To this day, only two types of solar power plants have been proposed and built: high temperature thermal solar one and photovoltaic one. It is here proposed a new type of solar thermal plant using glass-top flat surfa...To this day, only two types of solar power plants have been proposed and built: high temperature thermal solar one and photovoltaic one. It is here proposed a new type of solar thermal plant using glass-top flat surface solar collectors, so working at low temperature (i.e., below 100°C). This power plant is aimed at warm countries, i.e., the ones mainly located between -40° and 40° latitude, having available space along their coast. This land based plant, to install on the seashore, is technologically similar to the one used for OTEC (Ocean Thermal Energy Conversion). This plant, apart from supplying electricity with a much better thermodynamic efficiency than OTEC plants, has the main advantage of providing desalinated water for drinking and irrigation. This plant is designed to generate electricity (and desalinated water) night and day and all year round, by means of hot water storage, with just a variation of the power delivered depending on the season.展开更多
Lower temperature waste heats less than 373 K have strong potentials to supply additional energies because of their enormous quantities and ubiquity. Accordingly, reinforcement of power generations harvesting low temp...Lower temperature waste heats less than 373 K have strong potentials to supply additional energies because of their enormous quantities and ubiquity. Accordingly, reinforcement of power generations harvesting low temperature heats is one of the urgent tasks for the current generation in order to accomplish energy sustainability in the coming decades. In this study, a liquid turbine power generator driven by lower temperature heats below 373 K was proposed in the aim of expanding selectable options for harvesting low temperature waste heats less than 373 K. The proposing system was so simply that it was mainly composed of a liquid turbine, a liquid container with a biphasic medium of water and an underlying water-insoluble low-boiling-point medium in a liquid phase, a heating section for vaporization of the liquid and a cooling section for entropy discharge outside the system. Assumed power generating steps via the proposing liquid turbine power generator were as follows: step 1: the underlying low-boiling-point medium in a liquid phase was vaporized, step 2: the surfacing vapor bubbles of low-boiling-point medium accompanied the biphasic medium in their wakes, step 3: such high momentum flux by step 2 rotated the liquid turbine (i.e. power generation), step 4: the surfacing low-boiling-point medium vapor was gradually condensed into droplets, step 5: the low-boiling-point medium droplets were submerged to the underlying medium in a liquid phase. Experiments with a prototype liquid turbine power generator proved power generations in accordance with the assumed steps at a little higher than ordinary temperature. Increasing output voltage could be obtained with an increase in the cooling temperature among tested ranging from 294 to 296 K in contrast to normal thermal engines. Further improvements of the direct current voltage from the proposing liquid turbine power generator can be expected by means of far more vigorous multiphase flow induced by adding solid powders and theoretical optimizations of heat and mass transfers.展开更多
The low-temperature heat capacities are studied for antiperovskite compounds AX M_3(A = Al, Ga, Cu, Ag, Sn, X = C,N, M = Mn, Fe, Co). A large peak in(C- γ T)/T^3 versus T is observed for each of a total of 18 com...The low-temperature heat capacities are studied for antiperovskite compounds AX M_3(A = Al, Ga, Cu, Ag, Sn, X = C,N, M = Mn, Fe, Co). A large peak in(C- γ T)/T^3 versus T is observed for each of a total of 18 compounds investigated,indicating an existence of low-energy phonon mode unexpected by Debye T^3 law. Such a peak is insensitive to the external magnetic field up to 80 k Oe(1 Oe = 79.5775 A·m-1). For compounds with smaller lattice constant, the peak shifts towards higher temperatures with a reduction of peak height. This abnormal peak in(C- γ T)/T^3 versus T of antiperovskite compound may result from the strongly dispersive acoustic branch due to the heavier A atoms and the optical-like mode from the dynamic rotation of X M_6 octahedron. Such a low-energy phonon mode may not contribute negatively to the normal thermal expansion in AX M_3 compounds, while it is usually concomitant with negative thermal expansion in open-structure material(e.g., ZrW_2O_8, Sc F_3).展开更多
