Magnesium(Mg)alloys are the lightest metal structural material for engineering applications and therefore have a wide market of applications.However,compared to steel and aluminum alloys,Mg alloys have lower mechanica...Magnesium(Mg)alloys are the lightest metal structural material for engineering applications and therefore have a wide market of applications.However,compared to steel and aluminum alloys,Mg alloys have lower mechanical properties,which greatly limits their application.Extrusion is one of the most important processing methods for Mg and its alloys.However,the effect of such a heterogeneous microstructure achieved at low temperatures on the mechanical properties is lacking investigation.In this work,commercial AZ80 alloys with different initial microstructures(as-cast and as-homogenized)were selected and extruded at a low extrusion temperature of 220℃and a low extrusion ratio of 4.The microstructure and mechanical properties of the two extruded AZ80 alloys were investigated.The results show that homogenized-extruded(HE)sample exhibits higher strength than the cast-extruded(CE)sample,which is mainly attributed to the high number density of fine dynamic precipitates and the high fraction of recrystallized ultrafine grains.Compared to the coarse compounds existing in CE sample,the fine dynamical precipitates of Mg17(Al,Zn)12form in the HE sample can effectively promote the dynamical recrystallization during extrusion,while they exhibit a similar effect on the size and orientation of the recrystallized grains.These results can facilitate the designing of high-strength wrought magnesium alloys by rational microstructure construction.展开更多
Through exploring the effects of low pH on the composite system of desulfurization gypsum(DG)enhanced by melamine-formaldehyde resin(MF),it is found that the inducing of sulfate-ion,in contrast to chloride and oxalate...Through exploring the effects of low pH on the composite system of desulfurization gypsum(DG)enhanced by melamine-formaldehyde resin(MF),it is found that the inducing of sulfate-ion,in contrast to chloride and oxalate ions,favors the longitudinal growth of the crystalline form of the hydration product,which was relatively simple and had the highest length to width(L/D)ratio.At the same time,MF can also improve L/D ratio of gypsum hydration products,which favors the formation of hydrated whiskers.Finally,in a composite system composed of hemihydrate gypsum,MF,and glass fibers,when dilute sulfuric acid was used to regulate pH=3-4,the tight binding formed among the components of the composite system compared to pH=5-6.The hydration product of gypsum adheres tightly to glass fiber surface and produces a good cross-linking and binding effect with MF.The flexural strength,compressive strength,elastic modulus,and water absorption of the desulphurized gypsum composite board is 22.7 MPa,39.8 MPa,5608 MPa,and 1.8%,respectively.展开更多
This work demonstrates that the ΣΔ modulator with a low oversampling ratio is a viable option for the high-resolution digitization in a low-voltage environment.Low power dissipation is achieved by designing a low-OS...This work demonstrates that the ΣΔ modulator with a low oversampling ratio is a viable option for the high-resolution digitization in a low-voltage environment.Low power dissipation is achieved by designing a low-OSR modulator based on differential cascade architecture,while large signal swing maintained to achieve a high dynamic range in the low-voltage environment.Operating from a voltage supply of 1.8V,the sixth-order cascade modulator at a sampling frequency of 4-MHz with an OSR of 24 achieves a dynamic range of 81dB for a 80-kHz test signal,while dissipating only 5mW.展开更多
The recovery of heavy oil by water flooding is 10% lower than that of conventional crude oil, so enhanced oil recovery (EOR) is of great significance for heavy oil. In this paper, foam flooding with a gas-liquid rat...The recovery of heavy oil by water flooding is 10% lower than that of conventional crude oil, so enhanced oil recovery (EOR) is of great significance for heavy oil. In this paper, foam flooding with a gas-liquid ratio (GLR) of 0.2:1 for the Zhuangxi heavy oil (325 mPa.s at 55 ℃) was performed on cores, sand packs and plate model. In sand pack tests, polymer enhanced foam flooding increased oil recovery by 39.8%, which was 11.4% higher than that for alkali/surfactant/polymer (ASP) flooding under the same conditions. Polymer enhanced foam flooding in plate models shows that the low GLR foam flooding increased oil recovery by about 30%, even when the extended water flooding was finished at 90% water cut. Moreover, it was discovered by microscopy that foam was more stable in heavy oil than in light oil. These results confirm that low GLR foam flooding is a promising technology for displacing conventional heavy oil.展开更多
