The polymer treatment with a low-temperature plasma jet generated on the atmospheric pressure surface discharge (SD) plasma is performed. The change of the surface property over time, in comparison with low pressure...The polymer treatment with a low-temperature plasma jet generated on the atmospheric pressure surface discharge (SD) plasma is performed. The change of the surface property over time, in comparison with low pressure oxygen (O2) plasma treatment, is examined. As one compares the treatment by atmospheric pressure plasma to that by the low pressure O2 plasma of PS (polystyrene) the treatment effects were almost in complete agreement. However, when the atmospheric pressure plasma was used for PP(polypropylene), it produced remarkable hydrophilic effects.展开更多
In this paper, an improved air discharge fluid model under non-uniform electric field is constructed based on the plasma module COMSOL Multiphysics with artificial stability term, and the boundary conditions developed...In this paper, an improved air discharge fluid model under non-uniform electric field is constructed based on the plasma module COMSOL Multiphysics with artificial stability term, and the boundary conditions developed in the previous paper are applied to the calculation of photoionization rate. Based on the modified model, the characteristics of low temperature subatmospheric air discharge under 13 kV direct current voltage are discussed, including needle-plate and needle-needle electrode structures. Firstly, in order to verify the reliability of the model, a numerical example and an experimental verification were carried out for the modified model respectively. Both verification results show that the model can ensure the accuracy and repeatability of the calculation. Secondly, according to the calculation results of the modified model, under the same voltage and spacing, the reduced electric field under low temperature subatmosphere pressure is larger than that under normal temperature and atmospheric pressure. The high electric field leads to the air discharge at low temperature and sub atmospheric pressure entering the streamer initiation stage earlier, and has a faster propagation speed in the streamer development stage, which shortens the overall discharge time. Finally, the discharge characteristics of the two electrode structures are compared, and it is found that the biggest difference between them is that there is a pre-ionization region near the cathode in the needle-needle electrode structure. When the pre-ionization level reaches 1013 cm-3, the propagation speed of the positive streamer remains unchanged throughout the discharge process, and is no longer affected by the negative streamer. The peak value of electric field decreases with the increase of pre-ionization level, and tends to be constant during streamer propagation. Based on the previous paper, this paper constructs the air discharge model under non-uniform electric field, complements with the previous paper, and forms a relatively complete set of air discharge simulation system under low temperature and sub atmospheric pressure, which provides a certain reference for future research.展开更多
The oxidation of two phase Cu Cr alloys containing 25% and 50% Cr prepared by powder metallurgy (PM) with a rather uniform two phase microstructure has been studied at 700~900 ℃ under oxygen pressure below the stabi...The oxidation of two phase Cu Cr alloys containing 25% and 50% Cr prepared by powder metallurgy (PM) with a rather uniform two phase microstructure has been studied at 700~900 ℃ under oxygen pressure below the stability of the copper oxides. The two PM alloys oxidized very slowly and formed only external Cr 2O 3 scales rather than undergoing an internal oxidation of chromium. This result is attributed mainly to a supply of chromium from the small Cr rich particles dispersed within the Cu rich phase. The oxidation kinetics of the two PM Cu Cr alloys approximately followed the parabolic rate law. The scaling rates are of the same order as those measured for pure chromium under the same oxygen pressure, but smaller than those for the alloys of similar composition prepared by normal arc melting techniques, whose compositions were largely non uniform. The results are interpreted in terms of the two phase nature of these alloys.展开更多
