naval grade high strength low alloy(HSLA) steels can be easily welded by all types of fusion welding processes. However, fusion welding of these steels leads to the problems such as cold cracking, residual stress, distortion and fatigue damage. These problems can be eliminated by solid state welding process such as friction stir welding(FSW). In this investigation, a comparative evaluation of mechanical(tensile, impact,hardness) properties and microstructural features of shielded metal arc(SMA), gas metal arc(GMA) and friction stir welded(FSW) naval grade HSLA steel joints was carried out. It was found that the use of FSW process eliminated the problems related to fusion welding processes and also resulted in the superior mechanical properties compared to GMA and SMA welded joints. 展开更多
关键词 低合金高强度钢 焊接工艺 钢接头 组织结构 力学性能 搅拌摩擦焊 机械特性 焊接方法
下载PDF
Effect of Heat Treatment on Microstructure and Mechanical properties of high strength low alloy(HSLA)steel
4
作者 Siyuan ZHAO Kaixuan CHEN +2 位作者 Yalikun·WUQIKUN Xiaohua CHEN Zidong WANG 《Research and Application of Materials Science》 2019年第2期31-38,共8页
In this paper,a Fe-based Mn-Ni–Cr–Mo high strength low alloy(HSLA)steel was prepared by using Vacuum melting,following by hot rolling with 78%deformation and various heat treatment processes.Microstructure were char... In this paper,a Fe-based Mn-Ni–Cr–Mo high strength low alloy(HSLA)steel was prepared by using Vacuum melting,following by hot rolling with 78%deformation and various heat treatment processes.Microstructure were characterized by optical microscope(OM),scanning electron microscope(SEM)equipped with energy dispersive spectrometer.Tensile tests were performed.After direct quenching(Q)from 860℃,the samples were subjected to secondary quenching(L)at different intercritical temperatures within the two-phase region and various tempering temperatures(T).Results show that QLT treatment increases elongation and decreases yield ratio compared with conventional quenching and tempering process(QT).The optimum QLT heat treatment parameter in terms of temperature are determined as Q:860℃,L:700℃,and T:600℃,resulting in the better combined properties with yield strength of 756MPa,tensile strength of 820MPa,tensile elongation of 16.76%and yield ratio of 0.923. 展开更多
关键词 high strength low alloy(HSLA)steel QLT HEAT treatment TEMPERING MICROSTRUCTURES mechanical properties
下载PDF
Effect of microstructure variation on the corrosion behavior of high-strength low-alloy steel in 3.5wt% NaCl solution 被引量:3
5
作者 Yu-bing Guo Chong Li +4 位作者 Yong-chang Liu Li-ming Yu Zong-qing Ma Chen-xi Liu Hui-jun Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第6期604-612,共9页
The effect of microstructure variation on the corrosion behavior of high-strength low-alloy(HSLA) steel was investigated. The protective property of the corrosion product layer was also explored. Experimental result... The effect of microstructure variation on the corrosion behavior of high-strength low-alloy(HSLA) steel was investigated. The protective property of the corrosion product layer was also explored. Experimental results reveal that the type of microstructure has significant effect on the corrosion resistance of HSLA steel. The measurement results of weight loss, potentiodynamic polarization curves, and electrochemical impedance spectroscopy indicate that the steel with acicular ferrite microstructure exhibits the lowest corrosion rate. Martensite exhibits a reduced corrosion resistance compared with polygonal ferrite. It is found that the surface of the acicular ferrite specimen uniformly covered by corrosion products is seemingly denser and more compact than those of the other two microstructures, and can provide some amount of protection to the steel; thus, the charge transfer resistance and modulus values of the acicular ferrite specimen are the largest. However, corrosion products on martensite and polygonal ferrite are generally loose, porous, and defective, and can provide minor protectiveness; thus, the charge transfer resistance values for polygonal ferrite and martensite are lower. 展开更多
关键词 high-strength low-alloy steel microstructure corrosion sodium chloride solutions
下载PDF
Research and development of hot-rolled ultra-high strength steel at Baosteel 被引量:1
6
作者 ZHENG Lei ZHANG Aiwen TANG Wenjun 《Baosteel Technical Research》 CAS 2010年第2期48-53,共6页