A novel full scale modified A2O (anoxic/anaerobic/aerobic/pre-anoxic)-membrane bioreactor (MBR) plant combined with the step feed strategy was operated to improve the biological nutrient removal (BNR) from low C...A novel full scale modified A2O (anoxic/anaerobic/aerobic/pre-anoxic)-membrane bioreactor (MBR) plant combined with the step feed strategy was operated to improve the biological nutrient removal (BNR) from low C/N ratio municipal wastewater in Southern China. Transformation of organic carbon, nitrogen and phosphorus, and membrane fouling were investigated. Experimental results for over four months demonstrated good efficiencies for chemical oxygen demand (COD) and NH4^+-N removal, with average values higher than 84.5%and 98.1%, re-spectively. A relatively higher total nitrogen (TN) removal efficiency (52.1%) was also obtained at low C/N ratio of 3.82, contributed by the configuration modification (anoxic zone before anaerobic zone) and the step feed with a distribution ratio of 1:1. Addition of sodium acetate into the anoxic zone as the external carbon source, with a theoretical amount of 31.3 mg COD per liter in influent, enhanced denitrification and the TN removal efficiency in-creased to 74.9%. Moreover, the total phosphate (TP) removal efficiency increased by 18.0%. It is suggested that the external carbon source is needed to improve the BNR performance in treating low C/N ratio municipal waste-water in the modified A^2O-MBR process.展开更多
The hydration process,hydration product and hydration heat of blended cement paste mixed with mineral admixture and expansive agent at low W/B ratio are studied by XRD,thermo analysis,and calorimetry instrument,and th...The hydration process,hydration product and hydration heat of blended cement paste mixed with mineral admixture and expansive agent at low W/B ratio are studied by XRD,thermo analysis,and calorimetry instrument,and they were compared with those of pure cement paste.The results show that pure cement and blended cement at low W/B ratio have the same types of hydration products,but their respective amounts of hydration products of various blended cements at same ages and the variation law of the amount of same hydration products with ages are different;The joint effect of tumefaction of gel-ettringite due to water absorption and the expansive pressure on the pore and rift caused by the crystalloid ettringite is the impetus of the volume expansion of cement paste,and the former effect is much greater than the latter one.展开更多
The development of strength and the form of attack of cement-based material made of limestone powder at low water-binder ratio under low-temperature sulfate environment were studied. The results indicate that when wat...The development of strength and the form of attack of cement-based material made of limestone powder at low water-binder ratio under low-temperature sulfate environment were studied. The results indicate that when water-binder ratio is lower than 0.40, the cement-based material with limestone powder has insignificant change in appearance after being soaked in 10% magnesium sulfate solution at low temperature for 120 d, and has significant change in appearance after being soaked at the age of 200 d. Expansion damage and exfoliation occur on the surface of concrete test cube at different levels. When limestone powder accounts for about 28 percent of cementitious material, with the decrease of water-binder ratio, the compressive strength loss has gradually decreased after the material is soaked in the magnesium sulfate solution at low temperature at the age of 200 d. After the specimen with the water-binder ratio of less than 0.4 and the limestone powder volume of greater than 20% is soaked in 10% magnesium sulfate solution at low temperature at the age of 200 d, gypsum attack-led destruction is caused to the concrete test cube, without thaumasite sulfate attack.展开更多
Based on chaotic oscillator system, this paper proposes a novel method on high frequency low signal- to-noise ratio BPSK( Binary Phase Shift Keying) signal detection. Chaotic oscillator system is a typical non-lin- ...Based on chaotic oscillator system, this paper proposes a novel method on high frequency low signal- to-noise ratio BPSK( Binary Phase Shift Keying) signal detection. Chaotic oscillator system is a typical non-lin- ear system which is sensitive to periodic signals and immune to noise at the same time. Those properties make it possible to detect low signal-to-noise ratio signals. The BPSK signal is a common signal type which is widely used in modern communication. Starting from the analysis of advantages of chaotic, os~.illator system and signal features of the BPSK signal, we put forward a unique method that can detect low signar-to-noise ratio BPSK sig- nals with high frequency. The simulation results show that the novel method can dclct.t low signal-to-noise ratio BPSK signals with frequency in an order of magnitude of l0s Hz, and the input Signal-to-Noise Ratio threshold can be -20 dB.展开更多