Anti-coking oxide films were prepared on a 25Cr35Ni and 35Cr45Ni alloy surface under the low oxygen partialpressure atmosphere of a H2-H2O mixture. The composition and phase structure of the oxide films were analyzed ...Anti-coking oxide films were prepared on a 25Cr35Ni and 35Cr45Ni alloy surface under the low oxygen partialpressure atmosphere of a H2-H2O mixture. The composition and phase structure of the oxide films were analyzed by energydispersive spectroscopy (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The anti-cokingperformance of a mini tube made of a HP40 (25Cr35Ni) alloy was evaluated on a bench scale pyrolysis and coking test unit.The results showed that the surface Fe and Ni content decreased after the oxidation of the two alloys in a low oxygen partialpressure atmosphere. The oxide films were mainly composed of MnCr_(2)O_(4) and Cr_(2)O_(3). The average mass of coke in the minitube with oxide film decreased by 87% relative to that of a tube without an oxide film when the cracking temperature was 900℃. The ethylene, propylene, and butadiene yields in the pyrolysis tests were almost the same for the mini tubes withand without an oxide film. The oxide film on the alloy surface effectively inhibited catalytic filamentous coke formation.An industrial test showed that the run length of the cracking furnace with the in-situ coating technology was significantlyextended.展开更多
Descriptions of unusually high waves appearing on the sea surface for a short time (freak, rogue or killer waves) have been considered as a part of marine folklore for a long time. A number of instrumental registratio...Descriptions of unusually high waves appearing on the sea surface for a short time (freak, rogue or killer waves) have been considered as a part of marine folklore for a long time. A number of instrumental registrations have appeared recently making the community to pay more attention to this problem and to reconsider known observations of freak waves. To allow a better understanding of the behavior of rogue waves associated with tornadoes in terms of their origin, the nonlinear theory of off-balance systems is developed in the specific case of strong agitations constantly seen on the surface of extensive and deep rivers, when they are crossed by an atmosphere’s low pressure system (tornadoes, cyclones, hurricanes, etc.). A mathematical model based on the Navier-Stokes and Euler Lagrange equations coupled with assumptions derived from instrumental registrations on the training locations (or birth places) of freak waves is developed to enhance the physics of processes responsible for the formation (or origin) of the waves associated with atmosphere’s low pressure systems. Freak waves births’ constraints are mainly the need for both consistent water (i.e., extensive-deep rivers) and potential velocity flow availabilities. Numerical simulations, based on the use of the NLSE (Nonlinear Schrodinger Equation) are performed to validate our mathematical model on the births of single carrier waves associated with atmosphere’s low pressure systems.展开更多
To study the effect of atmospheric pressure on the properties of fresh and hardened airentrained concrete, three kinds of air entraining agents were used for preparing air-entrained concrete in the plateaus(Lhasa, 61 ...To study the effect of atmospheric pressure on the properties of fresh and hardened airentrained concrete, three kinds of air entraining agents were used for preparing air-entrained concrete in the plateaus(Lhasa, 61 kPa) and the plains(Beijing, 101 kPa). Air content, slump, compressive strength and pore structure of the three air-entrained concretes were tested in these two places. It is found that the air content of concrete under low atmospheric pressure(LAP) is 4%-36% lower than that of concrete under normal atmospheric pressure(NAP), which explaines the decrease of slump for air-entrained concrete under LAP. Pore number of hardened concrete under LAP is reduced by 48%-69%. While, the proportion of big pores(pore diameter >1 200 μm) and air void spacing factor are increased by 1.5%-7.3% and 51%-92%, respectively. The deterioration of pore structure results in a 3%-9% reduction in the compressive strength of concrete. From the results we have obtained, it can be concluded that the increase of critical nucleation energy of air bubbles and the decrease of volumetric compressibility coefficient of air in the concrete are responsible for the variation of air content and pore structure of concrete under LAP.展开更多