The effects of the composition and cooling process on the microstructures and properties of hot-rolled ultra-high strength low alloy (HSLA) steel, complex phase steel and martensite steel were studied in the laborat... The effects of the composition and cooling process on the microstructures and properties of hot-rolled ultra-high strength low alloy (HSLA) steel, complex phase steel and martensite steel were studied in the laboratory. And S700MC and MP1200 ultra-high strength steels were trial produced at the 1 880 mm hot-rolling line of Baosteel. Compared with conventional hot-rolled high strength products,the idea that water is alloy was applied in the newly developed hot-rolled ultra-high strength steel. By the use of the economical composition design and controlled cooling after hot-rolling effectively,ultra-high strength steel of different steel grades can be obtained. 展开更多
关键词 ultra-high strength low alloy steel complex phase steel martensite steel
下载PDF
Low temperature impact toughness of laser hybrid welded joint of high strength low alloy steel
7
作者 倪加明 李铸国 +2 位作者 黄坚 倪慧峰 吴毅雄 《China Welding》 EI CAS 2011年第3期1-5,共5页
High strength low alloy steel with 16 mm thickness was welded by using high power laser hybrid welding. Microstrueture was characterized by using optical microscopy, scanning electron microscopy ( SEM ) , transmissi... High strength low alloy steel with 16 mm thickness was welded by using high power laser hybrid welding. Microstrueture was characterized by using optical microscopy, scanning electron microscopy ( SEM ) , transmission electron microscopy (TEM) and selected area electron diffraction (SAED). Low temperature impact toughness was estimated by using Charpy V-notch impact samples selected from the upper part and the lower part at the same heterogeneous joint. Results show that the low temperature impact absorbed energies of weld metal are (202,180,165 J) of upper samples and (178,145,160 J) of lower samples, respectively. All of them increase compared to base metal. The embrittlement of HAZ does not occur. Weld metal primarily consists of refined carbide free bainite and a little granular bainite since laser hybrid welding owns the character of low heat input. Retained austenite constituent film "locates among the lath structure of bainitie ferrite. Refined bainitic ferrite lath and retained austenite constituent film provide better low temperature impact toughness compared to base metal. 展开更多
关键词 laser hybrid welding high strength low alloy steel low temperature impact toughness carbide free bainite retained austenite constituent film
下载PDF
Thermal Activation Analyses of Dynamic FractureToughness of High Strength Low Alloy Steels
8
作者 Cunjian LI and Shaohua LI Welding Research Department, Central Iron & Steel Research Institute, Beijing 100081, China Yuqing DENG State Administration of Metallurgical Industry, Beijing 100711, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第2期215-218,共4页
A formula is derived for determining the influence of temperature and loading rate on dynamic fracture toughness of a high strength low alloy steel (HQ785C) from thermal activation analysis of the experimental results... A formula is derived for determining the influence of temperature and loading rate on dynamic fracture toughness of a high strength low alloy steel (HQ785C) from thermal activation analysis of the experimental results of three-point bend specimens as well as introducing an Arrhenius formula. It is shown that the results obtained by the given formula are in good agreement with the experimental ones in the thermal activation region. The present method is also valuable to describe the relationship between dynamic fracture toughness and temperature and loading rate of other high strength low alloy steels. 展开更多
关键词 TEST GB Thermal Activation Analyses of Dynamic FractureToughness of high strength low alloy steels
下载PDF
The welding application of high strength steels used in engineering machinery 被引量:7
9
作者 崔冰 严佩佩 +3 位作者 杜全斌 杨德 崔梦栓 彭梦都 《China Welding》 CAS 2021年第1期57-64,共8页
With the rapid development of low alloy steel strength level,more problems caused by welding are exposed day by day.Recently,the efforts have been paid to improve or enchance the low toughness of heated affected zone ... With the rapid development of low alloy steel strength level,more problems caused by welding are exposed day by day.Recently,the efforts have been paid to improve or enchance the low toughness of heated affected zone and welded metal which can enchance the comprehensive mechanical properties that is the core scientific problems of its safe operation by researching crack initiation and crack propragation attracted a rapidly growing interest.This article focuses on the research status and progress of welding technology and joint microstructure and properties of advanced steel materials.The influence of shielding gas on the microstructure evolution of deposited metals,the effect heat input of welded joint performance,interpass temperature and alloy elements on welded joints microstructure and M-A constituent evolution and properties are reviewed in detail.And for the heat affected zone,the grain size and microstructure as well as the shape,size,and distribution of M-A constituent,have a significant impact on the impact toughness.This paper is an attempt to review the effect of different welding process parameters on welded metal and HAZ of HSLA steels. 展开更多