With the development of the offshore deep water oil industry many researchers are focusing on the vortex-induced vibrations (VIV) of deep risers. In the present work, Reynolds-averaged Navier-Stokes (RANS) equatio...With the development of the offshore deep water oil industry many researchers are focusing on the vortex-induced vibrations (VIV) of deep risers. In the present work, Reynolds-averaged Navier-Stokes (RANS) equations were combined with the SST κ-ω turbulent model to simulate the stream-wise and transverse motion of an elastically mounted cylinder with a low mass-ratio, a natural frequency ratio of fx/fy = 1 and an Re number between 5 300 and 32 000, The four-order Runge-Kutta method was applied to solve the oscillating equation of the cylinder. The relationship between reduced velocity and parameters of the cylinder, including the lift coefficient, the drag coefficient, displacement and the vortex structure were then compared with recent experimental results and discussed in detail. The present numerical simulation reproduced effects have been observed in experiments, such as the lock-in phenomenon, the hysteretic phenomenon and beating behavior.展开更多
In order to study component matching which exists in off-design situation at the initial design stage of turbine engine,by establishing performance analysis model of low bypass ratio mixed flow turbofan engine and com...In order to study component matching which exists in off-design situation at the initial design stage of turbine engine,by establishing performance analysis model of low bypass ratio mixed flow turbofan engine and components characteristic data,and by applying Newton-Raphson method to solve the nonlinear equations of offdesign points in flying envelop,the factors which affect matching between engine components are studied.The results show that low pressure turbine(LPT)must not operate in a critical condition,and the partial derivative(slope)of pressure ratio to similitude mass flow ratio of working point in LPT characteristic map affects the stability of engine.The smaller the slope is,the more stable the engine is.In addition,the engine is more stable when the fan characteristic map is steep.展开更多
Applicability of regional P/S amplitude ratios for the discrimination of low-magnitude seismic events was tested and proved using earthquakes and explosions in Central Asia. Results obtained show that regional P/S amp...Applicability of regional P/S amplitude ratios for the discrimination of low-magnitude seismic events was tested and proved using earthquakes and explosions in Central Asia. Results obtained show that regional P/S amplitude ratios which may discriminate medium or large magnitude events well, are also applicable to low magnitude events Their performances for low magnitude events are almost as good as that for medium or large events. Statistical comparisons based on 25 P/S discriminate from the four seismic stations WMQ, BLK, MUL and MAK showed that the average misclassification rate for low-magnitude seismic events averagely was only 2 percent higher than that for medium and large magnitude seismic events.展开更多
The current study focuses on the electrolyte penetration of the graphite cathode in a NaF−KF−LiF−AlF_(3) aluminum-electrolysis system with a cryolite ratio of 1.3.It involves a comprehensive investigation of the elect...The current study focuses on the electrolyte penetration of the graphite cathode in a NaF−KF−LiF−AlF_(3) aluminum-electrolysis system with a cryolite ratio of 1.3.It involves a comprehensive investigation of the electrolyte in the cathode before and after electrolysis by X-ray diffraction and analysis of the results by semi-quantitative calculation in MAUD.The results show that KF can promote electrolyte penetration,with higher KF contents resulting in greater penetration.During electrolyte penetration,K_(2)NaAlF_(6) and solid solutions containing KF play important roles in KF-containing systems.LiF effectively prevents the electrolyte penetration,while the Na_(3)Li_(3)Al_(2)F_(12) phase plays an essential role in systems with high LiF contents.展开更多
Hydrogenated microcrystalline silicon(μc-Si:H)films were prepared on glass and silicon substrates by radio frequency magnetron sputtering at 100°C using a mixture of argon(Ar)and hydrogen(H2)gasses as precursor ...Hydrogenated microcrystalline silicon(μc-Si:H)films were prepared on glass and silicon substrates by radio frequency magnetron sputtering at 100°C using a mixture of argon(Ar)and hydrogen(H2)gasses as precursor gas.The effects of the ratio of hydrogen flow(H2/(Ar+H2)%)on the microstructure were evaluated.Results show that the microstructure,bonding structure,and surface morphology of theμc-Si:H films can be tailored based on the ratio of hydrogen flow.An amorphous to crystalline phase transition occurred when the ratio of hydrogen flow increased up to 50%.The crystallinity increased and tended to stabilize with the increase in ratio of hydrogen flow from 40%to 70%.The surface roughness of thin films increased,and total hydrogen content decreased as the ratio of hydrogen flow increased.Allμc-Si:H films have a preferred(111)orientation,independent of the ratio of hydrogen flow.And theμc-Si:H films had a dense structure,which shows their excellent resistance to post-oxidation.展开更多
