Through a higher-order boundary element method based on NURBS (Non-uniform Rational B-splines), the calculation of second-order low-frequency forces and slow drift motions is conducted for floating bodies. In the fl...Through a higher-order boundary element method based on NURBS (Non-uniform Rational B-splines), the calculation of second-order low-frequency forces and slow drift motions is conducted for floating bodies. In the floating body's inner domain, an auxiliary equation is obtained by applying a Green function which satisfies the solid surface condition. Then, the auxiliary equation and the velocity potential equation are combined in the fluid domain to remove the solid angle coefficient and the singularity of the double layer potentials in the integral equation. Thus, a new velocity potential integral equation is obtained. The new equation is extended to the inner domain to reheve the irregular frequency effects; on the basis of the order analysis, the comparison is made about the contribution of all integral terms with the result in the second-order tow-frequency problem; the higher-order boundary element method based on NURBS is apphed to calculate the geometric position and velocity potentials; the slow drift motions are calculated by the spectrum analysis method. Removing the solid angle coefficient can apply NURBS technology to the hydrodynamic calculation of floating bodies with complex surfaces, and the extended boundary integral method can reduce the irregular frequency effects. Order analysis shows that free surface integral can be neglected, and the numerical results can also prove the correctness of order analysis. The results of second-order low-frequency forces and slow drift motions and the comparison with the results from references show that the application of the NURBS technology to the second-order low-frequency problem is of high efficiency and credible results.展开更多
A low temperature drift curvature-compensated complementary metal oxide semiconductor (CMOS) bandgap ref-erence is proposed.A dual-differential-pair amplifier was employed to add compensation with a high-order term of...A low temperature drift curvature-compensated complementary metal oxide semiconductor (CMOS) bandgap ref-erence is proposed.A dual-differential-pair amplifier was employed to add compensation with a high-order term of TlnT (T is the thermodynamic temperature) to the traditional 1st-order compensated bandgap.To reduce the offset of the amplifier and noise of the bandgap reference,input differential metal oxide semiconductor field-effect transistors (MOSFETs) of large size were used in the amplifier and to keep a low quiescent current,these MOSFETs all work in weak inversion.The voltage reference's temperature curvature has been further corrected by trimming a switched resistor network.The circuit delivers an output voltage of 3 V with a low dropout regulator (LDO).The chip was fabricated in Taiwan Semiconductor Manufacturing Company (TSMC)'s 0.35-μm CMOS process,and the temperature coefficient (TC) was measured to be only 2.1×10 6/°C over the temperature range of 40-125 °C after trimming.The power supply rejection (PSR) was 100 dB @ DC and the noise was 42 μV (rms) from 0.1 to 10 Hz.展开更多
A low drift current reference based on PMOS temperature correction technology is proposed.To achieve the minimum temperature coefficient(TC),the PMOS cascode current mirror is designed as a cross structure.By exchangi...A low drift current reference based on PMOS temperature correction technology is proposed.To achieve the minimum temperature coefficient(TC),the PMOS cascode current mirror is designed as a cross structure.By exchanging the bias for two layers of the self-biased PMOS cascode structure,the upper PMOS,which is used to adjust the TC together with the resistor of the self-biased PMOS cascode structure,is forced to work in the linear region.As the proposed current reference is the on-chip current reference of a high voltage LED driver with high accuracy,it was designed using a CSMC 1 μm 40 V BCD process.Simulation shows that the TC of the reference current was only 23.8×10 6 /°C over the temperature range of 40-120 °C under the typical condition.展开更多
Multilevel phase-change memory is an attractive technology to increase storage capacity and density owing to its high-speed,scalable and non-volatile characteristics.However,the contradiction between thermal stability...Multilevel phase-change memory is an attractive technology to increase storage capacity and density owing to its high-speed,scalable and non-volatile characteristics.However,the contradiction between thermal stability and operation speed is one of key factors to restrain the development of phase-change memory.Here,N-doped Ge_(2)Sb_(2)Te_(5)-based optoelectronic hybrid memory is proposed to simultaneously implement high thermal stability and ultrafast operation speed.The picosecond laser is adopted to write/erase information based on reversible phase transition characteristics whereas the resistance is detected to perform information readout.Results show that when N content is 27.4 at.%,N-doped Ge_(2)Sb_(2)Te_(5)film possesses high ten-year data retention temperature of 175℃and low resistance drift coefficient of 0.00024 at 85℃,0.00170 at 120℃,and 0.00249 at 150℃,respectively,owing to the formation of Ge–N,Sb–N,and Te–N bonds.The SET/RESET operation speeds of the film reach 520 ps/13 ps.In parallel,the reversible switching cycle of the corresponding device is realized with the resistance ratio of three orders of magnitude.Four-level reversible resistance states induced by various crystallization degrees are also obtained together with low resistance drift coefficients.Therefore,the N-doped Ge_(2)Sb_(2)Te_(5)thin film is a promising phase-change material for ultrafast multilevel optoelectronic hybrid storage.展开更多
Detailed analysis of the low frequency instability is performed in a linear magnetized steady state plasma device. Identification and modification of the instability are presented.