Ar/N2/CH4 glow discharge at low-pressure are studied in a closed system. The plasma was produced in 79.6% N2-15.4% Ar- 5.0% CH4 ternary mixture at pressures between 0.5 and 10.0 Torr. The diagnostic has been made by o...Ar/N2/CH4 glow discharge at low-pressure are studied in a closed system. The plasma was produced in 79.6% N2-15.4% Ar- 5.0% CH4 ternary mixture at pressures between 0.5 and 10.0 Torr. The diagnostic has been made by optical emission spectroscopy (OES). The principal species observed were: N2, N2+, CH+, CN, C2, C3, HI3, Ha, C+ and At. It presents the behaviour of the bands and lines intensities as a function of the pressure. Also, it displays the ratios of intensities of N+2 (391.44 nm), CN (392.08 nm), and H (486.13 nm) to that of the N2 (337.13 rim) as function of pressure. The ratios show a slow decreasing behavior as a function of the pressure. Being the CH/N2 ratio more highest and H/N2 ratio the lowest one. The variations of excited species at different pressures may change the subsequent chemical reactions in the gas phase significantly. The present results suggest that the ion-molecule and molecule-molecule reactions in the gas phase are likely to play a dominant role in the present pressures.展开更多
An atmospheric pressure plasma jet (APPJ) using radio-frequency (13.56 MHz) power has been developed to produce homogeneous glow discharge at low temperature. With optical emission spectroscopy, we observed the ex...An atmospheric pressure plasma jet (APPJ) using radio-frequency (13.56 MHz) power has been developed to produce homogeneous glow discharge at low temperature. With optical emission spectroscopy, we observed the excited species (atomic helium, atomic oxygen and metastable oxygen) generated in this APPJ and their dependence on gas composition ratio and RF power. O and O2(b1∑g^+) are found in the effluent outside the jet by measuring the emission spectra of effluent perpendicular to the jet. An interesting phenomenon is found that there is an abnormal increase of O emission intensity (777.4 nm) between 10 mm and 40 mm away from the nozzle. This observation result is very helpful in practical operation.展开更多
Samaria-doped ceria Ce0.8Sm0.2O2-δ(SDC) and SmFe0.7Cu0.3-xNixO3 have been synthesized by the sol-gel method and characterized by X-ray diffraction(XRD),transmission electron microscopy(TEM) and scanning electron micr...Samaria-doped ceria Ce0.8Sm0.2O2-δ(SDC) and SmFe0.7Cu0.3-xNixO3 have been synthesized by the sol-gel method and characterized by X-ray diffraction(XRD),transmission electron microscopy(TEM) and scanning electron microscopy(SEM).The electrochemical synthesis of ammonia was investigated at atmospheric pressure and low temperature,using the SFCN materials as the cathode,a Nafion membrane as the electrolyte,nickel-doped SDC(Ni-SDC) as the anode and silver-platinum paste as the current collector.Ammonia was synthesized from 25 to 100℃ when the SFCN materials were used as cathode,with SmFe0.7Cu0.1Ni0.2O3 giving the highest rates of ammonia formation.The maximum rate of evolution of ammonia was 1.13 × 10-8 mol·cm-2·s-1 at 80℃,and the current efficiency reached as high as 90.4%.展开更多
The Tibetan Plateau is characterized by lower atmospheric pressure, lower air temperature and high daily and seasonal variation due to high elevation. The photosynthesis of aaplants is significantly influenced by thes...The Tibetan Plateau is characterized by lower atmospheric pressure, lower air temperature and high daily and seasonal variation due to high elevation. The photosynthesis of aaplants is significantly influenced by these alpine environmental factors. Apparent quantum yield (αA) is one of the basic parameters of photosynthesis and mass production. Its accuracy determination is of significance to model photosynthesis of C3 plants and global change on the plateau. In the Lhasa Plateau Ecological Station with 65.4 kPa of atmospheric pressure at an elevation of 3688 m, Li-Cor 6400 portable photosynthesis system was used to measure light response curves of winter wheat in different temperatures and intercellular CO2 concentration (C,). The slope of light response curve in weak light area of PFD from 