An insufficient amount of NH_(3) (ammonia)will reduce the conversion efficiency of NO_(x),which may lead to excess NO_(x) emissions,resulting in NH3SCR failure.In this article,SCR failure caused by a low NH_(3)NO_(x) ...An insufficient amount of NH_(3) (ammonia)will reduce the conversion efficiency of NO_(x),which may lead to excess NO_(x) emissions,resulting in NH3SCR failure.In this article,SCR failure caused by a low NH_(3)NO_(x) ratio is studied systematically by experiments.The main reasons for a low NH_(3)NO_(x) ratio in SCR include insufficient urea injection,hydrothermal aging of catalysts and urea crystallization.It was found from an insufficient urea injection experiment that with the increase of NH_(3)NO_(x) ratio,the NO_(x) conversion efficiency of the SCR system increased,but the ammonia leakage also increased.The main influencing factors of NO_(x) conversion efficiency are different under different NH3NOx ratios.A flow reactor system was used in the catalyst hydrothermal aging experiment to investigate the effect of hydrothermal aging on catalyst activity.After a 24 h hydrothermal aging experiment at 800℃,the NO_(x) conversion efficiency of the copperbased zeolite catalysts decreased significantly at the boundary of medium and low temperature regions.And the NO_(2)-NO_(x) ratio in the mixture had a significant effect on the catalytic performance.Thermogravimetry coupled to Fourier transform infrared spectroscopy(TGFTIR)was used to analyze the composition of urea deposits in a urea deposits analysis experiment.It was found that the main components of urea deposits were urea and isocyanic acid(HNCO).Preventing HNCO polymerization,especially the formation of CYA,can decrease the formation of urea deposits.展开更多
The amorphous boron nitride ceramic powders were prepared at 750-950 ℃ by the low-cost urea route, and the effects of preparation temperatures, molar ratios of the raw materials and oxidation treatment on the composi...The amorphous boron nitride ceramic powders were prepared at 750-950 ℃ by the low-cost urea route, and the effects of preparation temperatures, molar ratios of the raw materials and oxidation treatment on the composition, structure and surface morphology of the products were investigated through FT-IR, XRD and SEM. The results show that the products ceramize and crystallize gradually with the increase of the temperature. When the molar ratio and reaction temperature are 3:2 and 850 ℃, respectively, the products have high purity, compact structure and nice shape. The oxidation treatment at 450 ℃ will not impair the composition and structure of boron nitride but effectively remove the impurities.展开更多
The QDB-5 sulfur tolerant CO shift catalyst, with anti-methanation property by supported compositing alkali promoters, has been proved to effectively reduce the outlet methane content in the condition of a low water g...The QDB-5 sulfur tolerant CO shift catalyst, with anti-methanation property by supported compositing alkali promoters, has been proved to effectively reduce the outlet methane content in the condition of a low water gas ratio. Thus, a new technology based on a lower water/gas ratio than before has been developed with the new catalyst. The CO conversion at lower temperatures and catalyst stability were confirmed by long term industrial application. The high temperature catalyst performance also showed a better result than the conventional commercial catalyst, with higher CO conversion and well controlled methane outlet. Our research and the industrial application of catalyst have shown the importance of alkali metals as core promoters for such kind of catalysts.展开更多
The ultra-fine grained(UFG)pure titanium was prepared by equal channel angular pressing(ECAP)and rotary swaging(RS).The strain controlled low cycle fatigue(LCF)test was carried out at room temperature.The fatigue life...The ultra-fine grained(UFG)pure titanium was prepared by equal channel angular pressing(ECAP)and rotary swaging(RS).The strain controlled low cycle fatigue(LCF)test was carried out at room temperature.The fatigue life prediction model and mean stress relaxation model under asymmetrical stress load were discussed.The results show that the strain ratio has a significant effect on the low cycle fatigue performance of the UFG pure titanium,and the traditional Manson-coffin model can not accurately predict the fatigue life under asymmetric stress load.Therefore,the SWT mean stress correction model and three-parameter power curve model are proposed,and the test results are verified.The final research shows that the threeparameter power surface model has better representation.By studying the mean stress relaxation phenomenon under the condition of R≠-1,it is revealed that the stress ratio and the strain amplitude are the factors that significantly afiect the mean stress relaxation rate,and the mean stress relaxation model with the two variables is calculated to describe the mean stress relaxation phenomenon of the UFG pure titanium under different strain ratios.The fracture morphology of the samples was observed by SEM,and it was concluded that the final fracture zone of the fatigue fracture of the UFG pure titanium was a mixture of ductile fracture and quasi cleavage fracture.The toughness of the material increases with the increase of strain ratio at the same strain amplitude.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.52171121,51971151,52201131 and 52201132)Liaoning Provincial Xingliao Program of China(Grant No.XLYC1907083)+1 种基金Liaoning Provincial Natural Science Foundation of China(Grant No.2022-NLTS-18-01)Open Foundation of Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education of China(Grant No.HEU10202205).