A new approach to application of mid-and low-temperature solar thermochemical technology was in-troduced and investigated.Concentrated solar thermal energy in the range of 150―300℃ can be effi-ciently converted into...A new approach to application of mid-and low-temperature solar thermochemical technology was in-troduced and investigated.Concentrated solar thermal energy in the range of 150―300℃ can be effi-ciently converted into high-grade solar fuel by integrating this technique with the endothermic reaction of hydrocarbons.The conversion mechanism of upgrading the low-grade solar thermal energy to high-grade chemical energy was examined based on the energy level.The new mechanism was used to integrate two novel solar thermal power systems:A solar/methanol fuel hybrid thermal power plant and a solar-hybrid combined cycle with inherent CO2 separation using chemical-looping combustion,for developing highly efficient solar energy use to generate electricity.An innovative prototype of a 5-kW solar receiver/reactor,as the key process for realizing the proposed system,was designed and manu-factured.Furthermore,experimental validation of energy conversion of the mid-and low-temperature solar thermochemical processes were conducted.In addition,a second practical and viable approach to the production of hydrogen,in combination with the novel mid-and low-temperature solar thermo-chemical process,was proposed and demonstrated experimentally in the manufactured solar re-ceiver/reactor prototype through methanol steam reforming.The results obtained here indicate that the development of mid-and low-temperature solar thermochemical technology may provide a promising and new direction to efficient utilization of low-grade solar thermal energy,and may enable step-wise approaches to cost-effective,globally scalable solar energy systems.展开更多
The widespread diffusion of renewable energy sources calls for the development of high-capacity energy storage systems as the A-CAES(Adiabatic Compressed Air Energy Storage)systems.In this framework,low temperature(10...The widespread diffusion of renewable energy sources calls for the development of high-capacity energy storage systems as the A-CAES(Adiabatic Compressed Air Energy Storage)systems.In this framework,low temperature(100℃–200℃)A-CAES(LT-ACAES)systems can assume a key role,avoiding some critical issues connected to the operation of high temperature ones.In this paper,two different LT-ACAES configurations are proposed.The two configurations are characterized by the same turbomachines and compressed air storage section,while differ in the TES section and its integration with the turbomachinery.In particular,the first configuration includes two separated cycles:the working fluid(air)cycle and the heat transfer fluid(HTF)cycle.Several heat exchangers connect the two cycles allowing to recover thermal energy from the compressors and to heat the compressed air at the turbine inlet.Two different HTFs were considered:air(case A)and thermal oil(case B).The second configuration is composed of only one cycle,where the operating fluid and the HTF are the same(air)and the TES section is composed of three different packed-bed thermal storage tanks(case C).The tanks directly recover the heat from the compressors and heat the air at each turbine inlet,avoiding the use of heat exchangers.The LT-ACAES systems were modelled and simulated using the ASPEN-Plus and the MATLAB-Simulink environments.The main aim of this study was the detailed analysis of the reciprocal influence between the turbomachinery and the TES system;furthermore,the performance evaluation of each plant was carried out assuming both on-design and off-design operating conditions.Finally,the different configurations were compared through the main performance parameters,such as the round-trip efficiency.A total power output of around 10 MW was set,leading to a TES tank volume ranging between 500 and 700 m^(3).The second configuration with three TES systems appears to be the most promising in terms of round-trip efficiency since the energy produced during the discharging phase is greater.In particular,the round-trip efficiency of the LT-ACAES ranges between 0.566(case A)to 0.674(case C).Although the second configuration assures the highest performance,the effect of operating at very high pressures inside the tanks should be carefully evaluated in terms of overall costs.展开更多
Three generation systems, namely, steam Rankine cycle (SRC), organic Rankine cycle (ORC), and steam-organic combined Rankine cycle (S-ORC), were simulated using the Engineering Equation Solver fEES) to efficien...Three generation systems, namely, steam Rankine cycle (SRC), organic Rankine cycle (ORC), and steam-organic combined Rankine cycle (S-ORC), were simulated using the Engineering Equation Solver fEES) to efficiently utilize flue gas emissions from 200 to 450 ℃ in iron and steel plants. Based on the simulation results for thermal efficiency, exergy efficiency, and power generation, the performances of the three power generation systems were compared and analyzed. To further utilize waste heat from the turbine exhaust steam of the ORC system, cas- cade ()RC (CORC) was designed for heat sources above 300 ℃. Based on a comprehensive performance comparison, the application of the ORC using R141b is preferable for 200 to 300 ℃ flue gas. For 300 to 450 ℃ flue gas, CORC is an alternative technology to improve the efficiency and quality of waste heat utilization. For flue gas above 450 ℃, S-ORC can achieve higher efficiency and power generation than conventional SRC, with a relatively small negative pressure and high dryness of the turbine outlet steam. Hence, S-ORC can be considered as a substitute for SRC.展开更多