0 to 150 μmol m-2 s-1 was used to evaluate the value of αA. The dependence of αA on temperature and intercellular concentration was analyzed. In 30℃, the average value of αA was 0.0476±0.0038. It is not quite different from the values in low elevation areas. αA is influenced both by temperature and by the ratio of CO2 and O2 partial pressure ([CO2]/[O2]). The measured values in the previous study were much lower. This might be due to systematic errors from instrument and data processing methods. The values of αA decreased linearly with temperature. It decreased 0.0007 in every 1℃ increase of temperature. The decrease slope is similar to those of C3 plants in the previous researches. While [O2] is constant,αA increases with Ciwith a hyperbolic relationship. In comparison with low elevation areas, the αA on the Tibetan Plateau is more sensitive to increase of CO2.展开更多
Ti_(2)AlC,a MAX phase ceramic,has an attractive self-healing ability to restore performance via the oxidation-induced crack healing mechanism upon healing at high temperatures in air(high oxygen partial pressures).How...Ti_(2)AlC,a MAX phase ceramic,has an attractive self-healing ability to restore performance via the oxidation-induced crack healing mechanism upon healing at high temperatures in air(high oxygen partial pressures).However,such healing ability to repair damages in vacuum or low oxygen partial pressure conditions remains unknown.Here,we report on the self-healing behavior of Ti_(2)AlC at a low oxygen partial pressure of about 1 Pa.The experimental results showed that the strength recovery depends on both healing temperature and time.After healing at 1400℃for 1–4 h,the healed samples exhibited the recovered strengths even exceeding the original strength of 375 MPa.The maximum recovered strength of~422 MPa was achieved in the healed Ti_(2)AlC sample after healing at 1400 for 4 h,about 13%higher than the original strength.Damages were healed by the formed℃TiCx from the decomposition of Ti_(2)AlC.The decomposition-induced crack healing as a new mechanism in the low oxygen partial pressure condition was disclosed for the MAX ceramics.The present study illustrates that key components made of Ti_(2)AlC can prolong their service life and keep their reliability during use at high temperatures in low oxygen partial pressures.展开更多
The influence of Ce addition on the oxidation behavior of 25Cr20Ni alloy at 950 oC under low oxygen partial pressure was inves-tigated. The oxidized samples were characterized by using X-ray diffraction (XRD), scann...The influence of Ce addition on the oxidation behavior of 25Cr20Ni alloy at 950 oC under low oxygen partial pressure was inves-tigated. The oxidized samples were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and scratch tester to obtain the oxide phases, morphology, thickness, composition and adhesion property of the oxide scales. The experiment results indicated that a small amount of Ce addition (0.02 wt.% or 0.05 wt.%) promoted oxidation resistance and inhibited the growth of the needlelike oxide. The Ce addition also decreased the formation of MnCr2O4 but promoted the SiO2 formation un-derneath the Cr2O3, which largely contributed to the improvement of oxide scale spallation resistance. For the sample with 0.3 wt.% Ce addi-tion, the oxidation rate significantly increased and the spallation resistance of the oxide scale decreased.展开更多
文摘The polymer treatment with a low-temperature plasma jet generated on the atmospheric pressure surface discharge (SD) plasma is performed. The change of the surface property over time, in comparison with low pressure oxygen (O2) plasma treatment, is examined. As one compares the treatment by atmospheric pressure plasma to that by the low pressure O2 plasma of PS (polystyrene) the treatment effects were almost in complete agreement. However, when the atmospheric pressure plasma was used for PP(polypropylene), it produced remarkable hydrophilic effects.
基金the National Key RESEARCH and Development Program of the Ministry of Science and Technology‘Life Prediction and Operation Risk Assessment of UHV Equipment under long-term Service conditions(No.2017YFB0902705)’for supporting this workthe No.703 Research Institute of CSIC(China Shipbuilding Industry Corporation)Yunnan Electric Test&Research Institute Group CO.,Ltd for assistance in this paper.