文摘Magnesium(Mg)alloys are the lightest metal structural material for engineering applications and therefore have a wide market of applications.However,compared to steel and aluminum alloys,Mg alloys have lower mechanical properties,which greatly limits their application.Extrusion is one of the most important processing methods for Mg and its alloys.However,the effect of such a heterogeneous microstructure achieved at low temperatures on the mechanical properties is lacking investigation.In this work,commercial AZ80 alloys with different initial microstructures(as-cast and as-homogenized)were selected and extruded at a low extrusion temperature of 220℃and a low extrusion ratio of 4.The microstructure and mechanical properties of the two extruded AZ80 alloys were investigated.The results show that homogenized-extruded(HE)sample exhibits higher strength than the cast-extruded(CE)sample,which is mainly attributed to the high number density of fine dynamic precipitates and the high fraction of recrystallized ultrafine grains.Compared to the coarse compounds existing in CE sample,the fine dynamical precipitates of Mg17(Al,Zn)12form in the HE sample can effectively promote the dynamical recrystallization during extrusion,while they exhibit a similar effect on the size and orientation of the recrystallized grains.These results can facilitate the designing of high-strength wrought magnesium alloys by rational microstructure construction.
文摘Through exploring the effects of low pH on the composite system of desulfurization gypsum(DG)enhanced by melamine-formaldehyde resin(MF),it is found that the inducing of sulfate-ion,in contrast to chloride and oxalate ions,favors the longitudinal growth of the crystalline form of the hydration product,which was relatively simple and had the highest length to width(L/D)ratio.At the same time,MF can also improve L/D ratio of gypsum hydration products,which favors the formation of hydrated whiskers.Finally,in a composite system composed of hemihydrate gypsum,MF,and glass fibers,when dilute sulfuric acid was used to regulate pH=3-4,the tight binding formed among the components of the composite system compared to pH=5-6.The hydration product of gypsum adheres tightly to glass fiber surface and produces a good cross-linking and binding effect with MF.The flexural strength,compressive strength,elastic modulus,and water absorption of the desulphurized gypsum composite board is 22.7 MPa,39.8 MPa,5608 MPa,and 1.8%,respectively.
文摘This work demonstrates that the ΣΔ modulator with a low oversampling ratio is a viable option for the high-resolution digitization in a low-voltage environment.Low power dissipation is achieved by designing a low-OSR modulator based on differential cascade architecture,while large signal swing maintained to achieve a high dynamic range in the low-voltage environment.Operating from a voltage supply of 1.8V,the sixth-order cascade modulator at a sampling frequency of 4-MHz with an OSR of 24 achieves a dynamic range of 81dB for a 80-kHz test signal,while dissipating only 5mW.
