全光纤电流传感器提供了一种先进的非接触电流测量技术,由其良好的抗干扰性能等优点引起了广泛关注。然而,基于法拉第磁光效应的全光纤电流传感技术在绝缘诊断等领域的应用受到了很大的限制,主要原因是这种传感器技术在测量小电流信号...全光纤电流传感器提供了一种先进的非接触电流测量技术,由其良好的抗干扰性能等优点引起了广泛关注。然而,基于法拉第磁光效应的全光纤电流传感技术在绝缘诊断等领域的应用受到了很大的限制,主要原因是这种传感器技术在测量小电流信号时缺乏稳定性和可靠性。针对此问题,首先设计并建立了对称螺旋嵌套型全光纤小电流传感器实验系统,基于此实验系统对30 m A^6 A的直流电流进行测试,在此基础上研究法拉第磁光偏转角随测试电流的变化规律。然后应用COMSOL多模场耦合仿真软件对所设计的光纤传感系统的传输场进行模拟仿真,得到对称螺旋嵌套型全光纤电流传感器对法拉第磁光效应的响应度,发现这种结构与传统全光纤结构相比可提高灵敏度600倍左右。最后将实验结果与仿真结果进行对比分析,并研究了对称螺旋嵌套型结构的特性。结果表明,对称螺旋嵌套型全光纤小电流传感器可准确测量30 m A以上的小电流,解决了全光纤电流传感器无法准确测量10 A以下小电流的技术难题。未来将基于所建立的实验系统对传感器的潜在应用进行进一步的探索。展开更多
介绍了一款基于0.4μm Bi CMOS工艺应用于温度补偿晶体振荡器的高性能温度传感器的设计。该温度传感器利用基极-发射极电压(VBE)减去与绝对温度成正比(PTAT)电流在电阻上的压降的原理,产生了与温度成线性的输出电压。采用包含两个串联...介绍了一款基于0.4μm Bi CMOS工艺应用于温度补偿晶体振荡器的高性能温度传感器的设计。该温度传感器利用基极-发射极电压(VBE)减去与绝对温度成正比(PTAT)电流在电阻上的压降的原理,产生了与温度成线性的输出电压。采用包含两个串联发射结电压和低失调运算放大器的PTAT电流产生器,实现了高精度的PTAT电流;采用具有负温度系数的电阻,补偿了VBE的高阶温度特性;采用共源共栅结构,提高了输出电压的电源抑制。后仿真结果表明,当电源电压为3.3 V,温度范围为-40~85℃时,温度传感器的输出电压范围为0.964~1.490V,输出电压的斜率范围为-4.245×10-3^-4.160×10-3,斜率变化范围为8.5×10-5,表明该温度传感器具有非常高的线性度。展开更多
文摘全光纤电流传感器提供了一种先进的非接触电流测量技术,由其良好的抗干扰性能等优点引起了广泛关注。然而,基于法拉第磁光效应的全光纤电流传感技术在绝缘诊断等领域的应用受到了很大的限制,主要原因是这种传感器技术在测量小电流信号时缺乏稳定性和可靠性。针对此问题,首先设计并建立了对称螺旋嵌套型全光纤小电流传感器实验系统,基于此实验系统对30 m A^6 A的直流电流进行测试,在此基础上研究法拉第磁光偏转角随测试电流的变化规律。然后应用COMSOL多模场耦合仿真软件对所设计的光纤传感系统的传输场进行模拟仿真,得到对称螺旋嵌套型全光纤电流传感器对法拉第磁光效应的响应度,发现这种结构与传统全光纤结构相比可提高灵敏度600倍左右。最后将实验结果与仿真结果进行对比分析,并研究了对称螺旋嵌套型结构的特性。结果表明,对称螺旋嵌套型全光纤小电流传感器可准确测量30 m A以上的小电流,解决了全光纤电流传感器无法准确测量10 A以下小电流的技术难题。未来将基于所建立的实验系统对传感器的潜在应用进行进一步的探索。
文摘介绍了一款基于0.4μm Bi CMOS工艺应用于温度补偿晶体振荡器的高性能温度传感器的设计。该温度传感器利用基极-发射极电压(VBE)减去与绝对温度成正比(PTAT)电流在电阻上的压降的原理,产生了与温度成线性的输出电压。采用包含两个串联发射结电压和低失调运算放大器的PTAT电流产生器,实现了高精度的PTAT电流;采用具有负温度系数的电阻,补偿了VBE的高阶温度特性;采用共源共栅结构,提高了输出电压的电源抑制。后仿真结果表明,当电源电压为3.3 V,温度范围为-40~85℃时,温度传感器的输出电压范围为0.964~1.490V,输出电压的斜率范围为-4.245×10-3^-4.160×10-3,斜率变化范围为8.5×10-5,表明该温度传感器具有非常高的线性度。