The eco-responsible lead-free piezoelectric ceramics have been intensively searched for more than adecade, however, the final goal to replace toxic ceramics like lead zirconate titanate (PZT) with lead-freecompounds, ...The eco-responsible lead-free piezoelectric ceramics have been intensively searched for more than adecade, however, the final goal to replace toxic ceramics like lead zirconate titanate (PZT) with lead-freecompounds, having comparable or even better performance has not yet been reached. In this road, thelead-free ceramics Ba_(0.85)Ca_(0.15)Zr_(0.1)Ti_(0.9)O_(3) (BCZT), possessing excellent dielectric, ferroelectric, andpiezoelectric properties are regarded as serious candidates for the PZT replacement. Besides, nano-structuring BCZT is of paramount importance to enhance these functionalities even more. Here, BCZTmultipodes are designed by template-growth hydrothermal synthesis using hydrogen zirconate titanatenanowires. We demonstrate that the fabricated BCZT multipodes exhibit high dielectric permittivity of5300 with a temperature stability coefficient of ±5.9% between 20 and 140℃. A significant recoveredenergy density of 315.0 mJ/cm^(3) with high thermal stability and high energy storage efficiency of 87.4%,and enhanced large-signal piezoelectric coefficient d^(*)_(33) (310 pm/V) are found. Compared to the tradi-tional BCZT ceramics reported in the literature, relying on high-temperature processing, our sampleexhibits boosted energy storage parameters at a much lower temperature. These outcomes may offer anew strategy to tailor eco-responsible relaxor ferroelectrics toward superior energy storage performancefor ceramic capacitor applications.展开更多
文摘To this day, only two types of solar power plants have been proposed and built: high temperature thermal solar one and photovoltaic one. It is here proposed a new type of solar thermal plant using glass-top flat surface solar collectors, so working at low temperature (i.e., below 100°C). This power plant is aimed at warm countries, i.e., the ones mainly located between -40° and 40° latitude, having available space along their coast. This land based plant, to install on the seashore, is technologically similar to the one used for OTEC (Ocean Thermal Energy Conversion). This plant, apart from supplying electricity with a much better thermodynamic efficiency than OTEC plants, has the main advantage of providing desalinated water for drinking and irrigation. This plant is designed to generate electricity (and desalinated water) night and day and all year round, by means of hot water storage, with just a variation of the power delivered depending on the season.
文摘Lower temperature waste heats less than 373 K have strong potentials to supply additional energies because of their enormous quantities and ubiquity. Accordingly, reinforcement of power generations harvesting low temperature heats is one of the urgent tasks for the current generation in order to accomplish energy sustainability in the coming decades. In this study, a liquid turbine power generator driven by lower temperature heats below 373 K was proposed in the aim of expanding selectable options for harvesting low temperature waste heats less than 373 K. The proposing system was so simply that it was mainly composed of a liquid turbine, a liquid container with a biphasic medium of water and an underlying water-insoluble low-boiling-point medium in a liquid phase, a heating section for vaporization of the liquid and a cooling section for entropy discharge outside the system. Assumed power generating steps via the proposing liquid turbine power generator were as follows: step 1: the underlying low-boiling-point medium in a liquid phase was vaporized, step 2: the surfacing vapor bubbles of low-boiling-point medium accompanied the biphasic medium in their wakes, step 3: such high momentum flux by step 2 rotated the liquid turbine (i.e. power generation), step 4: the surfacing low-boiling-point medium vapor was gradually condensed into droplets, step 5: the low-boiling-point medium droplets were submerged to the underlying medium in a liquid phase. Experiments with a prototype liquid turbine power generator proved power generations in accordance with the assumed steps at a little higher than ordinary temperature. Increasing output voltage could be obtained with an increase in the cooling temperature among tested ranging from 294 to 296 K in contrast to normal thermal engines. Further improvements of the direct current voltage from the proposing liquid turbine power generator can be expected by means of far more vigorous multiphase flow induced by adding solid powders and theoretical optimizations of heat and mass transfers.