基金support from the Innovation Team Program and New Century Excellent Talents Awards Program,the Ministry of Education of ChinaFok Ying Tung Education Foundation
文摘The recovery of heavy oil by water flooding is 10% lower than that of conventional crude oil, so enhanced oil recovery (EOR) is of great significance for heavy oil. In this paper, foam flooding with a gas-liquid ratio (GLR) of 0.2:1 for the Zhuangxi heavy oil (325 mPa.s at 55 ℃) was performed on cores, sand packs and plate model. In sand pack tests, polymer enhanced foam flooding increased oil recovery by 39.8%, which was 11.4% higher than that for alkali/surfactant/polymer (ASP) flooding under the same conditions. Polymer enhanced foam flooding in plate models shows that the low GLR foam flooding increased oil recovery by about 30%, even when the extended water flooding was finished at 90% water cut. Moreover, it was discovered by microscopy that foam was more stable in heavy oil than in light oil. These results confirm that low GLR foam flooding is a promising technology for displacing conventional heavy oil.
基金Supported by the National Water Pollution Control and Management(2008ZX07316-002)the University of Macao Research Committee(RG067/09-10S/SHJ/FST)
文摘A novel full scale modified A2O (anoxic/anaerobic/aerobic/pre-anoxic)-membrane bioreactor (MBR) plant combined with the step feed strategy was operated to improve the biological nutrient removal (BNR) from low C/N ratio municipal wastewater in Southern China. Transformation of organic carbon, nitrogen and phosphorus, and membrane fouling were investigated. Experimental results for over four months demonstrated good efficiencies for chemical oxygen demand (COD) and NH4^+-N removal, with average values higher than 84.5%and 98.1%, re-spectively. A relatively higher total nitrogen (TN) removal efficiency (52.1%) was also obtained at low C/N ratio of 3.82, contributed by the configuration modification (anoxic zone before anaerobic zone) and the step feed with a distribution ratio of 1:1. Addition of sodium acetate into the anoxic zone as the external carbon source, with a theoretical amount of 31.3 mg COD per liter in influent, enhanced denitrification and the TN removal efficiency in-creased to 74.9%. Moreover, the total phosphate (TP) removal efficiency increased by 18.0%. It is suggested that the external carbon source is needed to improve the BNR performance in treating low C/N ratio municipal waste-water in the modified A^2O-MBR process.
文摘The hydration process,hydration product and hydration heat of blended cement paste mixed with mineral admixture and expansive agent at low W/B ratio are studied by XRD,thermo analysis,and calorimetry instrument,and they were compared with those of pure cement paste.The results show that pure cement and blended cement at low W/B ratio have the same types of hydration products,but their respective amounts of hydration products of various blended cements at same ages and the variation law of the amount of same hydration products with ages are different;The joint effect of tumefaction of gel-ettringite due to water absorption and the expansive pressure on the pore and rift caused by the crystalloid ettringite is the impetus of the volume expansion of cement paste,and the former effect is much greater than the latter one.
文摘The development of strength and the form of attack of cement-based material made of limestone powder at low water-binder ratio under low-temperature sulfate environment were studied. The results indicate that when water-binder ratio is lower than 0.40, the cement-based material with limestone powder has insignificant change in appearance after being soaked in 10% magnesium sulfate solution at low temperature for 120 d, and has significant change in appearance after being soaked at the age of 200 d. Expansion damage and exfoliation occur on the surface of concrete test cube at different levels. When limestone powder accounts for about 28 percent of cementitious material, with the decrease of water-binder ratio, the compressive strength loss has gradually decreased after the material is soaked in the magnesium sulfate solution at low temperature at the age of 200 d. After the specimen with the water-binder ratio of less than 0.4 and the limestone powder volume of greater than 20% is soaked in 10% magnesium sulfate solution at low temperature at the age of 200 d, gypsum attack-led destruction is caused to the concrete test cube, without thaumasite sulfate attack.
文摘Based on chaotic oscillator system, this paper proposes a novel method on high frequency low signal- to-noise ratio BPSK( Binary Phase Shift Keying) signal detection. Chaotic oscillator system is a typical non-lin- ear system which is sensitive to periodic signals and immune to noise at the same time. Those properties make it possible to detect low signal-to-noise ratio signals. The BPSK signal is a common signal type which is widely used in modern communication. Starting from the analysis of advantages of chaotic, os~.illator system and signal features of the BPSK signal, we put forward a unique method that can detect low signar-to-noise ratio BPSK sig- nals with high frequency. The simulation results show that the novel method can dclct.t low signal-to-noise ratio BPSK signals with frequency in an order of magnitude of l0s Hz, and the input Signal-to-Noise Ratio threshold can be -20 dB.