文摘In this paper, an improved air discharge fluid model under non-uniform electric field is constructed based on the plasma module COMSOL Multiphysics with artificial stability term, and the boundary conditions developed in the previous paper are applied to the calculation of photoionization rate. Based on the modified model, the characteristics of low temperature subatmospheric air discharge under 13 kV direct current voltage are discussed, including needle-plate and needle-needle electrode structures. Firstly, in order to verify the reliability of the model, a numerical example and an experimental verification were carried out for the modified model respectively. Both verification results show that the model can ensure the accuracy and repeatability of the calculation. Secondly, according to the calculation results of the modified model, under the same voltage and spacing, the reduced electric field under low temperature subatmosphere pressure is larger than that under normal temperature and atmospheric pressure. The high electric field leads to the air discharge at low temperature and sub atmospheric pressure entering the streamer initiation stage earlier, and has a faster propagation speed in the streamer development stage, which shortens the overall discharge time. Finally, the discharge characteristics of the two electrode structures are compared, and it is found that the biggest difference between them is that there is a pre-ionization region near the cathode in the needle-needle electrode structure. When the pre-ionization level reaches 1013 cm-3, the propagation speed of the positive streamer remains unchanged throughout the discharge process, and is no longer affected by the negative streamer. The peak value of electric field decreases with the increase of pre-ionization level, and tends to be constant during streamer propagation. Based on the previous paper, this paper constructs the air discharge model under non-uniform electric field, complements with the previous paper, and forms a relatively complete set of air discharge simulation system under low temperature and sub atmospheric pressure, which provides a certain reference for future research.
文摘The oxidation of two phase Cu Cr alloys containing 25% and 50% Cr prepared by powder metallurgy (PM) with a rather uniform two phase microstructure has been studied at 700~900 ℃ under oxygen pressure below the stability of the copper oxides. The two PM alloys oxidized very slowly and formed only external Cr 2O 3 scales rather than undergoing an internal oxidation of chromium. This result is attributed mainly to a supply of chromium from the small Cr rich particles dispersed within the Cu rich phase. The oxidation kinetics of the two PM Cu Cr alloys approximately followed the parabolic rate law. The scaling rates are of the same order as those measured for pure chromium under the same oxygen pressure, but smaller than those for the alloys of similar composition prepared by normal arc melting techniques, whose compositions were largely non uniform. The results are interpreted in terms of the two phase nature of these alloys.
基金the scientific research project of China Petroleum&Chemical Corporation(Grant No.411048).
文摘Anti-coking oxide films were prepared on a 25Cr35Ni and 35Cr45Ni alloy surface under the low oxygen partialpressure atmosphere of a H2-H2O mixture. The composition and phase structure of the oxide films were analyzed by energydispersive spectroscopy (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The anti-cokingperformance of a mini tube made of a HP40 (25Cr35Ni) alloy was evaluated on a bench scale pyrolysis and coking test unit.The results showed that the surface Fe and Ni content decreased after the oxidation of the two alloys in a low oxygen partialpressure atmosphere. The oxide films were mainly composed of MnCr_(2)O_(4) and Cr_(2)O_(3). The average mass of coke in the minitube with oxide film decreased by 87% relative to that of a tube without an oxide film when the cracking temperature was 900℃. The ethylene, propylene, and butadiene yields in the pyrolysis tests were almost the same for the mini tubes withand without an oxide film. The oxide film on the alloy surface effectively inhibited catalytic filamentous coke formation.An industrial test showed that the run length of the cracking furnace with the in-situ coating technology was significantlyextended.
文摘Descriptions of unusually high waves appearing on the sea surface for a short time (freak, rogue or killer waves) have been considered as a part of marine folklore for a long time. A number of instrumental registrations have appeared recently making the community to pay more attention to this problem and to reconsider known observations of freak waves. To allow a better understanding of the behavior of rogue waves associated with tornadoes in terms of their origin, the nonlinear theory of off-balance systems is developed in the specific case of strong agitations constantly seen on the surface of extensive and deep rivers, when they are crossed by an atmosphere’s low pressure system (tornadoes, cyclones, hurricanes, etc.). A mathematical model based on the Navier-Stokes and Euler Lagrange equations coupled with assumptions derived from instrumental registrations on the training locations (or birth places) of freak waves is developed to enhance the physics of processes responsible for the formation (or origin) of the waves associated with atmosphere’s low pressure systems. Freak waves births’ constraints are mainly the need for both consistent water (i.e., extensive-deep rivers) and potential velocity flow availabilities. Numerical simulations, based on the use of the NLSE (Nonlinear Schrodinger Equation) are performed to validate our mathematical model on the births of single carrier waves associated with atmosphere’s low pressure systems.