基金Project supported by the National Key Basic Research Program of China(Grant Nos.2011CBA00111)the National Natural Science Foundation of China(Grant Nos.51322105,U1632158,51301165,and 51301167)
文摘The low-temperature heat capacities are studied for antiperovskite compounds AX M_3(A = Al, Ga, Cu, Ag, Sn, X = C,N, M = Mn, Fe, Co). A large peak in(C- γ T)/T^3 versus T is observed for each of a total of 18 compounds investigated,indicating an existence of low-energy phonon mode unexpected by Debye T^3 law. Such a peak is insensitive to the external magnetic field up to 80 k Oe(1 Oe = 79.5775 A·m-1). For compounds with smaller lattice constant, the peak shifts towards higher temperatures with a reduction of peak height. This abnormal peak in(C- γ T)/T^3 versus T of antiperovskite compound may result from the strongly dispersive acoustic branch due to the heavier A atoms and the optical-like mode from the dynamic rotation of X M_6 octahedron. Such a low-energy phonon mode may not contribute negatively to the normal thermal expansion in AX M_3 compounds, while it is usually concomitant with negative thermal expansion in open-structure material(e.g., ZrW_2O_8, Sc F_3).
基金Supported by the National Natural Science Foundation of China (Grant Nos. 50836005, 50520140517 and 50506004)
文摘A new approach to application of mid-and low-temperature solar thermochemical technology was in-troduced and investigated.Concentrated solar thermal energy in the range of 150―300℃ can be effi-ciently converted into high-grade solar fuel by integrating this technique with the endothermic reaction of hydrocarbons.The conversion mechanism of upgrading the low-grade solar thermal energy to high-grade chemical energy was examined based on the energy level.The new mechanism was used to integrate two novel solar thermal power systems:A solar/methanol fuel hybrid thermal power plant and a solar-hybrid combined cycle with inherent CO2 separation using chemical-looping combustion,for developing highly efficient solar energy use to generate electricity.An innovative prototype of a 5-kW solar receiver/reactor,as the key process for realizing the proposed system,was designed and manu-factured.Furthermore,experimental validation of energy conversion of the mid-and low-temperature solar thermochemical processes were conducted.In addition,a second practical and viable approach to the production of hydrogen,in combination with the novel mid-and low-temperature solar thermo-chemical process,was proposed and demonstrated experimentally in the manufactured solar re-ceiver/reactor prototype through methanol steam reforming.The results obtained here indicate that the development of mid-and low-temperature solar thermochemical technology may provide a promising and new direction to efficient utilization of low-grade solar thermal energy,and may enable step-wise approaches to cost-effective,globally scalable solar energy systems.