文摘With the development of the offshore deep water oil industry many researchers are focusing on the vortex-induced vibrations (VIV) of deep risers. In the present work, Reynolds-averaged Navier-Stokes (RANS) equations were combined with the SST κ-ω turbulent model to simulate the stream-wise and transverse motion of an elastically mounted cylinder with a low mass-ratio, a natural frequency ratio of fx/fy = 1 and an Re number between 5 300 and 32 000, The four-order Runge-Kutta method was applied to solve the oscillating equation of the cylinder. The relationship between reduced velocity and parameters of the cylinder, including the lift coefficient, the drag coefficient, displacement and the vortex structure were then compared with recent experimental results and discussed in detail. The present numerical simulation reproduced effects have been observed in experiments, such as the lock-in phenomenon, the hysteretic phenomenon and beating behavior.
基金supported in part by the Fundamental Research Funds for the Central Universities(No.NZ2016103)
文摘In order to study component matching which exists in off-design situation at the initial design stage of turbine engine,by establishing performance analysis model of low bypass ratio mixed flow turbofan engine and components characteristic data,and by applying Newton-Raphson method to solve the nonlinear equations of offdesign points in flying envelop,the factors which affect matching between engine components are studied.The results show that low pressure turbine(LPT)must not operate in a critical condition,and the partial derivative(slope)of pressure ratio to similitude mass flow ratio of working point in LPT characteristic map affects the stability of engine.The smaller the slope is,the more stable the engine is.In addition,the engine is more stable when the fan characteristic map is steep.
基金Foundation of Verification Researches for Army Control Technology (513310101).
文摘Applicability of regional P/S amplitude ratios for the discrimination of low-magnitude seismic events was tested and proved using earthquakes and explosions in Central Asia. Results obtained show that regional P/S amplitude ratios which may discriminate medium or large magnitude events well, are also applicable to low magnitude events Their performances for low magnitude events are almost as good as that for medium or large events. Statistical comparisons based on 25 P/S discriminate from the four seismic stations WMQ, BLK, MUL and MAK showed that the average misclassification rate for low-magnitude seismic events averagely was only 2 percent higher than that for medium and large magnitude seismic events.
基金financial supports from the National Natural Science Foundation of China (Nos.51774080,22078056)the National Key R&D Program of China (No.2018YFC1901905)。
文摘The current study focuses on the electrolyte penetration of the graphite cathode in a NaF−KF−LiF−AlF_(3) aluminum-electrolysis system with a cryolite ratio of 1.3.It involves a comprehensive investigation of the electrolyte in the cathode before and after electrolysis by X-ray diffraction and analysis of the results by semi-quantitative calculation in MAUD.The results show that KF can promote electrolyte penetration,with higher KF contents resulting in greater penetration.During electrolyte penetration,K_(2)NaAlF_(6) and solid solutions containing KF play important roles in KF-containing systems.LiF effectively prevents the electrolyte penetration,while the Na_(3)Li_(3)Al_(2)F_(12) phase plays an essential role in systems with high LiF contents.
基金Projects(51505050,51805063) supported by the National Natural Science Foundation of China for Young ScholarsProjects(KJ1500942,KJQN201801134) supported by the Scientific and Technological Research Program of Chongqing Education Commission of ChinaProjects(cstc2017jcyjAX0075,cstc2015jcyj A50033) supported by the Chongqing Research Program of Basic Research and Frontier Technology,China
文摘Hydrogenated microcrystalline silicon(μc-Si:H)films were prepared on glass and silicon substrates by radio frequency magnetron sputtering at 100°C using a mixture of argon(Ar)and hydrogen(H2)gasses as precursor gas.The effects of the ratio of hydrogen flow(H2/(Ar+H2)%)on the microstructure were evaluated.Results show that the microstructure,bonding structure,and surface morphology of theμc-Si:H films can be tailored based on the ratio of hydrogen flow.An amorphous to crystalline phase transition occurred when the ratio of hydrogen flow increased up to 50%.The crystallinity increased and tended to stabilize with the increase in ratio of hydrogen flow from 40%to 70%.The surface roughness of thin films increased,and total hydrogen content decreased as the ratio of hydrogen flow increased.Allμc-Si:H films have a preferred(111)orientation,independent of the ratio of hydrogen flow.And theμc-Si:H films had a dense structure,which shows their excellent resistance to post-oxidation.