Is the westerly rotation of the lithosphere an ephemeral accidental recent phenomenon or is it a stable process of Earth's geodynamics? The reason why the tidal drag has been questioned as the mechanism determinin...Is the westerly rotation of the lithosphere an ephemeral accidental recent phenomenon or is it a stable process of Earth's geodynamics? The reason why the tidal drag has been questioned as the mechanism determining the lithospheric shift relative to the underlying mantle is the apparent too high viscosity of the asthenosphere. However, plate boundaries asymmetries are a robust indication of the 'westerly'decoupling of the entire Earth's outer lithospheric shell and new studies support lower viscosities in the low-velocity layer(LVZ) atop the asthenosphere. Since the solid Earth tide oscillation is longer in one side relative to the other due to the contemporaneous Moon's revolution, we demonstrate that a non-linear rheological behavior is expected in the lithosphere mantle interplay. This may provide a sort of ratchet favoring lowering of the LVZ viscosity under shear, allowing decoupling in the LVZ and triggering the westerly motion of the lithosphere relative to the mantle.展开更多
基于130 nm双极型晶体管与互补金属氧化物半导体(Bipolar and Complementary Metal Oxide Semiconductor,BiCMOS)工艺,提出了一款由跨导参考源与温度系数校准电路构成的,应用于超低增益温漂放大器的正温度系数跨导基准电路。提出的正温...基于130 nm双极型晶体管与互补金属氧化物半导体(Bipolar and Complementary Metal Oxide Semiconductor,BiCMOS)工艺,提出了一款由跨导参考源与温度系数校准电路构成的,应用于超低增益温漂放大器的正温度系数跨导基准电路。提出的正温度系数跨导基准电路被应用于K频段4通道相控阵接收芯片中,根据接收芯片射频信号链路中各级放大器负载阻抗的温漂特性,设置合适的正温度系数跨导的参考电流,确保各级放大器以及射频信号链路的增益在工作温度发生变化时维持在极低的变化范围内。芯片实测结果表明:含四级有源放大器的接收芯片射频信号链路在中心频率19 GHz处的常温增益等于22.8 dB;在17 G至21 GHz工作频段内,-45℃至85℃温度下,最大增益温漂小于2.9 dB。芯片占用面积3.5 mm×2.5 mm。展开更多
文摘Through a higher-order boundary element method based on NURBS (Non-uniform Rational B-splines), the calculation of second-order low-frequency forces and slow drift motions is conducted for floating bodies. In the floating body's inner domain, an auxiliary equation is obtained by applying a Green function which satisfies the solid surface condition. Then, the auxiliary equation and the velocity potential equation are combined in the fluid domain to remove the solid angle coefficient and the singularity of the double layer potentials in the integral equation. Thus, a new velocity potential integral equation is obtained. The new equation is extended to the inner domain to reheve the irregular frequency effects; on the basis of the order analysis, the comparison is made about the contribution of all integral terms with the result in the second-order tow-frequency problem; the higher-order boundary element method based on NURBS is apphed to calculate the geometric position and velocity potentials; the slow drift motions are calculated by the spectrum analysis method. Removing the solid angle coefficient can apply NURBS technology to the hydrodynamic calculation of floating bodies with complex surfaces, and the extended boundary integral method can reduce the irregular frequency effects. Order analysis shows that free surface integral can be neglected, and the numerical results can also prove the correctness of order analysis. The results of second-order low-frequency forces and slow drift motions and the comparison with the results from references show that the application of the NURBS technology to the second-order low-frequency problem is of high efficiency and credible results.