关键词 high strength low alloy steel heat affected zone impact energy MICROSTRUCTURES M-A constituents
下载PDF
MICROSTRUCTURE AND MECHANICAL PROPERTY DEVELOPMENT IN THE SIMULATED HEAT AFFECTED ZONE OF V TREATED HSLA STEELS 被引量:4
10
作者 Y. T. Chen A.M. Guo L.X. Wu J. Zeng P.H. Li 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2006年第1期57-67,共11页
The simulated heat affected zone (HAZ) of the high strength low alloy (HSLA) steels containing 0%, 0.047%, 0.097% and 0.151% vanadium, respectively, were studied with Gleeble-2000 thermomechanical simulator to det... The simulated heat affected zone (HAZ) of the high strength low alloy (HSLA) steels containing 0%, 0.047%, 0.097% and 0.151% vanadium, respectively, were studied with Gleeble-2000 thermomechanical simulator to determine the influence of vanadium addition on the mechanical properties of the HAZ. The HAZ simulation involved reheating the samples to 1350℃, and then cooling to ambient temperature at a cooling rate of 5℃/s ranging from 800 to 500℃ (△8/5=60s). The mechanical properties including tensile strength and -20℃ impact toughness were conducted. The microstructures of the base steel and the simulated HAZs were investigated using optical microscope, scanning electron microscope ( SEM ) and transmission electron microscope (TEM). Based on the systemutic examination, the present work confirmed that about 0.05% vanadium addition to low carbon low alloy steels resulted in expected balance of strength and toughness of the HAZ. And more than 0.10% levels addition led to detrimental toughness of the HAZ SEM study showed that the simulated 0.097% and 0.151%V HAZs consisted of more coarse ferrite plates with greater and more M-A constituents along austenite grain and ferrite plate bound- aries. The impact fracture surfaces of the simulated 0.097% and 0.151%V HAZs showed typically brittle mode with predominant cleavages. The size of the facet in the fracture surface increased with increasing vanadium level from 0.097% to 0.151%.As a result, the simulated 0.151% V HAZ has the lowest impact toughness of the four specimens. 展开更多
关键词 VANADIUM high strength low alloy (HSLA) steel mechanical property heat affected zone (HAZ)
下载PDF
Influence of Ti on Weld Microstructure and Mechanical Properties in Large Heat Input Welding of High Strength Low Alloy Steels 被引量:2
11
作者 A-rong Lin ZHAO +1 位作者 Chuan PAN Zhi-ling TIAN 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2015年第5期431-437,共7页
The influence of Ti on weld microstructure and mechanical properties in large heat input welding of high strength low alloy steels is investigated. The results indicate that a moderate amount of Ti is still effective ... The influence of Ti on weld microstructure and mechanical properties in large heat input welding of high strength low alloy steels is investigated. The results indicate that a moderate amount of Ti is still effective for grain refinement even under larger heat input and a large amount of acicular ferrite (AF) is formed in the weld metal when Ti content is within 0. 028%--0. 038%. With increasing Ti content, proeutectoid ferrite in the weld metal decreases, whereas bainite and M-A constituent increase. The type of inclusion in the welds varies from Mn-Si-AI-O to Ti-Mn- A1-O and finally to Ti-A1-O as Ti content increases from 0 up to 0. 064%. As for adding 0. 028%--0. 038% Ti, high weld toughness could be attained since most inclusions less than 2 tim which contain Ti20s provide the effective nu- clei for aeicular ferrite formation. However, the toughness of the weld metals severely reduces when Ti content is over the optimum ranRe of 0. 028%--0. 038%. 展开更多
关键词 large heat input welding TI MICROSTRUCTURE acicular ferrite INCLUSION high strength low alloy steel
原文传递
Effect of Boron on CGHAZ Microstructure and Toughness of High Strength Low Alloy Steels 被引量:2
12