基金the National Key Research&Development Program of China(No.2017YFC0211202).Authors would like to thank editors and anonymous reviewers for their suggestions to improve the paper.
文摘An insufficient amount of NH_(3) (ammonia)will reduce the conversion efficiency of NO_(x),which may lead to excess NO_(x) emissions,resulting in NH3SCR failure.In this article,SCR failure caused by a low NH_(3)NO_(x) ratio is studied systematically by experiments.The main reasons for a low NH_(3)NO_(x) ratio in SCR include insufficient urea injection,hydrothermal aging of catalysts and urea crystallization.It was found from an insufficient urea injection experiment that with the increase of NH_(3)NO_(x) ratio,the NO_(x) conversion efficiency of the SCR system increased,but the ammonia leakage also increased.The main influencing factors of NO_(x) conversion efficiency are different under different NH3NOx ratios.A flow reactor system was used in the catalyst hydrothermal aging experiment to investigate the effect of hydrothermal aging on catalyst activity.After a 24 h hydrothermal aging experiment at 800℃,the NO_(x) conversion efficiency of the copperbased zeolite catalysts decreased significantly at the boundary of medium and low temperature regions.And the NO_(2)-NO_(x) ratio in the mixture had a significant effect on the catalytic performance.Thermogravimetry coupled to Fourier transform infrared spectroscopy(TGFTIR)was used to analyze the composition of urea deposits in a urea deposits analysis experiment.It was found that the main components of urea deposits were urea and isocyanic acid(HNCO).Preventing HNCO polymerization,especially the formation of CYA,can decrease the formation of urea deposits.
基金Funded by the National Natural Science Foundation of China (Nos.50902150 & 90916019)the Graduate Innovation Foundation of the National University of Defense Technology(No.S100103)
文摘The amorphous boron nitride ceramic powders were prepared at 750-950 ℃ by the low-cost urea route, and the effects of preparation temperatures, molar ratios of the raw materials and oxidation treatment on the composition, structure and surface morphology of the products were investigated through FT-IR, XRD and SEM. The results show that the products ceramize and crystallize gradually with the increase of the temperature. When the molar ratio and reaction temperature are 3:2 and 850 ℃, respectively, the products have high purity, compact structure and nice shape. The oxidation treatment at 450 ℃ will not impair the composition and structure of boron nitride but effectively remove the impurities.
文摘The QDB-5 sulfur tolerant CO shift catalyst, with anti-methanation property by supported compositing alkali promoters, has been proved to effectively reduce the outlet methane content in the condition of a low water gas ratio. Thus, a new technology based on a lower water/gas ratio than before has been developed with the new catalyst. The CO conversion at lower temperatures and catalyst stability were confirmed by long term industrial application. The high temperature catalyst performance also showed a better result than the conventional commercial catalyst, with higher CO conversion and well controlled methane outlet. Our research and the industrial application of catalyst have shown the importance of alkali metals as core promoters for such kind of catalysts.
基金Funded by National Natural Science Foundation of China(No.51474170)the Key Laboratory Project of Shaanxi Provincial Department of Education(No.20js075)。
文摘The ultra-fine grained(UFG)pure titanium was prepared by equal channel angular pressing(ECAP)and rotary swaging(RS).The strain controlled low cycle fatigue(LCF)test was carried out at room temperature.The fatigue life prediction model and mean stress relaxation model under asymmetrical stress load were discussed.The results show that the strain ratio has a significant effect on the low cycle fatigue performance of the UFG pure titanium,and the traditional Manson-coffin model can not accurately predict the fatigue life under asymmetric stress load.Therefore,the SWT mean stress correction model and three-parameter power curve model are proposed,and the test results are verified.The final research shows that the threeparameter power surface model has better representation.By studying the mean stress relaxation phenomenon under the condition of R≠-1,it is revealed that the stress ratio and the strain amplitude are the factors that significantly afiect the mean stress relaxation rate,and the mean stress relaxation model with the two variables is calculated to describe the mean stress relaxation phenomenon of the UFG pure titanium under different strain ratios.The fracture morphology of the samples was observed by SEM,and it was concluded that the final fracture zone of the fatigue fracture of the UFG pure titanium was a mixture of ductile fracture and quasi cleavage fracture.The toughness of the material increases with the increase of strain ratio at the same strain amplitude.