基金Funed by the National Key R&D Program of China(No.2017YFB0309903)
文摘To study the effect of atmospheric pressure on the properties of fresh and hardened airentrained concrete, three kinds of air entraining agents were used for preparing air-entrained concrete in the plateaus(Lhasa, 61 kPa) and the plains(Beijing, 101 kPa). Air content, slump, compressive strength and pore structure of the three air-entrained concretes were tested in these two places. It is found that the air content of concrete under low atmospheric pressure(LAP) is 4%-36% lower than that of concrete under normal atmospheric pressure(NAP), which explaines the decrease of slump for air-entrained concrete under LAP. Pore number of hardened concrete under LAP is reduced by 48%-69%. While, the proportion of big pores(pore diameter >1 200 μm) and air void spacing factor are increased by 1.5%-7.3% and 51%-92%, respectively. The deterioration of pore structure results in a 3%-9% reduction in the compressive strength of concrete. From the results we have obtained, it can be concluded that the increase of critical nucleation energy of air bubbles and the decrease of volumetric compressibility coefficient of air in the concrete are responsible for the variation of air content and pore structure of concrete under LAP.
文摘Ar/N2/CH4 glow discharge at low-pressure are studied in a closed system. The plasma was produced in 79.6% N2-15.4% Ar- 5.0% CH4 ternary mixture at pressures between 0.5 and 10.0 Torr. The diagnostic has been made by optical emission spectroscopy (OES). The principal species observed were: N2, N2+, CH+, CN, C2, C3, HI3, Ha, C+ and At. It presents the behaviour of the bands and lines intensities as a function of the pressure. Also, it displays the ratios of intensities of N+2 (391.44 nm), CN (392.08 nm), and H (486.13 nm) to that of the N2 (337.13 rim) as function of pressure. The ratios show a slow decreasing behavior as a function of the pressure. Being the CH/N2 ratio more highest and H/N2 ratio the lowest one. The variations of excited species at different pressures may change the subsequent chemical reactions in the gas phase significantly. The present results suggest that the ion-molecule and molecule-molecule reactions in the gas phase are likely to play a dominant role in the present pressures.
基金The project partially supported by National Natural Science Foundation of China (No. 10335040)
文摘An atmospheric pressure plasma jet (APPJ) using radio-frequency (13.56 MHz) power has been developed to produce homogeneous glow discharge at low temperature. With optical emission spectroscopy, we observed the excited species (atomic helium, atomic oxygen and metastable oxygen) generated in this APPJ and their dependence on gas composition ratio and RF power. O and O2(b1∑g^+) are found in the effluent outside the jet by measuring the emission spectra of effluent perpendicular to the jet. An interesting phenomenon is found that there is an abnormal increase of O emission intensity (777.4 nm) between 10 mm and 40 mm away from the nozzle. This observation result is very helpful in practical operation.
基金Supported by the National Natural Science Foundation of China (Grant No. 20863007)
文摘Samaria-doped ceria Ce0.8Sm0.2O2-δ(SDC) and SmFe0.7Cu0.3-xNixO3 have been synthesized by the sol-gel method and characterized by X-ray diffraction(XRD),transmission electron microscopy(TEM) and scanning electron microscopy(SEM).The electrochemical synthesis of ammonia was investigated at atmospheric pressure and low temperature,using the SFCN materials as the cathode,a Nafion membrane as the electrolyte,nickel-doped SDC(Ni-SDC) as the anode and silver-platinum paste as the current collector.Ammonia was synthesized from 25 to 100℃ when the SFCN materials were used as cathode,with SmFe0.7Cu0.1Ni0.2O3 giving the highest rates of ammonia formation.The maximum rate of evolution of ammonia was 1.13 × 10-8 mol·cm-2·s-1 at 80℃,and the current efficiency reached as high as 90.4%.
