The non stoichiometric high rate discharge hydrogen storage alloys series MlNi 3.85 Co 0.45 Mn 0.4 Al 0.3 X 0.1 (Ml represents the lanthanum rich mischmetal, and X=Mg,Si,Sn) were prepared. The XRD and EDS results show...The non stoichiometric high rate discharge hydrogen storage alloys series MlNi 3.85 Co 0.45 Mn 0.4 Al 0.3 X 0.1 (Ml represents the lanthanum rich mischmetal, and X=Mg,Si,Sn) were prepared. The XRD and EDS results show that the high catalysis active miscellaneous La 2Ni 7 phase forms except for main phase LaNi 5 in the alloy body. The high rate discharge performance of hydrogen storage alloys electrode was improved because of the formation of La 2Ni 7 phase. The discharge capacities at 0.2C, 1C and 5C discharge rate reach 320 mAh·g -1 , 300 mAh·g -1 and 260 mAh·g -1 respectively when X is (Mg+Si). At the same scanning rate of circular volt—ampere testing, the surface anode oxidation peak current and peak area of the alloy containing (Mg+Si) electrode are far more larger than that of the high cobalt alloy MlNi 3.55 Co 0.75 Mn 0.4 Al 0.3 (AB 5). Furthermore, the cobalt content of the hydrogen storage alloy containing (Mg+Si) decreases by 40% and the high rate discharge performance improves obviously compare to high cobalt AB 5 alloys, it is promising that the hydrogen storage alloy containing (Mg+Si) becomes to an ideal dynamic battery cathode material.展开更多
Fluorene is a polycyclic aromatic hydrocarbon, which is a hazardous toxic chemical in the environment. The measurement of low concentrations of fluorene is a subject of intense interest in chemistry and in the environ...Fluorene is a polycyclic aromatic hydrocarbon, which is a hazardous toxic chemical in the environment. The measurement of low concentrations of fluorene is a subject of intense interest in chemistry and in the environment. Polypyrrole chitosan cobalt ferrite nanoparticles are prepared using the electrochemical method. The prepared layers are characterized using field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and energy dispersive spectroscopy. The layers are used to detect fluorene using the surface plasmon resonance technique at room temperature. The composite layer is evaluated after detection of fluorene using atomic force microscopy. The fluorene is bound on the layer, and the shift of the resonance angle is about 0.0052°, corresponding to the limitation of 0.01 ppm.展开更多
Effect of revert cycles on microstructure and fatigue properties of cast cobalt base superalloy K640S has been investigated. The results show that: at 70 times of cool heat cycles, there were microcracks found in seve...Effect of revert cycles on microstructure and fatigue properties of cast cobalt base superalloy K640S has been investigated. The results show that: at 70 times of cool heat cycles, there were microcracks found in seven times revert and ten times revert. With the increasing of thermal fatigue cycles, the crack of revert grows a little faster than virgin. When the cycle time reaches 200, the crack length for both virgin and reverts have been as long as 2mm. The low cycle fatigue life has no remarkable change, with the increase of revert cycles at 815℃, 360MPa ,0 5Hz. With the times of cycles increasing, it is found that the content of impurity and gas in alloy change a little, and there is no obvious change for dendrite microstructure.展开更多
A novel salt-assisted low temperature solid state method using CoCl2.6H2O, FeCl3.6H2O and NaOH as precursor and using NaCI as a dispersant to synthesize high surface area CoFe2O4 nanoparticles, has been investigated. ...A novel salt-assisted low temperature solid state method using CoCl2.6H2O, FeCl3.6H2O and NaOH as precursor and using NaCI as a dispersant to synthesize high surface area CoFe2O4 nanoparticles, has been investigated. The effects of the molar ratio of added salt and calcination temperature on the characteristics of the products were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and Brunauer, Emmett and Teller (BET) surface area analysis. Results showed that the introduction of leachable inert inorganic salt as a hard agglomeration inhibitor in the mixture precursor led to the formation of high dispersive CoFe2O4 nanoparticles; and the increase in specific surface area from 28.28 to 73.97 m^2/g, and the saturation magnetization is 84.6 emu/g.展开更多