作者 Han YANG Xi-xia WANG Jin-bo QU 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2014年第8期787-792,共6页
Effect of boron on the microstructure and impact toughness in the coarse-grained heat-affected zone(CGHAZ)of two high strength low alloy steels,boron-free and boron-containing,was investigated by means of weld therm... Effect of boron on the microstructure and impact toughness in the coarse-grained heat-affected zone(CGHAZ)of two high strength low alloy steels,boron-free and boron-containing,was investigated by means of weld thermal simulation test.The result shows that,for the boron-free steel,a microstructure consisting of grain boundary ferrite degenerates pearlite and granular bainite for longer t8/5(the cooling time from 800 to 500 ℃),while lath bainite for shorter t8/5.For the boron-containing steel,granular bainite is dominant for a wide range of t8/5.Continuous cooling transformation(CCT)study on the CGHAZ indicates that the transformation start temperature decreases by about 50-100℃under different t8/5,for the boron-containing steel compared with the boron-free steel.The presence of boron suppresses the nucleation of ferrite at prior austenite grain boundaries and hence enlarges the range of t8/5for granular bainite transformation.However,the addition of boron deteriorates the impact toughness of CGHAZ,which may be due to a markedly increased fraction of martensite-austenite(M-A)constituents and decreased fraction of high angle grain boundaries. 展开更多
关键词 BORON high strength low alloy steel coarse-grained heat-affected zone continuous cooling transforma-tion impact toughness
原文传递
THE VALENCE ELECTRON STRUCTURES OF MARTENSITE IN LOW ALLOY ULTRAHIGH-STRENGTH STEELS AND THEIR INFLUENCE ON STRENGTH AND TOUGHNESS 被引量:4
13
作者 刘志林 戴天时 +2 位作者 屈庸博 杨双良 张振宇 《Chinese Science Bulletin》 SCIE EI CAS 1991年第5期366-371,共6页
Ⅰ. THE VALENCE ELECTRON STRUCTURES OF MARTENSITE IN LOW ALLOY ULTRAHIGH-STRENGTH STEELS AND THE SEGREGATION OF C-ME IN MARTENSITEThe valence electron structures ofmartensite in 30CrMnSiNi<sub>2</sub>A and... Ⅰ. THE VALENCE ELECTRON STRUCTURES OF MARTENSITE IN LOW ALLOY ULTRAHIGH-STRENGTH STEELS AND THE SEGREGATION OF C-ME IN MARTENSITEThe valence electron structures ofmartensite in 30CrMnSiNi<sub>2</sub>A and Gc-4 steels can be established based on Refs. [1—3]. To be brief, only σ, n<sub>A</sub> and n<sub>c</sub><sup>D</sup> are listed in Table 1, which are the values of electron structures of martensite in 30CrMnSi<sub>2</sub>A and Gc-4 steels. 展开更多
关键词 low alloy ultra-high-strength steel MARTENSITE VALENCE ELECTRON structure strength and toughness.
原文传递
Effect of Notch Location on Fatigue Life Prediction of Strength Mismatched HSLA Steel Weldments 被引量:1
14
作者 S.Ravi V.Balasubramanian S.Nemat Nasser 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第2期129-135,共7页
Welding of high strength low alloy steels (HSLA) involves usage of low, even and high strength filler materials (electrodes) than the parent material depending on the application of the welded structures and the avail... Welding of high strength low alloy steels (HSLA) involves usage of low, even and high strength filler materials (electrodes) than the parent material depending on the application of the welded structures and the availability of the filler material. In the present investigation, the fatigue crack growth behaviour of weld metal (WM) and heat affected zone (HAZ) regions of under matched (UM), equal matched (EM) and over matched (OM) joints has been studied. The base material used in this investigation is HSLA-80 steel of weldable grade. Shielded metal arc welding (SMAW) process has been used to fabricate the butt joints. Centre cracked tension (CCT) specimen has been used to evaluate the fatigue crack growth behaviour of the welded joints. Fatigue crack growth experiments have been conducted using servo hydraulic controlled fatigue testing machine at constant amplitude loading (R=0).A method has been proposed to predict the fatigue life of HSLA steel welds using fracture mechanics approach by incorporating influences of mismatch ratio (MMR) and notch location. 展开更多
关键词 Shielded metal arc welding high strength low alloy steel Mismatch ratio Notch location Fatigue crack growth Fatigue life
下载PDF
Hot Deformation and Corrosion Resistance of High-Strength Low-Alloy Steel 被引量:4
15
作者 Wilasinee Kingkam Cheng-Zhi Zhao +2 位作者 Hong Li He-Xin Zhang Zhi-Ming Li 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2019年第4期495-505,共11页