基金Project (No.2008ZX01020-001) supported by the National Science and Technology Major Project,China
文摘A low temperature drift curvature-compensated complementary metal oxide semiconductor (CMOS) bandgap ref-erence is proposed.A dual-differential-pair amplifier was employed to add compensation with a high-order term of TlnT (T is the thermodynamic temperature) to the traditional 1st-order compensated bandgap.To reduce the offset of the amplifier and noise of the bandgap reference,input differential metal oxide semiconductor field-effect transistors (MOSFETs) of large size were used in the amplifier and to keep a low quiescent current,these MOSFETs all work in weak inversion.The voltage reference's temperature curvature has been further corrected by trimming a switched resistor network.The circuit delivers an output voltage of 3 V with a low dropout regulator (LDO).The chip was fabricated in Taiwan Semiconductor Manufacturing Company (TSMC)'s 0.35-μm CMOS process,and the temperature coefficient (TC) was measured to be only 2.1×10 6/°C over the temperature range of 40-125 °C after trimming.The power supply rejection (PSR) was 100 dB @ DC and the noise was 42 μV (rms) from 0.1 to 10 Hz.
文摘A low drift current reference based on PMOS temperature correction technology is proposed.To achieve the minimum temperature coefficient(TC),the PMOS cascode current mirror is designed as a cross structure.By exchanging the bias for two layers of the self-biased PMOS cascode structure,the upper PMOS,which is used to adjust the TC together with the resistor of the self-biased PMOS cascode structure,is forced to work in the linear region.As the proposed current reference is the on-chip current reference of a high voltage LED driver with high accuracy,it was designed using a CSMC 1 μm 40 V BCD process.Simulation shows that the TC of the reference current was only 23.8×10 6 /°C over the temperature range of 40-120 °C under the typical condition.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62205231 and 22002102)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant No.KYCX223271)Jiangsu Key Laboratory for Environment Functional Materials。
文摘Multilevel phase-change memory is an attractive technology to increase storage capacity and density owing to its high-speed,scalable and non-volatile characteristics.However,the contradiction between thermal stability and operation speed is one of key factors to restrain the development of phase-change memory.Here,N-doped Ge_(2)Sb_(2)Te_(5)-based optoelectronic hybrid memory is proposed to simultaneously implement high thermal stability and ultrafast operation speed.The picosecond laser is adopted to write/erase information based on reversible phase transition characteristics whereas the resistance is detected to perform information readout.Results show that when N content is 27.4 at.%,N-doped Ge_(2)Sb_(2)Te_(5)film possesses high ten-year data retention temperature of 175℃and low resistance drift coefficient of 0.00024 at 85℃,0.00170 at 120℃,and 0.00249 at 150℃,respectively,owing to the formation of Ge–N,Sb–N,and Te–N bonds.The SET/RESET operation speeds of the film reach 520 ps/13 ps.In parallel,the reversible switching cycle of the corresponding device is realized with the resistance ratio of three orders of magnitude.Four-level reversible resistance states induced by various crystallization degrees are also obtained together with low resistance drift coefficients.Therefore,the N-doped Ge_(2)Sb_(2)Te_(5)thin film is a promising phase-change material for ultrafast multilevel optoelectronic hybrid storage.
基金supported by the National Natural Science Foundation of China(No.10275065)in part by the JSPS-CAS Core University Program in the field of Plasma and Nuclear Fusion
文摘Detailed analysis of the low frequency instability is performed in a linear magnetized steady state plasma device. Identification and modification of the instability are presented.
文摘Is the westerly rotation of the lithosphere an ephemeral accidental recent phenomenon or is it a stable process of Earth's geodynamics? The reason why the tidal drag has been questioned as the mechanism determining the lithospheric shift relative to the underlying mantle is the apparent too high viscosity of the asthenosphere. However, plate boundaries asymmetries are a robust indication of the 'westerly'decoupling of the entire Earth's outer lithospheric shell and new studies support lower viscosities in the low-velocity layer(LVZ) atop the asthenosphere. Since the solid Earth tide oscillation is longer in one side relative to the other due to the contemporaneous Moon's revolution, we demonstrate that a non-linear rheological behavior is expected in the lithosphere mantle interplay. This may provide a sort of ratchet favoring lowering of the LVZ viscosity under shear, allowing decoupling in the LVZ and triggering the westerly motion of the lithosphere relative to the mantle.