基金RASSR07979“Development of a hybrid energy storage system for ancillary services devoted in power systems”,funded by the Sardinia Region“Advanced Energy Storage Systems for Sustainable Communities”supported by“Fondazione di Sardegna”。
文摘The widespread diffusion of renewable energy sources calls for the development of high-capacity energy storage systems as the A-CAES(Adiabatic Compressed Air Energy Storage)systems.In this framework,low temperature(100℃–200℃)A-CAES(LT-ACAES)systems can assume a key role,avoiding some critical issues connected to the operation of high temperature ones.In this paper,two different LT-ACAES configurations are proposed.The two configurations are characterized by the same turbomachines and compressed air storage section,while differ in the TES section and its integration with the turbomachinery.In particular,the first configuration includes two separated cycles:the working fluid(air)cycle and the heat transfer fluid(HTF)cycle.Several heat exchangers connect the two cycles allowing to recover thermal energy from the compressors and to heat the compressed air at the turbine inlet.Two different HTFs were considered:air(case A)and thermal oil(case B).The second configuration is composed of only one cycle,where the operating fluid and the HTF are the same(air)and the TES section is composed of three different packed-bed thermal storage tanks(case C).The tanks directly recover the heat from the compressors and heat the air at each turbine inlet,avoiding the use of heat exchangers.The LT-ACAES systems were modelled and simulated using the ASPEN-Plus and the MATLAB-Simulink environments.The main aim of this study was the detailed analysis of the reciprocal influence between the turbomachinery and the TES system;furthermore,the performance evaluation of each plant was carried out assuming both on-design and off-design operating conditions.Finally,the different configurations were compared through the main performance parameters,such as the round-trip efficiency.A total power output of around 10 MW was set,leading to a TES tank volume ranging between 500 and 700 m^(3).The second configuration with three TES systems appears to be the most promising in terms of round-trip efficiency since the energy produced during the discharging phase is greater.In particular,the round-trip efficiency of the LT-ACAES ranges between 0.566(case A)to 0.674(case C).Although the second configuration assures the highest performance,the effect of operating at very high pressures inside the tanks should be carefully evaluated in terms of overall costs.
基金Sponsored by Science and Technology Commission Foundation of Jiangsu Province of China(BA2010035)
文摘Three generation systems, namely, steam Rankine cycle (SRC), organic Rankine cycle (ORC), and steam-organic combined Rankine cycle (S-ORC), were simulated using the Engineering Equation Solver fEES) to efficiently utilize flue gas emissions from 200 to 450 ℃ in iron and steel plants. Based on the simulation results for thermal efficiency, exergy efficiency, and power generation, the performances of the three power generation systems were compared and analyzed. To further utilize waste heat from the turbine exhaust steam of the ORC system, cas- cade ()RC (CORC) was designed for heat sources above 300 ℃. Based on a comprehensive performance comparison, the application of the ORC using R141b is preferable for 200 to 300 ℃ flue gas. For 300 to 450 ℃ flue gas, CORC is an alternative technology to improve the efficiency and quality of waste heat utilization. For flue gas above 450 ℃, S-ORC can achieve higher efficiency and power generation than conventional SRC, with a relatively small negative pressure and high dryness of the turbine outlet steam. Hence, S-ORC can be considered as a substitute for SRC.
基金The authors gratefully acknowledge the generous financial support of the European Union Horizon 2020 Research and Inno-vation actions MSCA-RISE-ENGIMA(No.778072)MSCA-RISE-MELON(No.872631)Z.K.,B.R.,D.V.,and M.S.acknowledge the Slovenian Research Agency program P1-0125 and P2-0091.
文摘The eco-responsible lead-free piezoelectric ceramics have been intensively searched for more than adecade, however, the final goal to replace toxic ceramics like lead zirconate titanate (PZT) with lead-freecompounds, having comparable or even better performance has not yet been reached. In this road, thelead-free ceramics Ba_(0.85)Ca_(0.15)Zr_(0.1)Ti_(0.9)O_(3) (BCZT), possessing excellent dielectric, ferroelectric, andpiezoelectric properties are regarded as serious candidates for the PZT replacement. Besides, nano-structuring BCZT is of paramount importance to enhance these functionalities even more. Here, BCZTmultipodes are designed by template-growth hydrothermal synthesis using hydrogen zirconate titanatenanowires. We demonstrate that the fabricated BCZT multipodes exhibit high dielectric permittivity of5300 with a temperature stability coefficient of ±5.9% between 20 and 140℃. A significant recoveredenergy density of 315.0 mJ/cm^(3) with high thermal stability and high energy storage efficiency of 87.4%,and enhanced large-signal piezoelectric coefficient d^(*)_(33) (310 pm/V) are found. Compared to the tradi-tional BCZT ceramics reported in the literature, relying on high-temperature processing, our sampleexhibits boosted energy storage parameters at a much lower temperature. These outcomes may offer anew strategy to tailor eco-responsible relaxor ferroelectrics toward superior energy storage performancefor ceramic capacitor applications.