The hot deformation characteristics and the corrosion behavior of a high-strength low-alloy(HSLA) steel were investigated at deformation temperatures ranging from 800 to 1100 ℃ and strain rates ranging from 0.1 to 10... The hot deformation characteristics and the corrosion behavior of a high-strength low-alloy(HSLA) steel were investigated at deformation temperatures ranging from 800 to 1100 ℃ and strain rates ranging from 0.1 to 10 s-1 using an MMS-200 thermal simulation testing machine. Based on the flow curves from the experiment, the effects of temperature and strain rate on the dynamic recrystallization behavior were analyzed. The flow stress decreased with increasing deformation temperature and decreasing strain rate. With the assistance of the process parameters, constitutive equations were used to obtain the activation energy and hot working equation. The hot deformation activation energy of HSLA steel in this work was 351.87 kJ/mol. The work hardening rate was used to determine the critical stress(strain) or the peak stress(strain). The dependence of these characteristic values on the Zener-Hollomon parameter was found. A dynamic recrystallization kinetics model of the tested HSLA steel was constructed, and the validity of the model was confirmed by the experimental results. Observation of the microstructures indicated that the grain size increased with increasing deformation temperature,which led to a lowered corrosion resistance of the specimens. 展开更多
关键词 Dynamic RECRYSTALLIZATION POTENTIODYNAMIC polarization HOT deformation Flow stress high-strength low-alloy steel
原文传递
High-resolution Transmission Electron Microscopy Characterization of the Structure of Cu Precipitate in a Thermal-aged Multicomponent Steel 被引量:1
16
作者 Lizhan Han Qingdong Liu Jianfeng Gu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第5期117-124,共8页
High-dispersed nanoscale Cu precipitates often contribute to extremely high strength due to precipitation hardening,and whereas usually lead to degraded toughness for especially ferritic steels.Hence,it is important t... High-dispersed nanoscale Cu precipitates often contribute to extremely high strength due to precipitation hardening,and whereas usually lead to degraded toughness for especially ferritic steels.Hence,it is important to understand the formation behaviors of the Cu precipitates.High-resolution transmission electron microscopy(TEM)is utilized to investigate the structure of Cu precipitates thermally formed in a high-strength low-alloy(HSLA)steel.The Cu precipitates were generally formed from solid solution and at the crystallographic defects such as martensite lath boundaries and dislocations.The Cu precipitates in the same aging condition have various structure of BCC,9 R and FCC,and the structural evolution does not greatly correlate with the actual sizes.The presence of different structures in an individual Cu precipitate is observed,which reflects the structural transformation occurring locally to relax the strain energy.The multiply additions in the steel possibly make the Cu precipitation more complex compared to the binary or the ternary Fe-Cu alloys with Ni or Mn additions.This research gives constructive suggestions on alloying design of Cu-bearing alloy steels. 展开更多
关键词 CU PRECIPITATE high-resolution transmission electron microscopy THERMAL aging high-strength low-alloy steel
下载PDF
Effect of heat input on microstructure and mechanical properties of dissimilar joints of AISI 316L steel and API X70 high-strength low-alloy steel 被引量:3
17
作者 Ebrahim Mortazavi Reza Amini Najafabadi Amirhossein Meysami 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2017年第12期1248-1253,共6页
The microstructure and mechanical properties of dissimilar joints of AISI 316L austenitic stainless steel and API X70 high-strength low-alloy steel were investigated.For this purpose,gas tungsten arc welding(GTAW)wa... The microstructure and mechanical properties of dissimilar joints of AISI 316L austenitic stainless steel and API X70 high-strength low-alloy steel were investigated.For this purpose,gas tungsten arc welding(GTAW)was used in three different heat inputs,including 0.73,0.84,and 0.97 kJ/mm.The microstructural investigations of different zones including base metals,weld metal,heat-affected zones and interfaces were performed by optical microscopy and scanning electron microscopy.The mechanical properties were measured by microhardness,tensile and impact tests.It was found that with increasing heat input,the dendrite size and inter-dendritic spacing in the weld metal increased.Also,the amount of delta ferrite in the weld metal was reduced.Therefore,tensile strength and hardness were reduced and impact test energy was increased.The investigation of the interface between AISI 316L base metal and ER316L filler metal showed that increasing the heat input increases the size of austenite grains in the fusion boundary.A transition region was formed at the interface between API X70 steel and filler metals. 展开更多