For the first time it is shown that psychotropic action of acetylsalicylates at various doses is manifested as a nonmonotonic dependence having its peaks at therapeutic and ultra-low dose zones. It is discovered that ...For the first time it is shown that psychotropic action of acetylsalicylates at various doses is manifested as a nonmonotonic dependence having its peaks at therapeutic and ultra-low dose zones. It is discovered that development of effects of aspirin resembles that of acetylsalicylate zinc. Acetylsalicylate cobalt at extremely low doses zone showed the highest antidepressant activity, demonstrating toxicity at high doses. Generally, it is revealed that the use of aspirin and its salts at high doses range causes maximum psychotropic effects development, usually accompanied by side-effects. Therefore, aspirin, acetylsalicylate cobalt and zinc at extremely low doses are recommended for further study as psychotropic medications.展开更多
文摘The non stoichiometric high rate discharge hydrogen storage alloys series MlNi 3.85 Co 0.45 Mn 0.4 Al 0.3 X 0.1 (Ml represents the lanthanum rich mischmetal, and X=Mg,Si,Sn) were prepared. The XRD and EDS results show that the high catalysis active miscellaneous La 2Ni 7 phase forms except for main phase LaNi 5 in the alloy body. The high rate discharge performance of hydrogen storage alloys electrode was improved because of the formation of La 2Ni 7 phase. The discharge capacities at 0.2C, 1C and 5C discharge rate reach 320 mAh·g -1 , 300 mAh·g -1 and 260 mAh·g -1 respectively when X is (Mg+Si). At the same scanning rate of circular volt—ampere testing, the surface anode oxidation peak current and peak area of the alloy containing (Mg+Si) electrode are far more larger than that of the high cobalt alloy MlNi 3.55 Co 0.75 Mn 0.4 Al 0.3 (AB 5). Furthermore, the cobalt content of the hydrogen storage alloy containing (Mg+Si) decreases by 40% and the high rate discharge performance improves obviously compare to high cobalt AB 5 alloys, it is promising that the hydrogen storage alloy containing (Mg+Si) becomes to an ideal dynamic battery cathode material.
文摘Fluorene is a polycyclic aromatic hydrocarbon, which is a hazardous toxic chemical in the environment. The measurement of low concentrations of fluorene is a subject of intense interest in chemistry and in the environment. Polypyrrole chitosan cobalt ferrite nanoparticles are prepared using the electrochemical method. The prepared layers are characterized using field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and energy dispersive spectroscopy. The layers are used to detect fluorene using the surface plasmon resonance technique at room temperature. The composite layer is evaluated after detection of fluorene using atomic force microscopy. The fluorene is bound on the layer, and the shift of the resonance angle is about 0.0052°, corresponding to the limitation of 0.01 ppm.
文摘Effect of revert cycles on microstructure and fatigue properties of cast cobalt base superalloy K640S has been investigated. The results show that: at 70 times of cool heat cycles, there were microcracks found in seven times revert and ten times revert. With the increasing of thermal fatigue cycles, the crack of revert grows a little faster than virgin. When the cycle time reaches 200, the crack length for both virgin and reverts have been as long as 2mm. The low cycle fatigue life has no remarkable change, with the increase of revert cycles at 815℃, 360MPa ,0 5Hz. With the times of cycles increasing, it is found that the content of impurity and gas in alloy change a little, and there is no obvious change for dendrite microstructure.
基金supported by the National Natural Sci-ence Foundation of China under grant No. 50602024the Youth Foundation of North University of China
文摘A novel salt-assisted low temperature solid state method using CoCl2.6H2O, FeCl3.6H2O and NaOH as precursor and using NaCI as a dispersant to synthesize high surface area CoFe2O4 nanoparticles, has been investigated. The effects of the molar ratio of added salt and calcination temperature on the characteristics of the products were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and Brunauer, Emmett and Teller (BET) surface area analysis. Results showed that the introduction of leachable inert inorganic salt as a hard agglomeration inhibitor in the mixture precursor led to the formation of high dispersive CoFe2O4 nanoparticles; and the increase in specific surface area from 28.28 to 73.97 m^2/g, and the saturation magnetization is 84.6 emu/g.
文摘For the first time it is shown that psychotropic action of acetylsalicylates at various doses is manifested as a nonmonotonic dependence having its peaks at therapeutic and ultra-low dose zones. It is discovered that development of effects of aspirin resembles that of acetylsalicylate zinc. Acetylsalicylate cobalt at extremely low doses zone showed the highest antidepressant activity, demonstrating toxicity at high doses. Generally, it is revealed that the use of aspirin and its salts at high doses range causes maximum psychotropic effects development, usually accompanied by side-effects. Therefore, aspirin, acetylsalicylate cobalt and zinc at extremely low doses are recommended for further study as psychotropic medications.