基金This work was supported by the National Key Basic Research and Development Project(Grant No.2002CB41250l)the National Natural Science Foundation of China(Grant Nos.90211006,30370257 and 30470280)the Knowledge Innovation Project of Institute of Geographical Sciences and Natural Resources Research,CAS(Grant No.CXIOG-E01-03-03).
文摘The Tibetan Plateau is characterized by lower atmospheric pressure, lower air temperature and high daily and seasonal variation due to high elevation. The photosynthesis of aaplants is significantly influenced by these alpine environmental factors. Apparent quantum yield (αA) is one of the basic parameters of photosynthesis and mass production. Its accuracy determination is of significance to model photosynthesis of C3 plants and global change on the plateau. In the Lhasa Plateau Ecological Station with 65.4 kPa of atmospheric pressure at an elevation of 3688 m, Li-Cor 6400 portable photosynthesis system was used to measure light response curves of winter wheat in different temperatures and intercellular CO2 concentration (C,). The slope of light response curve in weak light area of PFD from 0 to 150 μmol m-2 s-1 was used to evaluate the value of αA. The dependence of αA on temperature and intercellular concentration was analyzed. In 30℃, the average value of αA was 0.0476±0.0038. It is not quite different from the values in low elevation areas. αA is influenced both by temperature and by the ratio of CO2 and O2 partial pressure ([CO2]/[O2]). The measured values in the previous study were much lower. This might be due to systematic errors from instrument and data processing methods. The values of αA decreased linearly with temperature. It decreased 0.0007 in every 1℃ increase of temperature. The decrease slope is similar to those of C3 plants in the previous researches. While [O2] is constant,αA increases with Ciwith a hyperbolic relationship. In comparison with low elevation areas, the αA on the Tibetan Plateau is more sensitive to increase of CO2.
基金supported by the National Natural Science Foundation of China(No.52275171)the PreResearch Program in National 14th Five-Year Plan(No.80923010304).
文摘Ti_(2)AlC,a MAX phase ceramic,has an attractive self-healing ability to restore performance via the oxidation-induced crack healing mechanism upon healing at high temperatures in air(high oxygen partial pressures).However,such healing ability to repair damages in vacuum or low oxygen partial pressure conditions remains unknown.Here,we report on the self-healing behavior of Ti_(2)AlC at a low oxygen partial pressure of about 1 Pa.The experimental results showed that the strength recovery depends on both healing temperature and time.After healing at 1400℃for 1–4 h,the healed samples exhibited the recovered strengths even exceeding the original strength of 375 MPa.The maximum recovered strength of~422 MPa was achieved in the healed Ti_(2)AlC sample after healing at 1400 for 4 h,about 13%higher than the original strength.Damages were healed by the formed℃TiCx from the decomposition of Ti_(2)AlC.The decomposition-induced crack healing as a new mechanism in the low oxygen partial pressure condition was disclosed for the MAX ceramics.The present study illustrates that key components made of Ti_(2)AlC can prolong their service life and keep their reliability during use at high temperatures in low oxygen partial pressures.
基金supported by the Basic Research Program of the State Key Laboratory of Heavy Oil Processing (200809),China University of Petroleum, Beijing, China
文摘The influence of Ce addition on the oxidation behavior of 25Cr20Ni alloy at 950 oC under low oxygen partial pressure was inves-tigated. The oxidized samples were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and scratch tester to obtain the oxide phases, morphology, thickness, composition and adhesion property of the oxide scales. The experiment results indicated that a small amount of Ce addition (0.02 wt.% or 0.05 wt.%) promoted oxidation resistance and inhibited the growth of the needlelike oxide. The Ce addition also decreased the formation of MnCr2O4 but promoted the SiO2 formation un-derneath the Cr2O3, which largely contributed to the improvement of oxide scale spallation resistance. For the sample with 0.3 wt.% Ce addi-tion, the oxidation rate significantly increased and the spallation resistance of the oxide scale decreased.