关键词 Dissimilar joint AISI 316L steel API X70 high-strength low-alloy steel Transition region Heat input
原文传递
Effects of Phosphorus Grain Boundary Segregation and Hardness on the Ductile-to-Brittle Transition for a 2.25CrMo Steel
18
作者 宋申华 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第1期1-6,共6页
The combined effect of phosphorus grain boundary segregation and hardness on the ductile-to-brittle transition was examined for a P-doped 2.25CrlMo steel by using Auger electron spectroscopy in conjunction with hardne... The combined effect of phosphorus grain boundary segregation and hardness on the ductile-to-brittle transition was examined for a P-doped 2.25CrlMo steel by using Auger electron spectroscopy in conjunction with hardness measurements, Charpy impact tests and scanning electron microscopy. With prolonging time at 540 ~C after water quenching from 980℃, the segregation of phosphorus increases and the hardness decreases. The DBTT (FATT) increases with increasing phosphorus segregation and decreases with decreasing hardness. The effect of phosphorus segregation is dominant until 100 h aging and after that the hardness effect becomes dominant. This effect makes the DBTT (FATT) decrease with further prolonging ageing time although the segregation of phosphorus still increases strongly. 展开更多
关键词 SEGREGATION grain boundary high strength low alloy steel EMBRITTLEMENT FRACTURE
下载PDF
Latest Progress of Low-Alloy High-Strength Steels in Baosteel
19
作者 LU Jiang-xin (Research Institute,Baoshan Iron & Steel Co.,Ltd.,Shanghai,201900,China) 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2011年第S1期72-79,共8页
After research and development for decades,low-alloy high-strength steels have been widely used and playing an important role in economy.This article introduces,from the perspective of environmental protection,the Bao... After research and development for decades,low-alloy high-strength steels have been widely used and playing an important role in economy.This article introduces,from the perspective of environmental protection,the Baosteel’s latest progress of low-alloy high-strength steels continuously innovated with the focus of achieving high-strength,high-toughness,long service life and versatile functions,and with the aim of providing energy-saving and pollution-reduction solutions to down-stream sectors. 展开更多
关键词 low-alloy high-strength steel environmental protection energy-saving and pollution-reduction
原文传递
New insights into the mechanism of localised corrosion induced by TiN-containing inclusions in high strength low alloy steel 被引量:3
20
作者 Chao Liu Reynier I.Revilla +6 位作者 Xuan Li Zaihao Jiang Shufeng Yang Zhongyu Cui Dawei Zhang Herman Terryn Xiaogang Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第29期141-149,共9页
This work investigated the chemical and electrochemical mechanisms of localised corrosion triggered by CaS·xMgO·y Al_(2)O_(3)·TiN complex inclusions in high strength low alloy steel(HSLAS)under a simula... This work investigated the chemical and electrochemical mechanisms of localised corrosion triggered by CaS·xMgO·y Al_(2)O_(3)·TiN complex inclusions in high strength low alloy steel(HSLAS)under a simulated marine environment.Special focus was given to the role of the TiN portion of the inclusion on the initiation and growth of the corrosion pits.The thermodynamic process of pitting initiation was investigated by Gibbs free energy,Pourbaix diagram and first principle calculation.Localised corrosion is mainly induced by inclusions and triggered by dissolution of adjacent distorted matrix.Chemical dissolution of CaS portion in CaS·xMgO·y Al_(2)O_(3)·TiN complex inclusion creates an acidic aggressive environment that accelerates the further dissolution of inclusion and matrix.Galvanic coupling effect between TiN inclusion and matrix is directly verified.TiN covered with a TiOfilm acts as the cathodic phase in galvanic corrosion,although it has a lower Volta potential than the matrix.This is an unusual correlation with the scanning Kelvin probe force microscopy result,which has been explained for this special system. 展开更多
关键词 high strength low alloy steel TiN-containing inclusion Localised corrosion Pourbaix diagram First principle calculation
原文传递
上一页 1 2 28 下一页 到第
使用帮助 返回顶部