A novel double-layer film of SiCOF/a-C : F with a low dielectric constant is deposited using a PECVD system. The chemical structure of the film is characterized with Fourier transform infrared spectroscopy (FTIR). ...A novel double-layer film of SiCOF/a-C : F with a low dielectric constant is deposited using a PECVD system. The chemical structure of the film is characterized with Fourier transform infrared spectroscopy (FTIR). The measurements of the film refractive index reveal that the optical frequency dielectric constant (n^2) of the film is almost constant as a function of air exposure time, however, with increasing annealing temperature, the value of n^2 for the film decreases. Possible mechanisms are discussed in detail. The analysis of SIMS profiles for the metal-insulator-silicon structures reveal that in the Al/a-C : F/Si structure,the annealing causes a more rapid diffusion of F in AI in comparison with C, but there is no obvious difference in Si. In addition, no recognizable verge exists between SiCOF and a-C : F films,and the SiCOF film acts as a barrier against the diffusion of carbon into the aluminum layer.展开更多
Comprehensive Summary,Low dielectric(low-k)organosilicon polymers have received extensive interests from industry and academia due to good electrical insulation,high temperature resistance,flame retardancy and hydroph...Comprehensive Summary,Low dielectric(low-k)organosilicon polymers have received extensive interests from industry and academia due to good electrical insulation,high temperature resistance,flame retardancy and hydrophobicity.These attractive properties enable them to be utilized as low-k materials in fabrication of electronic devices in high-frequency communication technology.This review summarizes recent progress in developing low-k organosilicon polymers,including the synthetic methods and properties of different organosilicon polymers classified according to the chemical structures.It may provide some inspiration to design new low-k organosilicon polymers for application in the.展开更多
A linear fluorinated benzocyclobutene-type monomer(4F-bis-BCB) was facilely synthesized by a one-step copper-catalyzed etherification reaction and a simple precipitation post-purification method.Moreover,a series of B...A linear fluorinated benzocyclobutene-type monomer(4F-bis-BCB) was facilely synthesized by a one-step copper-catalyzed etherification reaction and a simple precipitation post-purification method.Moreover,a series of BCB-based polymeric low-dielectric(low-k)materials were obtained by the thermal-induced ring-opening copolymerization of 4F-bis-BCB with divinyl tetramethyl disiloxanebisbenzocyclobutene(DVS-BCB) monomer and further simple thermal curing at high temperature(200-300℃).The resultant fully cured materials demonstrated excellent low dielectric properties at high frequency of 10 GHz(dielectric constant(D_(k))<2.6,dielectric loss(D_(f))<1.57×10^(-2)),great hydrophobicity(water contact angle>116°),ultra-low water absorption(<0.19% after soaked in water at room temperature for 60 h) and excellent planarization ability(surface roughness<0.56 nm of 3 μm-thick film).Overall,this new fluorinated BCB-type monomer provides us an alternative for the facile preparation of low-k polymeric materials and exhibits great potential for future applications in high-frequency communication and three-dimensional high-density packaging technologies.展开更多
文摘A novel double-layer film of SiCOF/a-C : F with a low dielectric constant is deposited using a PECVD system. The chemical structure of the film is characterized with Fourier transform infrared spectroscopy (FTIR). The measurements of the film refractive index reveal that the optical frequency dielectric constant (n^2) of the film is almost constant as a function of air exposure time, however, with increasing annealing temperature, the value of n^2 for the film decreases. Possible mechanisms are discussed in detail. The analysis of SIMS profiles for the metal-insulator-silicon structures reveal that in the Al/a-C : F/Si structure,the annealing causes a more rapid diffusion of F in AI in comparison with C, but there is no obvious difference in Si. In addition, no recognizable verge exists between SiCOF and a-C : F films,and the SiCOF film acts as a barrier against the diffusion of carbon into the aluminum layer.
基金supported by the National Natural Science Foundation of China(NSFC,Nos.22175195,22075311 and 21975278).
文摘Comprehensive Summary,Low dielectric(low-k)organosilicon polymers have received extensive interests from industry and academia due to good electrical insulation,high temperature resistance,flame retardancy and hydrophobicity.These attractive properties enable them to be utilized as low-k materials in fabrication of electronic devices in high-frequency communication technology.This review summarizes recent progress in developing low-k organosilicon polymers,including the synthetic methods and properties of different organosilicon polymers classified according to the chemical structures.It may provide some inspiration to design new low-k organosilicon polymers for application in the.
基金the National Natural Science Foundation of China(No.22075298)the Beijing Municipal Natural Science Foundation(No.2212053)。
文摘A linear fluorinated benzocyclobutene-type monomer(4F-bis-BCB) was facilely synthesized by a one-step copper-catalyzed etherification reaction and a simple precipitation post-purification method.Moreover,a series of BCB-based polymeric low-dielectric(low-k)materials were obtained by the thermal-induced ring-opening copolymerization of 4F-bis-BCB with divinyl tetramethyl disiloxanebisbenzocyclobutene(DVS-BCB) monomer and further simple thermal curing at high temperature(200-300℃).The resultant fully cured materials demonstrated excellent low dielectric properties at high frequency of 10 GHz(dielectric constant(D_(k))<2.6,dielectric loss(D_(f))<1.57×10^(-2)),great hydrophobicity(water contact angle>116°),ultra-low water absorption(<0.19% after soaked in water at room temperature for 60 h) and excellent planarization ability(surface roughness<0.56 nm of 3 μm-thick film).Overall,this new fluorinated BCB-type monomer provides us an alternative for the facile preparation of low-k polymeric materials and exhibits great potential for future applications in high-frequency communication and three-dimensional high-density packaging technologies.